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On-line Appointment Sequencing and Scheduling

ABSTRACT

We formulate and solve a new stochastic integer programming model for dynamic sequencing and

scheduling of appointments to a single stochastic server. We assume that service durations and the

number of customers to be served on a particular day are uncertain. Customers are sequenced and

scheduled dynamically (on-line) one at a time as they request appointments. We present a two-stage

stochastic mixed integer program which uses a novel set of non-anticipativity constraints to capture the

dynamic multistage nature of appointment requests as well as the sequencing of customers. We describe

several ways to improve computational efficiency of decomposition methods to solve our model. We

also present some theoretical findings based on small problems to help motivate decision rules for larger

problems. Our numerical experiments provide insights into optimal sequencing and scheduling decisions

and the performance of the solution methods we propose.

Keywords: appointment scheduling, sequencing, stochastic programming, health care

1 Introduction

Many service systems provide appointments to customers in advance of their arrival. However, because

service times are uncertain, the amount of time to allot between customer arrivals is a challenging de-

cision. Short inter-arrival times can lead to high service system utilization, but at the expense of long

customer wait times. Long inter-arrival times, on the other hand, tend to reduce customer waiting, but at

the expense of lower resource utilization. Achieving a balance between these competing criteria can be

challenging because simple rules, such as longest processing time first (LPT) sequencing and setting the

mean service time for customer inter-arrivals, often perform poorly (Denton and Gupta (2003); Denton

et al. (2007)).

When the number of customers to be scheduled is known in advance, schedules can be designed using

stochastic optimization models (Denton et al. (2007), Gul et al. (2010)) or through experimentation with
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simulation models (Ho and Lau (1992)) or queuing models (Mercer (1973), Soriano (1966),Sabria and

Daganzo (1989)). However, in many service systems appointment scheduling is complicated by the fact

that the exact number of customers to be scheduled is not known in advance. Instead, customers request

appointments sequentially over time, and appointments are quoted on-line, i.e. sequentially at the time of

each appointment request. Since rescheduling of appointments is uncommon in most service industries

it is necessary to make these on-line scheduling decisions in such a way that schedules are adaptable to

variation in customer demand.

In health care delivery systems, achieving this balance is particularly important because of the high

cost of resources, including human and physical resources. In this context uncertainty in demand often

arises due to the inherently uncertain nature of urgent care. In outpatient clinics, for instance, customers

are often classified into groups such as routine and urgent. Routine patients are scheduled in advance,

often weeks or months in advance. Urgent patients, on the other hand, are scheduled on much shorter

notice, typically days or hours in advance and may have a higher priority for service. Such patients are

often referred to as add-ons. Furthermore, due to the nature of urgent patients the exact number to be

scheduled is not known with certainty. Therefore, routine appointment scheduling must be done in a way

that anticipates the potential future need to schedule additional urgent patients.

In this article we describe a stochastic integer programming model for dynamic sequencing and

scheduling of appointments to a single stochastic server. The model is a generalizable representation of

the appointment scheduling process for many kinds of service systems (e.g. consulting services, visa

services, accounting services). We assume customers request appointments sequentially, one at a time,

prior to the day of service. Upon request, customers are quoted a particular arrival time during the day

of service. The new problem studied in this article assumes the following on-line scheduling process.

Appointment requests are received sequentially, one at a time, for a given future day of service. Requests

are probabilistic and therefore the exact number of requests that will be received is not known with

certainty. At the time of each appointment request, the scheduler (e.g. clinical assistant in primary care

clinic or experienced nurse in an outpatient surgery center) must decide on the appointment time to quote

to the customer. By setting the appointment time for each customer the scheduler sets both the sequence

of arrivals and the inter-arrival times between customers. In this article we study how to simultaneously

optimize both of these decisions when they must be made sequentially with imperfect information about

the total demand on the system. The solutions resulting from the model we present can be used to
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construct a scheduling template that defines the appointment time to assign for each customer request.

The objective is to minimize a weighted sum of the expected cost of direct waiting and waiting until time

to appointment and overtime. Direct waiting is the time spent waiting beyond the assigned appointment

time whereas waiting until time to appointment is the time spent waiting from the start of the day (earliest

possible appointment time) and the assignment appointment time. The latter waiting time is relevant for

customers that have an urgent need for access.

We discuss the special structure of our model and several ways to improve computational efficiency

of the L-shaped method to solve our model. We present some theoretical findings based on a special

case of the problem we study and use these to provide some insight into optimal scheduling decisions

for larger problems. We present a series of numerical experiments that provide insights into optimal

sequencing and scheduling decisions as well as the performance of the solution methods we propose.

Drawing on our computational experiments we classify problems into those that are easy to solve and

those that are computationally challenging.

The remainder of this article is organized as follows: In Section 2 we provide background and lit-

erature review on appointment sequencing and scheduling. In Section 3 we present a detailed problem

definition and model formulation. Section 4 describes structural properties of the model and solution

methodology, and Section 5 presents the experimental results. Finally in Section 6 we discuss our main

findings and future research directions.

2 Background and Literature Review

In this section we provide some background on appointment scheduling and a review of the relevant

literature. Since much of the literature is in the context of health care we use the terms patient and

customer interchangeably. Most of the previous work on dynamic appointment scheduling has assumed

a fixed first-come-first-served (FCFS) queue discipline. Figure 1 illustrates the evolution of an on-line

appointment schedule over time for a specific example in which up to 5 customers are scheduled. Figure

1(A) illustrates the FCFS policy in a dynamic scheduling environment. Figure 1(B) illustrates the more

general case, which we consider in this article, in which the sequence is not fixed a priori. Note that

customers are scheduled in order of their appointment requests but their appointment times on the day of

service do not necessarily follow that order.
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Figure 1: Illustration of the on-line scheduling problem for scheduling of up to 5 customers. Figure (A)
illustrates the case in which the sequence of appointments is FCFS; Figure (B) illustrates the general case
in which the FCFS sequence is relaxed.

We study the general on-line scheduling problem because there are a number of health care envi-

ronments in which this problem arises. Given the dynamic nature of most scheduling environments,

in practice schedulers must consider the relative importance of customers when assigning appointment

times. Since scheduling is done sequentially and rescheduling is uncommon in most service systems, se-

quencing decisions are an important part of setting appointments. When each sequencing and scheduling

decision is made, the possibility of future uncertain arrivals of patients, perhaps with varying priority for

service, must be considered.

In the static (off-line) context, scheduling appointments with multiple patient classes has received

recent attention from several researchers. Previous studies have considered patient classifications ac-

cording to characteristics such as new/returning patients, child/adult patients, or according to service

durations (e.g. high vs. low variance). In the context of surgery scheduling, for example, surgeries are

often classified in two categories: elective and urgent. For elective cases, surgery may be planned well

in advance (e.g. months) to be performed on a future date. For non-elective cases, on the other hand,
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the surgery is unanticipated. These cases must be worked in to the existing schedule, either by using

intentionally reserved or otherwise available space in the schedule, or by creating space by canceling

previously scheduled elective cases.

In some health care environments threshold policies are applied. According to these policies, lower

priority patients (outpatients) are scheduled until a capacity threshold is reached. Remaining capacity

is reserved for higher priority patients that may arrive in the future. For example, Green et al. (2006)

consider appointment scheduling in the context of a diagnostic medical facility in the presence of two

types of demand, inpatients and outpatients, both of which must be served by the same resources. They

formulate a Markov decision process (MDP) model and use it to determine dynamic priority rules for

admitting patients. An alternative strategy, used by some hospitals, is to allocate separate capacity for

emergencies and add-ons. This is common in the context of surgical practices where one or more oper-

ating rooms (OR) may be reserved for surgeries that arise on short notice. Another strategy is to reserve

slack time in the schedule for urgent patients (Gerchak et al. (1996); Torkki et al. (2006); Klassen and

Rohleder (2003)).

Wang (1993) studied a dynamic scheduling problem in which an additional customer is scheduled

after an initial batch of customers have been scheduled. He used phase-type distributions to investigate

the transient solution of a Markovian server to determine the optimal start times for each customer. To

find the appointment time of the new customer, the schedule was divided into intervals according to

the currently scheduled appointments, and a set of nonlinear equations is solved for each interval. The

placement of the new customer is determined by the interval which has the minimum objective function

value after an initial schedule has been developed. However, the author assumed a single additional

customer, and did not attempt to find the optimal schedule in light of the possibility of additional customer

arrivals which is the problem considered in this article.

