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Announcements

• Assignment 5 is posted online. Due Nov 9.

• Midterms to be handed back Nov 7

• Project title, 1 paragraph description, and list of 3 team 

members due Nov 9.
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Today

• Optimality equations for infinite horizon MDPs

• Value iteration
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Reading Roadmap

Use the lectures as a guide for important material to 

cover in Chapter 5 of Puterman. 

Following are important sections of Chapter 6:

 Section 6.1: Policy evaluation

 Section 6.2: Optimality equations

 Skip 6.2.5

 Section 6.3: Value iteration

 Skip 6.3.1

 Section 6.4: Policy Iteration

 Skip 6.4.3, 6.4.4

 Section 6.5.1: Modified Policy Iteration

 Section 6.9: Linear Programming

 Section 6.11: Optimality of Structured Policies
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Optimal Policy

For a max problem, an optimal policy 𝜋∗ satisfies 

𝑢𝜆
𝜋∗(𝑠) ≥ 𝑢𝜆

𝜋 𝑠 , ∀𝑠 ∈ 𝑆 𝑎𝑛𝑑 ∀ 𝜋 ∈ Π

and can be expressed as

𝑢𝜆
𝜋∗ 𝑠 = max

𝜋∈Π𝑀𝐷
𝑢𝜆
𝜋(𝑠)
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Optimality Equations

The optimality equations for a stationary finite horizon MDP 

are written as

𝑣𝑡(𝑠) =max
𝑎∈𝐴

{𝑟 𝑠, 𝑎 + 𝜆σ𝑗∈𝑆 𝑝 𝑗 𝑠, 𝑎 𝑣𝑡+1(𝑗)}, 𝑡 = 1,… , 𝑇 − 1

Boundary condition: 𝑣𝑇 𝑠 = 𝑟(𝑠).

Passing to the limit as 𝑡 → ∞ we have

𝑣(𝑠) =max
𝑎∈𝐴

{𝑟 𝑠, 𝑎 + 𝜆σ𝑗∈𝑆 𝑝 𝑗 𝑠, 𝑎 𝑣(𝑗)}



6

Optimality Equations

The optimality equations for a stationary infinite horizon 

MDP are:

𝑣(𝑠) =max
𝑎∈𝐴

{𝑟 𝑠, 𝑎 + 𝜆σ𝑗∈𝑆 𝑝 𝑗 𝑠, 𝑎 𝑣(𝑗)}, ∀𝑠

These can be expressed compactly as 𝑣 = 𝐿𝑣 where

L𝑣 =max
𝑑∈𝐷

{𝑟𝑑 + 𝜆𝑃𝑑𝑣}

𝐿 is an operator denoting the max
𝑑∈𝐷

{⋅} operation over decision 

rules
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Some Useful Properties

Definition: Define the norm of vector, 𝑣, as

||𝑣|| = max
𝑠∈𝑆

|𝑣 𝑠 |

Definition: The norm of a matrix, Q , is 

||𝑄|| = max{||𝑄𝑣|| : ||𝑣|| ≤ 1}

When Q is a transition probability matrix ||𝑄|| = 1.  

Definition: A linear transformation is bounded if there exists 

some 𝐾 such that

||𝑄𝑣|| ≤ 𝐾||𝑣||
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Solution to Optimality Equations

Theorem (≈6.2.2 Puterman): If there exists a 𝑣 such that 𝑣 = 𝐿𝑣 , then 

𝑣 = 𝑢𝜆
𝜋∗.

