m MICHIGAN ENGINEERING
Announcements

« Assignment 5 is posted online. Due Nov 9.

e Midterms to be handed back Nov 7

« Project title, 1 paragraph description, and list of 3 team
members due Nov 9.
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e  Optimality equations for infinite horizon MDPs

« Value iteration
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Reading Roadmap

Use the lectures as a guide for important material to
cover in Chapter 5 of Puterman.

Following are important sections of Chapter 6:

- Section 6.1: Policy evaluation
- Section 6.2: Optimality equations
: Skip 6.2.5

. Section 6.3: Value iteration

- Skip 6.3.1
. Section 6.4: Policy Iteration

: Skip 6.4.3, 6.4.4
: Section 6.5.1: Modified Policy Iteration
: Section 6.9: Linear Programming
: Section 6.11: Optimality of Structured Policies
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Optimal Policy

For a max problem, an optimal policy 7* satisfies
uf (s) = uf(s),Vs € Sand vV m €Il
and can be expressed as

uy (s) = nIEnHaI‘BI(DuAT(S)
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Optimality Equations

The optimality equations for a stationary finite horizon MDP
are written as

v:(S) :rcrllgj({r(s, a) + A2 jes pUls, v (DLt =1,...,T =1

Boundary condition: v;(s) = r(s).

Passing to the limit as t —» oo we have

v(s) =max{r(s,a) + 1Y es pUls, )v ()}
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Optimality Equations

The optimality equations for a stationary infinite horizon
MDP are:

v(s) =max{r(s, @) + 1 ¥jes p(jls, Qv ()}, Vs

These can be expressed compactly as v = Lv where

Lv :rélealg({rd + AP, v}

L 1s an operator denoting the gnee})x{-} operation over decision

rules
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Some Useful Properties

Definition: Define the norm of vector, v, as

V|| = Max|v(s
vl = max|v(s)

Definition: The norm of a matrix, Q, is
1Q]] = max{||Qv||: [[v|| < 1}
When Q is a transition probability matrix ||Q]| = 1.

Definition: A linear transformation is bounded If there exists
some K such that

[1Qv]| = K]|v]]
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Solution to Optimality Equations

Theorem (=6.2.2 Puterman): If there exists a v such that v = Lv , then

*

v =ujy .

Basic Idea: Proof is in two parts:

8 Part (a): prove if v > Lv then v > uff*
. Part (b): prove if v < Lvthen v < u}{*

- Follows from (a) and (b) if v = Lv then v = u}

See supplemental material on canvas for complete proof
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Contraction Mapping Property

Definition: Operator L is a contraction mapping if there
exists a 0 < A < 1 such that

|[Lv — Lul| < A]|v — ul|

for all u and v.
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Solution to Optimality Equations

Theorem (=6.2.3 Puterman): Suppose L is a contraction
mapping, then for arbitrary v® the sequence {v°, ..., v}
defined by v**! = Lv" converges to v* as n - o, where
v’ =Lv".

Proof: See supplemental materials on canvas

10
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Value lteration

Value iteration exploits the contraction mapping property to
solve infinite horizon MDPs

Value lteration:

1. Select some intial vector v and set n = 0.
2. Apply vt = Lv"

3 If ||lv™ — v < e(1 —A)/2A go to step 4. Otherwise n=n+1 and
return to step 2.

4. d.(s) € argmax,ecy {r(s, a) + 12 iesp(ls, a)v"(j)},for all s € S.

11
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Solution to Optimality Equations

Proposition (=6.2.4 Puterman): If0 <A< 1 thenlLisa
contraction mapping.

Proof. See supplemental materials on canvas

12
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Convergence of Value Iteration

Theorem (=6.3.1 Part (d) Puterman): Let {v"} satisfy
vitl = Ly then:

e(1-2)

||[v2:tl — v*|| < €/2 whenever||v?t! — v™|| < —

Proof: Complete in class

13
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Example Revisited: 2 State MDP

In state S, actions a, ; and a, , are available; in state S, only a, , is
available. Rewards and transition probabilities are defined below as {r,p}.
At each stage the associated reward is received and then the transition

OCCUTrsS.
dq 1
{5, .5}
dj 1 a, 4
{51 5} {1011} {_111} '
di o

14
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Value Iteration Example (Matlab)

for t=2:NITERATIONS
for s=1.:S %loop through all states
for a=1:A %loop through all actions

q(s,a)=0;

for j=1:S %sum over states to compute value to go
if(a==1) q(s,a) = q(s,a) + lambda*P1(s,j)*v(t-1,));
else q(s,a) = q(s,a) + lambda*P2(s,j)*v(t-1,));
end

end

q(s.a) = q(s,a) +r(s,a);

%save first action evaluated

if(a==1)
v(t,s) = q(s,a);
policy(t,s)=a;
end

%if current action better than best save action/value function
if (q(s,a) > v(t,s))
v(t,s) = q(s,a);
policy(t,s)=a;
end
end
end

%check stopping criteria (exit loop if stopping criteria satisfied)
norm_v = max(abs(v(t,1)-v(t-1,1)), abs(v(t,2)-v(t-1, 2)));
if (norm_v < epsilon*(1-lambda)/(2*lambda)) break; end

end 15
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Example Revisited: Value Iteration

Convergence of value functions with respect to iteration

10
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Note: optimal policy was attained at the first iteration P
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Value Iteration Convergence

Influence of discount rate on value iteration convergence
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Value lteration Convergence

Influence of discount rate on value iteration convergence
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Conclusions
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Convergence of the optimal value function is
Influenced by the discount factor

= The higher the discount factor the slower the
rate of convergence

In some cases a good policy (sometimes the
optimal policy) may be found very quickly

More advances approaches seek to reduce
the number of iterations necessary to find an
e-optimal policy 19