Cayirli et al. (2006) developed a simulation model to determine the sequence and schedule for the

new and returning patients in an ambulatory care system. The authors tested several sequencing rules

including FCFS, alternating between new and returning patients, sequencing new patients at the begin-

ning, and sequencing returning patients at the beginning. In addition to these sequencing rules, several

scheduling rules to determine the appointment allowances were also tested. These rules included al-

locating equal intervals between patients, double-booking the first two patients (Bailey’s Rule), and

scheduling two patients at a time with equal intervals. They concluded that sequencing decisions have
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more impact on the performance of the system than the appointment scheduling rules. In another study,

Cayirli et al. (2008) considered different environmental characteristics such as no-show rates, the ratio

of new patients to returning patients, and walk-ins. They concluded that FCFS is not necessarily optimal

when there are multiple patient classes. They found that different sequencing and scheduling rules should

be selected depending on the environmental characteristics. Unlike previous studies based on simulation

models which compare the performances of predetermined sequencing and scheduling rules we aim to

find optimal dynamic appointment schedules using a novel two-stage stochastic integer programming

formulation of the multi-stage decision process.

More recently, Zonderland et al. (2010) studied the tradeoff between cancelation of scheduled elec-

tive surgeries to accommodate urgent arrivals and the unused OR time that is reserved for uncertain

urgent surgeries. The authors used an infinite horizon MDP to determine the number of slots to be re-

served for urgent arrivals. They found that when the cost of canceling elective surgeries is higher than

the cost of OR idle time, the optimal policy is to reserve appointment slots for a certain number of urgent

arrivals in advance but postpone the remaining urgent surgeries. They found that, when the cost of OR

idle time is high, the optimal policy is to cancel elective surgeries to accommodate urgent surgeries.

A number of studies considered dynamic scheduling problem with the aim of finding the optimal

daily scheduling policy in the presence of no-shows and cancelations ( Robinson and Chen (2010); Has-

sin and Mendel (2008); Kolisch and Sickinger (2008); Lin et al. (2011)). Liu et al. (2010) also studied

dynamic appointment scheduling, however, with the aim of finding the optimal future appointment day

depending on the no-show probability of the requesting patient. In these studies, the patients are clas-

sified according to no-show probabilities. One exception is the work by Kolisch and Sickinger (2008)

which also considered different patient classes including outpatient, inpatient and emergency. The ser-

vice durations in the above studies are either assumed to be deterministic (Robinson and Chen (2010);

Kolisch and Sickinger (2008)), or exponential (Hassin and Mendel (2008)) which is not a limitation in

our model presented in this article.

The study by Lin et al. (2011) is the most relevant to this article. Our work differs from the work

by Lin et al. (2011) in several ways: First, we do not discretize the appointment scheduling process. In

addition to waiting time our model also considers a cost associated with a fixed time (e.g. start of day).

This allows us to consider urgent services (e.g. emergencies) and reservation of capacity during the

day to accommodate these uncertain requests. Second, we formulate the problem as a stochastic integer
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program and focus on method for obtaining optimal solutions, or tight optimality gaps. The ability

to compute optimality gaps is one of the major benefits of our math programming approach (versus

approximate dynamic programming (ADP) methods, such as those used by Lin et al., for which there

is very little known about how to computer error bounds). The model by Lin et al. (2010) also is not

restricted by service time distributions, however, it computationally relies on numerical integration and

is viable only for certain distributions like exponential and gamma distributions.

Another related study is that of Erdogan and Denton (2011)) which presents two stochastic program-

ming models for two variants of appointment scheduling problem. The first model is a static scheduling

problem with no-shows. The second model is a dynamic appointment scheduling problem in which the

customers are sequentially allocated to an appointment time as they request appointments. The appoint-

ment times are allocated on a FCFS basis. In contrast, in this article we relax the assumption of a FCFS

sequence and we consider the total waiting (direct and time to appointment) cost measured from the

start of the day. These differences lead to a unique discrete and stochastic model that is more realistic

for service systems that serve customers with varying priority (e.g. hospital based surgical practices,

urgent care clinics) but also much more challenging to solve. Relaxing the FCFS assumption introduces

a sequencing aspect to the dynamic scheduling problem and makes it a mixed integer stochastic program

which requires fundamentally different solution methods.

3 Model Formulation

We begin by presenting a standard model for the static appointment scheduling problem (Denton and

Gupta (2003)). The static problem as described in the previous section aims to find the optimal start times

for a given number of customers, n, to visit a stochastic server. Service times are random variables and

the objective is to minimize a weighted sum of expected customer waiting time and expected overtime

with respect to an established session length, d. Commonly considered criteria include customer waiting
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time, server idle time, and overtime, which can be written as follows:

w1(ω)=0

wi(ω)=(wi−1(ω) + Zi−1(ω)− xi−1)
+, i = 2, ..., n

si(ω)=(−wi−1(ω)− Zi−1(ω) + xi−1)
+, i = 2, ..., n

ℓ(ω)=(wn(ω) + Zn(ω) +
n−1∑
i=1

xi − d)+.

The variable wi(ω) denotes waiting time of customer i, si(ω) denotes server idle time immediately prior

to customer i’s arrival, xi denotes the customer allowance (inter-arrival time between customer i and

i+ 1) and Zi(ω) denotes the random service duration for customer i under random duration scenario ω.

(Note that the expression (·)+ indicates max(·, 0)). The optimization problem can be written as:

min
x

{
n∑

i=1

(cwi Eω[wi(ω)] + csEω[si(ω)]) + cℓEω[ℓ(ω)]

}
(1)

where cw, cs and cℓ denote the costs of waiting time, idle time and overtime respectively.

In the dynamic scheduling context, appointment decisions are made one at a time as customers

request appointments. Figure 2 depicts a simple case with 2 customers. The first customer requests an

appointment with probability 1 and the second customer requests with probability q (with probability

1− q a second customer does not request an appointment). We assume d = 0, thus overtime corresponds

to makespan, and Z1 and Z2 are independent and identically distributed service durations. For this

special case, Erdogan and Denton (2011) prove that it is optimal to schedule customers in FCFS order

(as opposed to scheduling the second (add-on) customer first referred to as add-on-first-served (AOFS))

when the waiting costs for two customers are also identical. The model we consider in this article is

more general than the model discussed in Erdogan and Denton (2011). We use it to establish conditions

under which FCFS or AOFS may be optimal.

We formulate the general on-line appointment sequencing and scheduling problem as a stochastic

mixed integer program (MIP) with binary decision variables representing patient sequencing decisions

and continuous decision variables representing inter-arrival times and appointment times. The appoint-

ment scheduling process is as follows. Customers request appointments for a specific day of service and

requests arise probabilistically over time up any time prior to the day of service until some cutoff time at
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Figure 2: Example of the dynamic scheduling problem for scheduling 2 customers according to FCFS
and add-on first served (AOFS) sequencing rules

which the schedule is closed (e.g. 5pm the day before the day of service) or a maximum of n appoint-

ments is reached. Customers are quoted their appointment times on-line as requests arise over time. The

sequence of appointments may change over time as the appointment schedule evolves; however, once

an appointment time is quoted for a given customer it cannot be changed. The sequential nature of this

process can be formulated as a multi-stage stochastic program with stages representing each customer re-

quest. We formulate this multi-stage problem as a two-stage stochastic MIP with constraints that enforce

non-anticipativity of the sequence of appointment scheduling decisions. We use the following notation,

where upper case indicates random variables and bold face indicates vectors:

Model Parameters:

n : number of customers to be scheduled

ω : index for service duration scenarios

pj : probability of exactly j customers requesting an appointment

Z(ω) : vector of random service durations for n customers

d : session length to complete all customers before overtime is occurred
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cw : vector of direct waiting time cost coefficients for n customers

ca : vector of appointment time (or waiting until time to appointment) cost coefficients for n customers

cℓ : cost coefficient for overtime

cs : cost coefficient for idle time

Decision variables:

oj,i,i′ : binary sequencing variable where oj,i,i′ = 1 if customer i immediately precedes i′ at stage j, and

oj,i,i′ = 0 otherwise (first stage decision variable)

xj,i,i′ : time allowance for customer i given that i immediately precedes i′ (appointment inter-arrival

time for customer i and i′) at stage j (first stage decision variable)

aj,i,i′ : arrival time of customer i′, given that i immediately precedes i′ at stage j (first stage decision

variable)

wj,i,i′(ω) : waiting time of customer i′ given that customer i immediately precedes i′ at stage j under

duration scenario ω (second stage decision variable)

sj,i,i′(ω) : server idle time between customer i and i′, given that i immediately precedes i′ at stage j

under duration scenario ω (second stage decision variable)

ℓj(ω) : overtime at stage j with respect to session length d under duration scenario ω (second stage

decision variable)

The index j denotes the stage of the decision making process, which is defined by the arrival of customer

j′s appointment request. The decision variables defined above are denoted by vectors o,x, a,w, s,

which are sequence dependent at each stage. Furthermore, the sequence may change from one stage to

the next as customer requests arrive. This is due to the fact that in a given stage, when a new customer

requests an appointment, the customer may be scheduled between two previously scheduled customers.