Basic Idea: Proof is in two parts:

• Part (a): prove if 𝑣 ≥ 𝐿𝑣 then 𝑣 ≥ 𝑢𝜆
𝜋∗

• Part (b): prove if 𝑣 ≤ 𝐿𝑣 then 𝑣 ≤ 𝑢𝜆
𝜋∗

• Follows from (a) and (b) if 𝑣 = 𝐿𝑣 then v = 𝑢𝜆
𝜋∗

See supplemental material on canvas for complete proof
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Contraction Mapping Property

Definition: Operator L is a contraction mapping if there 

exists a 0 < 𝜆 < 1 such that 

| 𝐿𝑣 − 𝐿𝑢 | ≤ 𝜆| 𝑣 − 𝑢 |

for all u and 𝑣.
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Solution to Optimality Equations

Theorem (≈6.2.3 Puterman): Suppose L is a contraction 

mapping, then for arbitrary v0 the sequence v0, … , vn

defined by vn+1 = Lvn converges to v∗ as n → ∞, where 

𝑣∗ = 𝐿𝑣∗.

Proof: See supplemental materials on canvas
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Value Iteration

Value iteration exploits the contraction mapping property to 

solve infinite horizon MDPs

Value Iteration:

1. Select some intial vector v0 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑛 = 0.

2. 𝐴𝑝𝑝𝑙𝑦 𝑣𝑛+1 = 𝐿𝑣𝑛

3. 𝐼𝑓 | 𝑣𝑛+1 − 𝑣𝑛 | < 𝜖(1 − 𝜆)/2𝜆 go to step 4. Otherwise n=n+1 and 
return to step 2.

4. 𝑑𝜖 𝑠 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴 r s, a + 𝜆σ𝑗∈𝑆 𝑝 𝑗 𝑠, 𝑎 𝑣𝑛 𝑗 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆.
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Solution to Optimality Equations

Proposition (≈6.2.4 Puterman): If 0 < 𝜆 < 1 then L is a 

contraction mapping.

Proof: See supplemental materials on canvas



13

Convergence of Value Iteration

Theorem (≈6.3.1 Part (d) Puterman): Let {vn} satisfy 

vn+1 = Lvn, then: 

||vn+1 − v∗|| ≤ 𝜖/2 whenever||vn+1 − 𝑣𝑛|| <
𝜖 1−𝜆

2𝜆

Proof: Complete in class
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Example Revisited: 2 State MDP

In state S1 actions a1,1 and a1,2 are available; in state S2 only a2,1 is 

available. Rewards and transition probabilities are defined below as {r,p}.

At each stage the associated reward is received and then the transition 

occurs.

S1 S2

a1,1 a2,1

a1,1

a1,2

{5, .5} {-1,1}{10,1}

{5, .5}
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Value Iteration Example (Matlab)
for t=2:NITERATIONS

for s=1:S %loop through all states

for a=1:A %loop through all actions

q(s,a)=0;

for j=1:S %sum over states to compute value to go

if(a==1) q(s,a) = q(s,a) + lambda*P1(s,j)*v(t-1,j);

else q(s,a) = q(s,a) + lambda*P2(s,j)*v(t-1,j);

end 

end

q(s,a) = q(s,a) + r(s,a);

%save first action evaluated

if(a==1) 

v(t,s) = q(s,a);

policy(t,s)=a;

end

%if current action better than best save action/value function

if (q(s,a) > v(t,s)) 

v(t,s) = q(s,a);

policy(t,s)=a;

end

end

end

%check stopping criteria (exit loop if stopping criteria satisfied)

norm_v = max(abs(v(t,1)-v(t-1,1)), abs(v(t,2)-v(t-1, 2)));

if (norm_v < epsilon*(1-lambda)/(2*lambda)) break; end

end
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Example Revisited: Value Iteration

Convergence of value functions with respect to iteration

Note: optimal policy was attained at the first iteration

Discount Rate: λ=0.95
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Value Iteration Convergence

Influence of discount rate on value iteration convergence

Discount Rate: λ=0.99
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Value Iteration Convergence

Influence of discount rate on value iteration convergence

Discount Rate: λ=0.5
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Conclusions

 Convergence of the optimal value function is 

influenced by the discount factor

 The higher the discount factor the slower the 

rate of convergence

 In some cases a good policy (sometimes the 

optimal policy) may be found very quickly

 More advances approaches seek to reduce 

the number of iterations necessary to find an 

𝜖-optimal policy