For instance, as depicted in Figure 1 (B), at stage j = 2, two customers already requested appointments

and the assigned sequence is 2 − 1. When the next customer requests an appointment, at stage j = 3,

the new sequence could be 2− 3− 1 if customer 3 is sequenced between customers 2 and 1. Thus, one
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of the previously established immediate precedence relationships in the sequence might be broken at a

later stage. The probability of having j customers request appointments, pj , can be written as follows:

pj=(1− qj+1)

j∏
i=1

qi, for all j = 1, . . . ,n− 1

pn=

n∏
i=1

qi

where qi is the probability that customer i requests an appointment, given that customer i − 1 has re-

quested. In other words, it is the probability that at least an additional customer will request an appoint-

ment, given that i−1 customers have already requested appointments. Note that, we assume that q1 = 1,

i.e. there is always at least one customer in the system.

In our model formulation, for each stage j, we include two dummy customers, customer 0 and j+1.

Customer 0 is always at the beginning of the sequence, and customer j + 1 is always at the end of

the sequence. This simplifies the formulation by ensuring each customer (except dummy customers) is

preceded and followed by another customer. A valid sequence of appointments at any stage j is one

that begins with the dummy customer 0 and ends with the dummy customer j + 1. Between successive

stages, the sequence of customers does not change, except for the possibility that the jth customer will

be inserted between two customers in the previous stage’s sequence, or appear immediately before the

dummy customer j + 1.

The problem described above is by nature a multi-stage decision process, with the customer appoint-

ment requests defining the stages. However, multi-stage stochastic integer programs are widely regarded

as computationally intractable. Therefore, we formulate our model as a two-stage stochastic program

(2-SLP) in which binary (sequencing) decisions are dependent on the appointment request scenario and

appear in the first stage. We use a novel set of constraints to enforce non-anticipativity of the appoint-

ment sequencing decisions across stages. This formulation has the benefit of a continuous and convex

recourse function in the second stage, which allows for the application of the L-shaped method, which

we discuss in Section 4.

The 2-SLP formulation of the on-line appointment sequencing and scheduling problem can be written

11



as follows:

min
n∑

j=1

pj [

j∑
i=1

j∑
i′=1

cai′aj,i,i′ ] +Q(o, x, a) (2)

s.t. (D-ASSP)

j∑
i′=1

oj,0,i′ = 1 ∀j (3)

j∑
i′=1

oj,i′,j+1 = 1 ∀j (4)

j+1∑
i′=1
i̸=i′

oj,i,i′ = 1 ∀j, i = 1, 2, . . . , j (5)

j∑
i′=0
i̸=i′

oj,i′,i = 1 ∀j, i = 1, 2, . . . , j (6)

j+1∑
i′=0
i̸=i′

j+1∑
i=0

oj,i,i′ = j + 1 ∀j (7)

oj,i,j + oj,j,i′ ≥ 2(oj−1,i,i′ − oj,i,i′) ∀j, ∀ i, i′ < j (8)

xj,i,i′ ≤M1oj,i,i′ ∀j, i, i′ (9)

aj,i,i′ ≤M1oj,i,i′ ∀j, i, i′ (10)

j+1∑
i′=1
i̸=i′

xj,i,i′ =

j+1∑
i′=1
i ̸=i′

aj,i,i′ −
j+1∑
i′=0
i̸=i′

aj,i′,i ∀j, i (11)

j+1∑
i′=1
i̸=i′

aj,i′,i =

j∑
i′=1
i̸=i′

aj−1,i′,i ∀j, i (12)

xj,i,i′ , aj,i,i′ ≥ 0, oj,i,i′ ∈ {0, 1} ∀j, i, i′ (13)

where

Q(o,x,a) = Eξ(ω)[Q(o,x,a, ω)], (14)
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and Q(o,x,a, ω) defines the second stage scenario subproblem:

min
n∑

j=1

pj [

j∑
i=1

j∑
i′=1

(cwi′wj,i,i′(ω) + cssj,i,i′(ω)) + cℓℓj(ω)] (15)

s.t.

wj,i,i′(ω) ≤M2(ω)oj,i,i′ ∀i, i′, j, ω (16)

sj,i,i′(ω) ≤M3(ω)oj,i,i′ ∀i, i′, j, ω (17)

−
j∑

i′=1

wj,i′,i(ω) +

j∑
i′=1

wj,i,i′(ω)−
j∑

i′=1

sj,i,i′(ω) = Zi(ω)−
j∑

i′=1

xj,i,i′ ∀i, j, ω (18)

ℓj(ω) ≥
j∑

i=1

j∑
i′=1

sj,i,i′(ω) +

j∑
i=1

Zi(ω) +

j∑
i′=1

xj,0,i′ − d ∀j, ω (19)

wj,i,i′(ω), sj,i,i′(ω) ≥ 0 ∀j, i, i′, ω (20)

ℓj(ω) ≥ 0 ∀j, ω. (21)

We refer to the above problem as the dynamic appointment sequencing and scheduling problem (D-

ASSP). In our two stage formulation, the vectors of time allowances, x, appointment times, a, and binary

sequencing variables o, are first stage decisions. The random service time durations vector, Z(ω), with

support Ξ ∈ ℜn, depends on outcomes indexed by ω ∈ Ω. Customer waiting time, w(ω) ∈ ℜn3
, server

idle time s(ω) ∈ ℜn3
and overtime ℓ(ω) ∈ ℜn denote the second stage (recourse) decisions made after

the first stage decisions and the observation of random service duration scenario, ω. Service times for all

customers scheduled on a particular day are observed simultaneously at the start of the day. Although this

is an approximation of the true sequential observation process, it results in no inaccuracy in the model

due to the assumption that customers are not rescheduled on the day of service.

The first stage constraints in the above formulation define feasible appointment schedules with re-

spect to sequencing decisions. In the above formulation, constraint set (3) ensures that dummy customer

0 is always at the beginning of the sequence at each stage. Constraint set (4) ensures that dummy cus-

tomer j + 1 is always at the end of the sequence at stage j. Constraint sets (5) and (6) imply that each

(non-dummy) customer is part of a feasible sequence, i.e. each customer comes before another and fol-

lowed by another within a given stage. Constraint set (7) ensures that j + 1 precedence relationships

exist at each stage j including the precedence relationships with dummy customers.

Treating x, a, and o as first stage decisions implies that they are made with perfect information about
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the number of future appointment arrivals. To correct this we add non-anticipativity constraints (Birge

and Louveaux (1997)). Standard non-anticipativity constraints require that decisions are the same for any

decisions that share the same history of the appointment request process. However, this typically results

in a very large number of constraints. Instead, we use a problem specific set of constraints, constraint set

(8). These constraints require each stage’s sequencing decisions are made only based on the information

available at that stage, and that they are feasible with respect to the sequencing decisions made in the

earlier stages. We provide the following proposition to prove the validity of the D-ASSP formulation.

Proposition 1 A sequence of appointments at stage j = 1, . . . , n is valid if and only if Constraints

(3)-(8) are satisfied.

Proof: See Appendix.

Constraints (9) and (10) ensure that corresponding time allowances, xj,i,i′ , and appointment times,

aj,i,i′ , may be nonzero only if customer i precedes i′ at stage j. M1 is chosen to be sufficiently large

to be an upper bound on the optimal values of decisions xj,i,i′ and aj,i,i′ . Constraint (11) implies that

the allowance for each customer is equal to the time difference between the appointment time of that

customer and the appointment time of the following customer in the sequence. Constraint (12) enforces

the appointment time for a customer to be preserved in the future stages. In other words, Constraint (12)

ensures that the arrival time of customer i remains the same at each stage even though their position in

the sequence may change.

In the second stage, constraint sets (16) and (17) ensure that waiting and idling times, wj,i,i′ and

sj,i,i′ will be nonzero only if customer i directly precedes customer i′ at stage j. Constraint set (18)

determines the sequence dependent waiting times for each customer. A customer’s waiting time depends

on the waiting time, allowance and the service time of the preceding customer. Similarly, constraint set

(19) determines the overtime at each stage j which depends on the total idle time between customers

and total service durations of all customers. Note that the expression
j∑

i′=1

xj,0,i′ denotes the time before

the first customer’s arrival at stage j and the expression
j∑

i=1

j∑
i′=1

sj,i,i′(ω) represents the total idle time

between customers.
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4 Problem Structure and Solution Methodology

In this section we first present a special case of the problem that provides some insight into the trade off

between the cost of delaying customers (waiting until time to appointment) and the stochastic nature of

on-line arrivals. Next, we discuss several special properties of our model that can be exploited to achieve

computational efficiency.

4.1 A Special Case

Consider the case in which n = 2, with one routine customer requesting an appointment with probability

1, followed by an urgent add-on customer that requests an appointment with probability q. We analyze

this case to give insight into the patterns we observe in the optimal schedules for larger problems studied

in Section 5. We begin by assuming the two customers have identical deterministic services times. We

define the two alternative sequencing decisions as follows:

FCFS: The first customer in the appointment request sequence is scheduled to arrive first. A second

(add-on) customer requests an appointment with probability q and this customer is scheduled to arrive

after the first customer.

AOFS: The second (add-on) customer in the appointment request sequence requests an appointment

with probability q after the first customer requests an appointment. However, the second customer is

scheduled to arrive first.

We impose the deterministic service time assumption by defining Zi = µ with probability 1 for i =

1, 2. The following assumptions are made about time to appointment and direct waiting costs. First,

we assume ca2 = cw2 , i.e, that the cost of waiting for the add-on customer is the same whether it is

direct or time to appointment waiting. Second, we assume ca1 = 0, i.e., there is no cost of waiting

until time to appointment for the routine customer. We further assume the session length d = 0, i.e.,

we consider the common case of minimizing a weighted sum of makespan and indirect waiting costs.

These assumptions are consistent with many health care environments such as surgery and primary care

practices in which urgent add-on customers have high waiting costs, and routine customers arrive at their

assigned appointment time, and therefore only accrue costs for direct waiting.

The decision process for the appointment scheduling problem described above is illustrated in Figure

3. We note that when the sequence is FCFS it is clearly optimal to assign the first customer to arrive at

15



time zero since a nonzero appointment time would result in unnecessary additional waiting cost. When

the sequence is AOFS, on the other hand, we denote the arrival time of the second (routine) customer

by a1. It is straightforward to show that a1 = 0 if qcw1 ≤ (1 − q)cℓ and a1 = µ if qcw1 > (1 − q)cℓ.

This follows from the fact that the optimal appointment time for the AOFS, denoted by aAOFS
1 , can be

expressed as:

aAOFS
1 = argmin{q(2cℓµ+ cw1 (µ− a1)

+) + (1− q)cℓ(a1 + µ)}.

Given this, the following decision rules are optimal:

• AOFS is optimal if

– qcw1 ≤ (1 − q)cℓ and cw1 ≤ ca2, which corresponds to the case where customers are double

booked at time 0,

or,

– qcw1 > (1− q)cℓ and qca2 ≥ (1− q)cℓ.

• FCFS is optimal if

– qcw1 ≤ (1 − q)cℓ and cw1 > ca2, which corresponds to the case where customers are double

booked at time 0,

or,

– qcw1 > (1− q)cℓ and qca2 < (1− q)cℓ.

The above decision rule is consistent with intuition in a number of ways. For example, if q and ca2 are low,

i.e., the likelihood of the add-on customer arriving, and the direct cost of waiting if the add-on customer

does arrive are low, then it tends to be optimal to schedule the add-on customer after the routine customer.

Conversely, when the add-on customer is likely to request an appointment and/or the cost of waiting until

appointment is high, it tends to be optimal to schedule the add-on customer first in the sequence.

The above example helps provide insight into the trade off involved in the optimal sequencing deci-

sion for the routine and add-on customer. Next, we consider the case in which service times are stochas-

tic. We assume that the service times of the routine and add-on customers, Z1 and Z2, respectively, are

independent and identically distributed (iid) random variables with mean µ. All other assumptions are
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Figure 3: Illustration of the decision process for the case of n = 2 with one routine customer, and one
add-on customer arriving with probability q.

the same as the above example. The optimal objective functions for FCFS can be written as follows:

F ∗
FCFS= EZ [(1− q)cℓZ1 + q(ca2Z1 + cℓZ1 + cℓZ2)]

= (1− q)cℓµ+ q(ca2 + 2cℓ)µ. (22)

The expression for F ∗
FCFS follows from the fact that it is optimal to schedule the routine customer at

time zero. Note that the optimal FCFS solution is obtained by assuming the appointment time for the

add-on customer is also zero which follows trivially from the fact that direct waiting and waiting until

appointment time are equal (ca2 = cw2 ). The optimal objective function for AOFS can be written as

follows:

F ∗
AOFS= EZ [(1− q)cℓ(aAOFS

1 + Z1) + q[cw1 (Z2 − aAOFS
1 )+ + cℓ((Z2 − aAOFS

1 )+ + aAOFS
1 + Z1))]

= cℓaAOFS
1 + cℓµ+ q(cw1 + cℓ)EZ [(Z2 − aAOFS

1 )+] (23)

Using the above definitions we state the following proposition:
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Proposition 2 If Z1 and Z2 are iid and

ca2 ≥ cw1 (24)

then the optimal sequence is AOFS.

Proof: See Appendix.

This proposition states that (24) is a sufficient condition for the optimal sequence to be AOFS. Although

we prove this only for the special case of n = 2 in this section, we provide evidence in Section 5 that

this simple condition provides a useful rule of thumb for larger problems.

4.2 Special Structure of the Model

The D-ASSP model formulation expressed in (2) - (21) is a two-stage stochastic mixed integer program,

with binary decisions in the first stage and a continuous second stage linear program. In this section

we present several properties of the dynamic appointment sequencing and scheduling model that we

introduced in the previous section.

4.2.1 Solution to Scenario Subproblems

The D-ASSP model has complete recourse since the recourse problem, Q(o,x, a,ω) has a feasible

solution for any choice of o,x, a. Given a first stage solution with a feasible sequence, and feasible

appointment times and allowances, the optimal second stage solution can be computed easily by com-

puting the corresponding waiting time, idle time, and overtime variables. For instance, assuming that

a first stage solution to a 3 customer problem is 2 − 3 − 1. Table 1 includes the sequences and corre-

sponding second stage variables at each of the 3 decision stages according to this first stage solution. At

stage 1, the system only has customer 1 and the two dummy customers (customers 0 and 2). At stage

2, customer 2 is also included, and according the optimal sequence, this customer precedes customer 1

since the optimal sequence at stage 2 is 0 − 2 − 1 − 3. Knowing that customer 2 precedes customer 1,

the waiting time of customer 1 can be found using the waiting time of preceding customer 2. Similarly at

the third stage, given that the sequence is 0− 2− 3− 1− 4, the waiting time of customer 1 can be found

by using the waiting time of the preceding customer 3, which in turn is determined by the waiting time

of customer 2. In our implementation of the L-shaped method, at each iteration, for each scenario, the

subproblem solution is obtained as described above. This eliminates the need to solve the subproblem
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Table 1: Second stage variables for waiting, idling and overtime for a 3 customer problem given a fixed
set of sequencing decisions is known.

Stage Sequence Corresponding Second Stage Variables

w1,0,1 = (Z0 − x1,0,1)
+

w1,1,2 = (w1,0,1 + Z1 − x1,1,2)
+

1 0− 1− 2 s1,0,1 = (x1,0,1 − Z0)
+

(0 and 2 dummy) s1,1,2 = (x1,1,2 − w1,0,1 − Z1)
+

ℓ1 = (s1,0,1 + s1,1,2 + Z0 + Z1 − x1,0,1 − d)+

w2,0,2 = (Z0 − x2,0,2)
+

w2,2,1 = (w2,0,2 + Z2 − x2,2,1)
+

2 0− 2− 1− 3 w2,1,3 = (w2,2,1 + Z1 − x2,1,3)
+

(0 and 3 dummy) s2,0,2 = (x2,0,2 − Z0)
+

s2,2,1 = (−w2,0,2 − Z2 + x2,2,1)
+

s2,1,3 = (−w2,2,1 − Z1 + x2,1,3)
+

ℓ2 = (s2,0,2 + s2,2,1 + s2,1,3 + Z0 + Z1 + Z2 − x2,0,2 − d)+

w3,0,2 = (Z0 − x3,0,2)
+

w3,2,3 = (w3,0,2 + Z2 − x3,2,3)
+

w3,3,1 = (w3,2,3 + Z3 − x3,3,1)
+

w3,1,4 = (w3,3,1 + Z1 − x3,1,4)
+

3 0− 2− 3− 1− 4 s3,0,2 = (−Z0 + x3,0,2)
+

(0 and 4 dummy) s3,2,3 = (−w3,0,2 − Z2 + x3,2,3)
+

s3,3,1 = (−w3,2,3 − Z3 + x3,3,1)
+

s3,1,4 = (−w3,3,1 − Z1 + x3,1,4)
+

ℓ3 = (s3,0,2 + s3,2,3 + s3,3,1 + s3,1,4 + Z0 + Z1 + Z2 + Z3 − x3,0,3 − d)+

LP (e.g. using the simplex method). The optimal basis of the primal problem can be used to compute

the dual solution directly. Thus, much less computational effort is expended in computing the optimal

solution to the second stage subproblems.

4.2.2 Big M Values

Both first stage and second stage problems given in Section 3 have big M values in their formulations.

These values must be chosen carefully because having unnecessarily large M values can cause computa-

tional disadvantages in solving mixed integer programs (MIPs) since they lead to a weak LP relaxation.

In our formulation, big M values provide upper bounds on the values of first stage decision variables,

x and a, and second stage decision variables, w and s. For the first stage constraints, (9) and (10), we
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let

M1 = max
ω

n∑
i=1

Zi(ω). (25)

This is a valid bound because if the allowances or the appointment times are larger than the maximum

sum of the service durations overall duration scenarios it will result in an avoidable increase in idle time

and/or overtime.

The M values in the second stage, M2(ω) and M3(ω) are scenario dependent. Thus, bounds on

M2(ω) and M3(ω) can take advantage of information about service times represented by ω. We use the

fact that none of the waiting time variables can take values larger than the sum of the service durations of

all customers for each scenario, ω. This is true since it is not possible for a customer to wait more than

the sum of completion times of all customers (which corresponds to arrival of all customers at time zero).

This bound can be tightened further by making the bound customer specific. Each customer i′s waiting

time must be less than or equal to the total service durations of all customers that could be sequenced

prior to customer i. The new bound can be achieved by setting

M2(ω) =

n∑
i=1,i̸=i′

Zi(ω). (26)

Next we consider M3(ω) which upper bounds idle time. The allowance for each customer is bounded

above by the maximum of sum of service durations of all customers over all scenarios because the idle

time between two customers, say i and i′, can never exceed this bound minus the duration of the customer

i (given that i precedes i′). Thus M3(ω) can be written as follows:

M3(ω) = max
ω

n∑
k=1,k ̸=i

Zk(ω)− Zi(ω). (27)

Note that M3(ω) is dependent on customer, i, but the dependency is suppressed for simplicity in the

formulation.
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4.2.3 Valid Inequalities

To improve convergence, we include additional cuts to the first stage problem. The goal is to provide a

tighter bound on theta in the first stage problem using the mean value problem. To construct this mean

value based subproblem, the random scenario duration Zi is replaced with its mean value, µi, in a single

scenario subproblem. By Jensen’s inequality, the solution to this mean value subproblem provides a

lower bound on the value of the recourse problem (See Birge and Louveaux (1997) for a discussion of

this and other relevant properties of stochastic programs). This bound on the value of θ is as follows:

θ ≥ Q(x,a, o, ξ̄)

New auxiliary variables, w̄, s̄ and ℓ̄ represent the waiting time, idle time and overtime variables in this

mean value based subproblem. This approach is the same as that described in (Batun et al. (2011);

Erdogan and Denton (2011)). The set of cuts based on the mean value relaxation is as follows:

θ ≥
n∑

j=1

pj [

j∑
i=1

j∑
i′=1

(cwi′ w̄j,i,i′(µ) + css̄j,i,i′(µ)) + cℓℓ̄j(µ)] (28)

w̄j,i,i′(µ) ≤M2(µ)oj,i,i′ ∀i, i′, j (29)

s̄j,i,i′(µ) ≤M3(µ)oj,i,i′ ∀i, i′, j (30)

−
j∑

i′=1

w̄j,i′,i(µ) +

j∑
i′=1

w̄j,i,i′(µ)−
j∑

i′=1

s̄j,i,i′(µ) = µi −
j∑

i′=1

xj,i,i′ ∀i, j (31)

ℓ̄j(µ) ≥
j∑

i=1

j∑
i′=1

s̄j,i,i′(µ) +

j∑
i=1

µi +

j∑
i′=1

xj,0,i′ − d ∀j (32)

w̄j,i,i′(µ), s̄j,i,i′(µ) ≥ 0 ∀j, i, i′ (33)

ℓ̄j(µ) ≥ 0 ∀j. (34)

4.2.4 L-Shaped Method

We solved the (D-ASSP) using the L-shaped Method which is an iterative decomposition method that

proceeds by improving an approximation (relaxation) of the first stage problem (master problem) by

adding supporting hyperplanes (optimality cuts) (see Birge and Louveaux (1997) for a detailed descrip-
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tion of the L-shaped method). After finding an integer feasible solution to the master problem, all sub-

problems are solved and a new optimality cut is generated from the dual solutions of the subproblems.

The optimality cut is added to improve the master problem solution which is subsequently re-solved.

This continues until the stopping criteria have been met.

Our implementation of the L-shaped algorithm is summarized in the following pseudocode:

L-Shaped Algorithm

1. ν = 1 (iterations), ω = 1 (scenario), initialize M1, M2(ω) and M3(ω), ∀ω

2. Initialize L-shape tolerance = 0.01

3. if option=0

4. Use formulation in (3)-(12) for the master problem

5. else if option=1

6. Add mean value based cuts to the master problem

7. Initialize optimality tolerance for MIP solver

8. While ((L-shape gap > L-shape tolerance) and (Current time < Time limit ) do

9. ν ← ν + 1

10. Solve master problem ν

11. Solve subproblem for each scenario ω

12. Add optimality cut to the master problem

13. L-shape gap= 100 (best obj. value - obj. value ν)/(best obj. value)

14. end While

The L-shape gap is a percentage that is calculated as the ratio of the difference between the best objective

function value found and the current objective function value to the best objective function value found.

5 Results

In this section, we first present results illustrating the structure of the optimal sequence and schedule for

some specific examples. Next, we present the results of experiments to evaluate computational perfor-

mance of our L-shaped method implementation on a series of larger test problems. All experiments were
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done on a Intel Core2Quad CPU, Q6600 GHz 2.39 GHz, with 3.25GB RAM. The methods were imple-

mented in C++ with the CPLEX 12.0 callable library. All solutions reported are based on a tolerance of

1%.

5.1 Examples of the Structure of the Optimal Solution

We use two examples to illustrate the structure of the optimal solution. First, we consider a model

instance with 5 customers (n = 5). All customers are assumed to have identical cost coefficients for

waiting times (cwi = 4, ∀i) and appointment times (cai = 2, ∀i), probabilities of requesting appointments

(qi = 0.5, ∀i), and service time distributions (Zi ∼ U(30, 40), ∀i). The cost of overtime is cℓ = 10,

and the cost of idle time is cs = 5. The optimal sequence and appointment times for this problem are

presented in Table 2 (the non-dummy customers are written in bold font). Results in Table 2 indicate that

FCFS is optimal for this particular example. Note that this is consistent with with the sufficient condition

in Proposition 2, which was proven for the special case of n = 2, but also holds for this larger problem.

Table 2: Optimal solution of a 5 customer problem instance with identical characteristics, cwi = 4,
cai = 2, qi = 0.5, ∀i, cℓ = 10 , cs = 5, Zi ∼ U(30, 40), ∀i, d = 115. Note that ai, i = 1, ..., 5 is an
abbreviated form of the appointment decision variable used to denote the appointment time for customer
i.

Sequence Appointment Times Allowances

Stage 1: 0− 1− 2 a1 = 0 x1,2,5 = 30.22
Stage 2: 0− 1− 2− 3 a2 = 30.22 x2,3,5 = 33.01

Stage 3: 0− 1− 2− 3− 4 a3 = 63.22 x3,4,5 = 35.05
Stage 4: 0− 1− 2− 3− 4− 5 a4 = 98.23 x4,5,5 = 33.44

Stage 5: 0− 1− 2− 3− 4− 5− 6 a5 = 131.65

Next we present results for a 5 customer problem instance with two different customer types: 3

routine and 2 add-ons. Routine customers are known to request appointments with certainty (qi = 1 for

i = 1, 2, 3). Add-on customers request appointments with probability 0.5. Thus qi = 0.5 for i = 4, 5.

The waiting time cost for routine customers is cwi = 4, and for add-on customers it is cwi = 10. The

waiting until appointment time cost for routine customers is cai = 0, and for add-on customers it is cai =

10. This problem instance is motivated by health care environments in which add-on patients have a high
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cost of direct waiting and waiting until appointment time. For instance, in surgery scheduling, urgent add-

on patients sometimes cannot afford to wait, thus, they are scheduled early in the day. Routine patients,

on the other hand, can be scheduled at any time, but have a cost associated with direct waiting. The

service time distribution, cost of overtime and cost of idle time are the same as the previous experiments

(cℓ = 10, cs = 5, Zi ∼ U(30, 40),∀i). The results in Table 3 show that the optimal sequence places

add-on customers at the beginning of the schedule (if they request appointments) due to their high cost

of appointment times. Note that the first routine customer is also scheduled to arrive at time 0 along

with the add-on customers (if they request appointments). Thus, this customer will be served first if the

add-on customers do not request appointments. Note that for this problem instance, the optimal sequence

is AOFS, which is consistent with the sufficient condition in Proposition 2.

Table 3: Optimal solution of a 3 Routine + 2 Add-on customer problem instance, cwi = 4 ∀i = 1, 2, 3,
cwi = 10 ∀i = 4, 5, cai = 0 ∀i = 1, 2, 3, cai = 10 ∀i = 4, 5, cℓ = 10, cs = 5, qi = 1, ∀i = 1, 2, 3,
qi = 0.5, ∀i = 4, 5, Zi ∼ U(30, 40),∀i, d = 115. Note that ai, i = 1, ..., 5 is an abbreviated form of the
appointment decision variable used to denote the appointment time for customer i.

Sequence Appointment Times Allowances

Stage 1: 0− 1− 2 a5 = 0 x5,4,5 = 0
Stage 2: 0− 1− 2− 3 a4 = 0 x4,1,5 = 0

Stage 3: 0− 1− 2− 3− 4 a1 = 0 x1,2,5 = 35.87
Stage 4: 0− 4− 1− 2− 3− 5 a2 = 35.87 x2,3,5 = 34.38

Stage 5: 0− 5− 4− 1− 2− 3− 6 a3 = 70.25

5.2 Sensitivity to Service Time Variance

In addition to the above experiments, we experimented with cases in which customers have different

variances for their service durations. In the context of static scheduling of a fixed number of customers,

previous research indicates that scheduling customers with higher variance later in the schedule mini-

mizes the potential impact of waiting time for the later customers in the schedule (Weiss (1990); Denton

et al. (2007)). Intuitively, such sequences limit the amount of disruption that high variance customers can

cause for the remainder of the scheduled customers. In our next experiment, 5 customers having the same

mean duration but different variances were considered. The cost of appointment time for each customer
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was assumed to be cai = 0 to prevent its effect on the sequencing decisions. Service durations were cho-

sen as follows: Z1 ∼ U(25, 35), Z2 ∼ U(15, 45), Z3 ∼ U(20, 40), Z4 ∼ U(23, 37), Z5 ∼ U(10, 50).

Thus service durations have a fixed mean of 30 for each customer, however variances differ. The vari-

ances of the service durations of the customers were as follows: σ2
1 = 8.33, σ2

2 = 75, σ2
3 = 33.3, σ2

4 =

16.33, σ2
5 = 133.33.

Table 4 provides the results for the above defined model instance. The results indicate that for the

problems with stochastic arrivals of customers with probability qi = 0.5, ∀i, the customers are sequenced

in FCFS order regardless of the changes in the cost coefficients. This is due to the fact that the proba-

bility of having additional customers is low when qi = 0.5, ∀i, since scheduling a customer with a low

probability to request an appointment before a higher probability customer is not beneficial. For exam-

ple, the probability of having 1, 2, 3, 4 or 5 customers in this experiment are p1 = 0.5, p2 = 0.25, p3 =

0.125, p4 = 0.0625 or p5 = 0.0625, respectively. As the conditional probability gets higher (qi = 0.9

and qi = 1, ∀i), in the last two rows of Table 4, the uncertainty in appointment requests is reduced and the

effect of having variances on the sequence becomes more prominent. Note that qi = 1, ∀i corresponds to

the static scheduling problem. In these cases, the optimal sequence approaches a schedule in which cus-

tomers are in increasing order of variance. Scheduling lower variance customers first has been observed

to be near optimal in the context of static appointment sequencing and scheduling (Denton et al. (2007))

because it prevents accumulation of high waiting times for customer later in the schedule.

Table 4: Optimal sequencing rules for varying cost parameters and conditional probabilities q in the
presence of customers with different variances. VAR denotes sequence in increasing order of variance.
(VAR* indicates one exception in the increasing variance sequence)

Parameters Optimal Sequence Sequencing Rule

cw = cs = cℓ = 1
qi = 0.5 ∀ i = 1, . . . , 5 1− 2− 3− 4− 5 FCFS
cw = 10, cs = cℓ = 1
qi = 0.5 ∀ i = 1, . . . , 5 1− 2− 3− 4− 5 FCFS
cw = cs = 1, cℓ = 10
qi = 0.5 ∀ i = 1, . . . , 5 1− 2− 3− 4− 5 FCFS
cw = 10, cs = cℓ = 1
qi = 0.9 ∀ i = 1, . . . , 5 1− 3− 4− 2− 5 VAR*
cw = 10, cs = cℓ = 1
qi = 1 ∀ i = 1, . . . , 5 1− 3− 4− 2− 5 VAR*
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5.3 Sensitivity to Direct Waiting and Waiting Until Appointment Time Costs

We experimented with a larger model instance with 7 routine + 3 add-on patients with varying cost

parameters for add-on patients. The conditional probability of requesting an appointment is 1 for routine

customers, and 0.5 for add-on customers. The service time distribution is assumed to be Zi ∼ U(30, 40),

and the length of the day is assumed to be 275. Both waiting time costs for routine customers are fixed to

cai = 0, and cwi = 1, respectively. For add-on customers waiting time to appointment and direct waiting

time costs are varied between 0.01 and 1000. For each experiment 10 model instances were generated

using a different random number generator seed to sample scenarios.

Table 5: Optimal sequencing rules for varying direct/time to appointment cost parameters. Problems
were solved to a tolerance of 1% with a maximum time of 15, 000 seconds. An asterisk (*) indicates that
the model instance could not be solved to the specific tolerance within the time limit.

Instance ca cw ca cw
CPU Time # of Iterations

No Routine Routine Add-on Add-on cL cs Optimal Sequence
ave max ave max

4.1 0 1 0.1 0.1 10 5 R-R-R-R-R-R-R-A-A-A 12295.5 14980 55.2 598

4.2 0 1 1 1 10 5 * * * * *
4.3 0 1 10 10 10 5 A-A-A-R-R-R-R-R-R-R 1174.8 1852 163.5 209

4.4 0 1 50 50 10 5 A-A-A-R-R-R-R-R-R-R 418.2 613 94.9 122

4.5 0 1 100 100 10 5 A-A-A-R-R-R-R-R-R-R 257.6 522 67.4 112

4.6 0 1 250 250 10 5 A-A-A-R-R-R-R-R-R-R 117.2 290 36 73

4.7 0 1 500 500 10 5 A-A-A-R-R-R-R-R-R-R 52.5 112 18.1 36

4.8 0 1 750 750 10 5 A-A-A-R-R-R-R-R-R-R 28.1 48 10.3 17

4.9 0 1 1000 1000 10 5 A-A-A-R-R-R-R-R-R-R 19.4 30 7.1 10

Results in Table 5 show that, as the direct and time to appointment waiting costs for add-on patients

increase, the sequence changes from FCFS to AOFS. It is interesting that none of the instances of 4.2

could be solved to within the specific tolerance of 1% within the 15, 000 second time limit. For these

10 instances the mean optimality gap achieved at the time of termination was 5.61% and the worst case

gap was 7.01%. The sequence varied considerably in the best solution obtained, with add-ons appearing

variously at the beginning, end, and middle of the sequence.

To investigate instance 4.2 further we solved the 10 instances (same problem instance with 10 dif-

ferent seeds) with a computation time limit of 50, 000 seconds. None of the 10 instances were solve

to optimality within the increased time limit. According the the results at the time limit, none of the

sequences follow FCFS or AOFS, but indicate a mixed sequence of routine and urgent customers. The

objective function value for each instance at the time limit is provided in Table 6. The table also provides
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the objective function value for the same instance if the sequence was fixed to FCFS. According to the

best results achieved within the time limit using the D-ASSP model, a mixed sequence of routine and

add-on customers results in a schedule which is on average 13.2% less costly than a sequence based on

the FCFS sequence. Note that the average gap at the time limit for D-ASSP solution is 1.7% as opposed

to the 1% for the FCFS solution.

Table 6: Comparison of D-ASSP solution with FCFS for 10 problem instances of Experiment 4.2. (Ex-
periment set 4.2 could not be solved with D-ASSP within 50000 seconds time limit. The D-ASSP results
presented in this table are for the best solutions obtained within the time limit)

Instance ca cw ca cw Sequence obtained Obj. func. value Obj. func. value
No Routine Routine Add-on Add-on cL cs for D-ASSP of D-ASSP of FCFS

solution solution
4.2.1 0 1 1 1 10 5 R-R-A-A-R-R-R-R-A-R 316.06 362.53

4.2.2 0 1 1 1 10 5 R-A-R-A-R-R-R-R-A-R 312.41 357.75

4.2.3 0 1 1 1 10 5 R-A-R-A-R-A-R-R-R-R 305.13 351.41

4.2.4 0 1 1 1 10 5 R-A-R-A-R-R-A-R-R-R 313.19 358.57

4.2.5 0 1 1 1 10 5 R-A-R-R-A-R-A-R-R-R 303.45 353.76

4.2.6 0 1 1 1 10 5 R-A-R-R-A-R-R-A-R-R 315.39 361.93

4.2.7 0 1 1 1 10 5 R-R-A-R-R-R-R-A-R-A 298.41 341.32

4.2.8 0 1 1 1 10 5 R-A-R-R-R-A-R-A-R-R 305.37 354.07

4.2.9 0 1 1 1 10 5 A-A-R-R-R-R-A-R-R-R 309.08 356.99

4.2.10 0 1 1 1 10 5 R-A-R-R-R-R-R-A-A-R 311.99 363.04

Next, we present an experiment set to evaluate the changes in the structure of the optimal sequence

as both the cost ratio of direct waiting time to the cost of time until appointment (cw/ca = 2, 5, 10) and

the appointment request probability (q = 0.5, 0.7, 0.9) change. For this experiment, it is assumed that

the direct waiting cost (cw) is the same for routine and add-on customers. Table 7 shows the sequence

of the customers for these runs. For some experiments, the 10 random seeds returned slightly different

optimal sequences. Thus, all sequences generated are also provided in the table. According to the results,

customers are scheduled in FCFS order when q is low and cw/ca is high, i.e the uncertainty in total

number of customers is high and direct waiting is costlier than the waiting until time to appointment. As

q increases, the uncertainty in number of customers decreases and the sequence incorporates one add-on

customer early in the schedule (following at least one routine customer). On the other hand, when cw/ca

decreases from 10 to 2, the relative importance of time to appointment increases compared to direct

waiting the sequence becomes a mixture of add-on and routine customers.
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Table 7: Results for the problem instances with 10 customers with varying cost parameters (fixed over-
time, idle time, and time to appointment costs:cℓ = 10, cs = 5, cai = 0 ∀i = 1...7, cai = 1 ∀i = 7, 8, 9),
qi = 1 ∀i = 1...7, Zi ∼ U(30, 40).

qi = 0.3 qi = 0.5 qi = 0.7

R-A-R-R-A-R-R-R-R-A
cw

ca = 2 R-R-R-R-R-A-R-R-A-A R-A-R-R-R-R-R-A-R-A R-A-R-R-R-R-R-R-A-A
FCFS R-A-R-R-R-R-R-R-A-A R-R-A-R-R-R-A-R-R-A

cw

ca = 5 FCFS R-A-R-R-R-R-R-R-A-A R-A-R-R-R-R-R-R-A-A

cw

ca = 10 FCFS FCFS R-A-R-R-R-R-R-R-A-A

5.4 Value of Stochastic Solution

In this section we present results to evaluate the benefit of solving a stochastic programming model com-

pared to solving a deterministic problem using the mean of the random service times for the scheduling

problem. This relative benefit is called the value of stochastic solution (VSS). It provides a measure of

the value of the model relative to the commonly used approach in practice of scheduling according to the

mean appointment time. We present the VSS for 10 patient problems with varying routine and add-on

customers and varying costs. According to the results, VSS increases as the cost of time to appointment

increases. This is due to the fact that compared to the optimal sequence provided by stochastic program-

ming solution, the mean value solution tends to place the add-on customer later in the schedule, which

increases the total cost significantly due to high time to appointment cost. Therefore, as the relative

importance of the add-on customer increases, solving the stochastic program becomes more and more

beneficial. Furthermore, the minimum VSS across all instances is 4.64%, suggesting that incorporation

of uncertainty in the scheduling process is generally important.

5.5 Computational Performance of Proposed Methods

We performed ad hoc experiments to test several implementations of the L-shaped method to solve (D-

ASSP) instances. We evaluated the computational performance of our L-shaped method implementation

in terms of number of iterations, CPU time, and optimality gap achieved in a fixed time limit. All of

the model instances used in the experiments of this section were created by sampling using 10 different
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Table 8: Value of Stochastic Solution (VSS) for 10 customer problem with varying cost coefficients

Instance ca cw ca cw Ave. Obj. func. value Ave. Obj. func. value
Routine Routine Add-on Add-on cL cs of D-ASSP of Mean Value Ave. VSS (%)

solution solution
0 1 1 1 10 5 786.93 829.19 5.03

9 R + 1 A 0 1 1 10 10 5 787.09 845.80 6.82
0 1 1 100 10 5 787.09 1023.99 21.79

0 1 1 1 10 5 578.52 609.59 4.64
8 R + 2 A 0 1 1 10 10 5 598.34 645.87 7.17

0 1 1 100 10 5 631.50 899.41 28.09

0 1 1 1 10 5 401.15 425.36 5.67
7 R + 3 A 0 1 1 10 10 5 422.79 456.67 7.34

0 1 1 100 10 5 459.26 615.78 25.02

random seeds. We sampled 1000 random service duration scenarios for each model instance. The results

are presented in terms of the average and maximum CPU time, and average and maximum number of

iterations across the 10 replications for each model instance.

Two different service time distributions were used for the experiments: uniform and lognormal.

Uniform is considered since it is a common test distribution in the appointment scheduling literature,

and lognormal because it is a common distribution for modeling service durations for medical procedures

(e.g. endoscopy clinics as in Berg et al. (2010)). The results of the experiments with uniformly distributed

service durations are presented in Table 9. Instances 3.1, 3.3., and 3.5 are dynamic scheduling problems

including a single customer type with Zi ∼ U(30, 40), qi = 0.5, cai = 2, cwi = 4, ∀i. Instances 3.2, 3.4,

and, 3.6 include two customer types, routine and add-on. Routine customers are scheduled with certainty

(qi = 1) and add-on customers request appointments dynamically with qi = 0.5. The cost coefficients

for add-on customers are cwi = 8, and cai = 6. Experiments sets 4.1, 4.2, 4.3, 4.4, 4.5 and, 4.6 present

the results of the same experiments with lognormal service durations (Zi ∼ Lognormal(3.2, 0.5)).

All of the experiments with 5 patients (instances 3.1, 3.2, 4.1 and 4.2) were solved within the time

limit of 15000 seconds to the predetermined 1% optimality gap. Among the 7 customer experiments,

instance sets 3.3, 3.4, and 4.4 are all solved to optimality, but instance set 3.3 reached the time limit and

terminated before finding the optimal solution. None of the instance sets for problems with 10 patients

were solved to optimality within the time limit of 15000 seconds except one instance of 3.5. The results

indicate that as the number of patients increase the problems become much harder to solve.

The quality of the solution at the time of termination is also considered. Table 10 includes the
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Table 9: Computational performances of solution methods with uniformly distributed service times
(Zi ∼ U(30, 40)) and Lognormally distributed service times (Zi ∼ Lognormal(3.2, 0.5)). Problems
were solved to a tolerance of 1% with a maximum time of 15000 seconds. An asterisk (*) indicates cases
in which no model instance were solved to the specified tolerance. Times are reported in seconds.

Uniform Service Lognormal Service
Problem Customer Instance Distribution Instance Distribution

Size Class No. CPU Time # of Iterations No. CPU Time # of Iterations
(Patients) Average Max Average Max Average Max Average Max

5 Identical 3.1 69.9 91 25.4 31 4.1 127.9 167 123.6 153
5 Patients

3 Routine + 3.2 29.5 39 22.5 30 4.2 23.3 32 71.4 88
2 Urgent
7 Identical 3.3 2312.9 3156 89.2 92 4.3 * * 279.6 289

7 Patients
4 Routine+ 3.4 1112.4 1460 188.2 225 4.4 4961 6510 478.1 627
3 Urgent

10 Identical 3.5 13017 13017 8 8 4.5 * * 9.5 10
10 Patients

7 Routine+ 3.6 * * 474 487 4.6 * * 396.6 381
3 Urgent

optimality gap at the time of termination for the instances that could not be solved to optimality. The

results presented in the table are the worst, best and average gaps found within 10 replication of the

instances with different random seeds. The percentage gap is calculated as the ratio of the difference

between best objective function value and current objective function value to the best objective function

value found.

The inclusion of mean value cuts had a significant influence on the optimality gap obtained within

the time limit of 15000 seconds. The smallest gap at the time of termination for the 7 customer model

instances (instances 2.3, 2.4, 3.3, and 3.4) without mean value cuts was 107.2%; the same set of instances

were solved to within 1% when the mean value cuts are added. For the model instances with 10 customers

(instances 2.5, 2.6, 3.5, and 3.6), the best gap found without mean value cuts was 240.11%, whereas with

mean value cuts, some instances terminated with optimality gaps as small as 2%.

It is important to note that the results that we presented in this section are for instances that are

particularly difficult to solve. We generally found instances that have the same time to appointment

waiting cost for patients the most challenging to solve. We also solved instances in which first stage

costs, cai , and second stage waiting time cost, cwi , are different for each customer. Table 11 provides

two examples of problems similar to those reported in Table 9. Again, 10 randomly generated problem

instances were solved. All of the instances are solved to optimality within the time limit.
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Table 10: L-shaped gap at the time of termination for the instances that are not solved to optimality

Problem Instance Customer L-shape Gap
Size No. Type

Worst Best Average
7 4.3 Identical 18.2 13.78 15.33

(lognormal) Patients
10 3.5 10Identical 8.45 3.19 7.18

Patients
(uniform) 3.6 7 Routine 0.23 0.13 0.18

3 Urgent
10 4.5 10Identical 33.93 29.63 32.22

Patients
(lognormal) 4.6 7 Routine 8.19 5.93 7.01

3 Urgent

Table 11: Results for the problem instances with 7 and 10 patients that are solved to optimality. Param-
eters are cℓ = 10, cs = 5, cwi = i, cai = i2, Zi ∼ U(30, 40) for uniformly distributed service durations,
Zi ∼ Lognormal(3.2, 0.5) for lognormally distributed service durations.

Problem Distribution L-Shaped Method
Size Type CPU Time # of Iterations
7 Uniform 41.17 2

Customers Lognormal 436.65 21

10 Uniform 215.57 2
Customers Lognormal 322.16 3

6 Conclusions

We formulated the on-line appointment sequencing and scheduling problem using a novel formulation

of the multi-stage problem as a two-stage stochastic integer program. The special case of two customers

was used to develop some insight into the tradeoff between the cost of waiting until appointment time

and the likelihood of additional customers arriving. We discussed a number of structural properties of

the model and we presented the results of numerical experiments for two alternative implementations

of the L-shaped method. We also provided insights into the types of model instances that are most

computationally challenging. Our numerical experiments illustrated a number of properties of optimal

on-line appointment schedules from which managerial insights can be drawn.

Our numerical experiments indicated that problems for which the cost of waiting until appointment
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time is low are the most challenging to solve. For these problems we observed that as the problem size

grows (e.g. 7 to 10 customer model instances), some of the instances could not be solved to a tolerance

of 1% within 15000 seconds. However, we observed that adding mean value based cuts to the master

problems produced significant improvements in the optimality gap. For instance, the smallest gap at the

time of termination for the 7 customer model instances was 107.2%, compared to 1% when the mean

value cuts are added. For the model instances with 10 customers the best gap found without mean value

cuts was 240.11%, compared to gaps as small as 2% with the mean value cuts. Thus, we conclude that

adding mean value cuts significantly improves computational efficiency of the L-shaped method for this

problem.

Our results showed that cost parameters, cw, ca, cℓ, appointment request probabilities, qi, and cus-

tomer service time distributions, can all significantly influence the structure of the optimal on-line sched-

ule. We found that, when all customers have the same costs and service time distributions FCFS is often

a good rule of thumb. In general we observe that when waiting until appointment time costs are high

for add-on customers (relative to idle time and overtime costs) add-ons should all be sequenced first.

In other words, the scheduler always should reserve capacity at the beginning of the schedule for add-

on cases. When waiting until appointment time costs are low (or zero) add-on customers should all be

scheduled last. The sufficient condition for FCFS scheduling derived for the case of two customers ap-

pears to provide a reasonable sequencing heuristic for larger problems. We observed that as qi increases

from 0.74 to 0.3, and as cw/ca decreases, the schedule shows a mixed sequence of routine and add-on

customers, usually allowing capacity for one add-on customer at the beginning, one at the end and one

closer to the middle. We also observed that when service time distributions varied among customers, qi

increases, the customers with lower variances tend to be scheduled early in the schedule. Thus, we con-

clude that scheduling customers in increasing variance order is recommended when arrivals are nearly

deterministic, i.e., qi is close to 1 for all i.

In this article we presented a number of insights about the optimal sequencing and scheduling de-

cisions for an on-line scheduling process. From a practical perspective the model we present is quite

data intensive. One challenge is in estimation of service time distributions, which requires access to

large numbers of samples of customer services times, the availability of which varies depending on the

particular application setting. Another challenge is the estimation of demand distributions for routing

and add-on customer. This can be achieved using historical data on the number and types of customers
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scheduled. This may require a large number of observations to estimate the condition probability of

customer arrivals since such demand distributions may vary by day of week, for example. Finally, es-

timation of cost coefficients (e.g. waiting costs for routine vs add-on customers) requires input from

decision makers.

There are some limitations of our model which present opportunities for future research. For ex-

ample, in some scheduling environments no-shows can be a problem. Our model is readily adapted to

this case and future extensions could explore the influence of this additional source of uncertainty. Our

model also assumes a single server, but many service systems, particularly in health care environments,

involve multiple servers working in parallel, and multiple stages of service. Finally, our model considers

a single day of service and therefore does not explicitly consider customer preferences for different days

of service. Thus, it is primarily applicable either as an exact method for environment in which customer

preferences do not apply an important role (e.g. scheduling of outpatient surgery) or as a heuristic. We

believe our model provides a basis for development of more complex models in the future. The meth-

ods we have developed for the single server problem provide a foundation for the development of exact

decomposition methods and/or heuristics for larger more realistic problems.
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Appendix

Proof of Proposition 1: Proof is by induction. At stage j = 1, the sequence is required to be 0→ 1→ 2.

This comes from the fact that o1,0,1 = 1 by (3), o1,1,2 = 1 by (4), and o1,i,i′ = 0 for all other values of

i, i′ = 0, 1, 2 by (7). This is obviously a valid sequence for stage 1. Suppose that the above constraints

hold for any valid sequence of appointments at stage j = k − 1, and no constraints are violated for any

such valid sequence. We will show that this implies a valid sequence for stage j = k, completing the

proof.
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Let an arbitrary valid sequence of appointments at stage j = k − 1 be:

i0 → i1 → . . .→ ik−1 → ik.

Since this is assumed valid, we know that i0 = 0 and ik = k. We also know that

ok−1,i0,i1 , ok−1,i1,i2 , . . . , ok−1,ik−1,ik = 1,

and ok−1,i,i′ = 0 for all other values of i, i′ = 0, . . . , k.

Given that all of the constraints hold at stage j = k, we observe that no more than one variable in the set

S = {ok,is,is+1 |s = 0, . . . , k − 2}

can be zero. Otherwise, from (8) with j = k and the assumption that the sequence at stage j = k − 1 is

valid, there are two distinct values t and s such that:

ok,is,k + ok,k,is+1 ≥ 2(ok−1,is,is+1 − ok,is,is+1)=2,

ok,it,k + ok,k,it+1 ≥ 2(ok−1,it,it+1 − ok,it,it+1)=2.

However, this implies that the variables on the left side of these inequalities are all equal to one. In

particular this means

ok,is,k + ok,it,k = 2,

which violates (6) when i = j = k. This observation leads to two cases.

In the first case, if all the variables in S are equal to one, then (7) ensures that exactly two stage j = k

variables outside of this set are equal to one. In other words, there are indices a, b, c, and d, where

ok,a,b, ok,c,d ̸∈ S and ok,a,b, ok,c,d = 1. Customer k and dummy customer k + 1 must be involved in

any valid sequence at stage j = k. However, ok,i,i′ ∈ S implies that i, i′ ̸= k, k + 1. From (4), we

know that the third index of one of these two non-zero variables must be k+1, and from (5) with j = k,

we know that the second index of one of these non-zero variables must be ik = k. Similarly, (6) with

j = k tells us that the third index of one of the non-zero variables must be k. The only possibility is
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ok,ik−1,k, ok,k,k+1 = 1. This corresponds to the valid sequence:

i0 = 0→ i1 → . . .→ ik−1 → ik = k → k + 1.

This sequence corresponds to placing the kth customer at stage k after all previously scheduled cus-

tomers.

In the second case, if all but one variable in S is equal to one, then from (8), there is a t such that:

ok,it,k + ok,k,it+1 ≥ 2(ok−1,it,it+1 − ok,it,it+1) = 2.

This means that the variables on the left side of the inequality are both equal to one. This fact, along with

constraint (4) at j = k, yields the valid sequence:

i0 → i1 → . . .→ it → ik = k → it+1 → . . .→ ik−1 → k + 1.

This sequence corresponds to placing the kth customer at stage k after the (it)
th and before the (it+1)

th

scheduled customers.

These two cases represent all possible valid sequences at stage j = k, and no constraints are violated by

these sequences. �

Proof of Proposition 2: The proof follows from optimality considering the objective function for the

FCFS and AOFS cases as follows:

F ∗
AOFS=EZ [(1− q)cℓ(aAOFS

1 + Z1) + q[cw1 (Z2 − aAOFS
1 )+ + cℓ((Z2 − aAOFS

1 )+ + aAOFS
1 + Z1))]

≤FAOFS (35)

=cℓµ+ q(cw1 + cℓ)µ (36)

≤F ∗
FCFS , (37)

where inequality (35) follows from setting aAOFS
1 = 0 and the fact that a specific solution such as

aAOFS
1 = 0 results in a worse solution than the optimal solution. The inequality (22) follows from the

sufficient condition ca2 ≥ cw1 in the proposition. �
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