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Review

Problems we have covered so far:

 Shortest path problem

 Production and inventory control (Wagner–Whitin)

 Resource allocation (e.g. knapsack)

 Travelling Salesperson Problem

 Pattern recognition (e.g. DNA comparison)

Today

 Shortest path problems on acyclic and general networks
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Review

DPs can be used for finding 

the shortest path that joins 

two points in a network

• This is a fundamental 

problem to which DP 

applies (e.g. google maps)

• Many problems can be 

formulated as a shortest 

path problem



3

Review

General formulation for shortest path problems on a directed 
acyclic network:

• The state is denoted by coordinates (x,y)

• Admissible paths move to the right, guaranteeing no cycles

Example:

x

y

S
F
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Review

Dynamic Programming Formulation:

 Let c+(x,y) be the cost of moving from state (x,y) to 
(x+1, y+1) and let c-(x,y) be the cost of moving from 
state (x,y) to (x+1, y-1)

 Let (xF,yF) denote the terminal (destination) state

 The optimality equations are:

𝑣 𝑥, 𝑦 = 𝑚𝑖𝑛 ቊ
𝑐+ 𝑥, 𝑦 + 𝑣(𝑥 + 1, 𝑦 + 1)

𝑐− 𝑥, 𝑦 + 𝑣(𝑥 + 1, 𝑦 − 1)

𝑣 𝑥𝐹 , 𝑦𝐹 = 0
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Acyclic Network

Things get a little more complicated for general networks 
because there is no obvious node ordering. A cycle in a 
network is a path that begins and ends at the same node. An 
acyclic network has no cycles.

Consider the following network:

Is this an acyclic graph? Yes
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Acyclic Network

A cycle in a network is a path that begins and ends at the 
same node. An acyclic network has no cycles.

Consider the following network:

Is this an acyclic graph?  No
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Acyclic Network

Property: In any acyclic network you can label nodes in such 
a way that if there is an arc from node i to node j then i< j.

Node Labeling Algorithm:

1. Choose any node that has only outward-pointing arcs

2. Assign this node label L. Remove this node and its arcs 
from the network. If there are no more nodes STOP. 
Otherwise, set L = L+1 and return to Step 1.



8

Acyclic Network

Example: Applying the node labeling algorithm:

1

2

3

4

5

3 1

2 5

4

Start node

Finish node
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Example

Find the shortest path from every node to node 5:

Solve the shortest path DP based on ordering of nodes 
according to the assigned labels

3 1

2 5

4

1

2

4

3

1

5

4
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DP Formulation

Let 𝑣𝑖 denote the length of the shortest path from 
node i to node N

Optimality Equations:

𝑣𝑖 = min
j>i

{𝑣𝑗 + 𝑑𝑖𝑗} 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁 − 1

𝑣𝑁 = 0 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑑𝑖𝑗 = ∞ 𝑖𝑓 𝑛𝑜 𝑎𝑟𝑐 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗.

Following is a DP formulation for the shortest path 
problem on a labeled acyclic network
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Forward DP Formulation

3 1

2 5

4

1

2
4

3

1

5

4

Let 𝑣𝑖 denote the length of the 
shortest path from node 1 to node i

Optimality Equations:

𝑣𝑖 = min
𝑗<𝑖

{𝑣𝑗 + 𝑑𝑗𝑖} 𝑓𝑜𝑟 𝑖 = 2,3, … , 𝑁

𝑣1 = 0 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑑𝑖𝑗 = ∞ 𝑖𝑓 𝑛𝑜 𝑎𝑟𝑐 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗.

The shortest path problem can be solved via an alternative 
forward dynamic programming formulation

*For many problems there is a natural forward dynamic programming 
formulation
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General Networks

General networks may contain cycles. In such cases there is no 
longer a consistent ordering of the nodes. Forward dynamic 
programming works well for these problems.

A forward dynamic programming algorithm for the General Shortest 
Path problem can be defined using the following:

 Let 𝑁𝑖 be the set of nodes composed of the i closest nodes (by 
shortest path) to node 1

 𝑣𝑖(𝑗) = length of the shortest path from node 1 to j when 
restricted to use nodes in 𝑁𝑖



13

General Networks

Algorithm for the General Shortest Path Problem:

Boundary Condition: For stage 1 set 𝑁1 = 1 , 𝑣1 𝑗 = 𝑑1𝑗. Note that 

𝑑1𝑗 = ∞ if there is no arc from node 1 to j. Set i=2.

1. Find 𝑘𝑖 = argmin
𝑗∉𝑁𝑖−1

𝑣𝑖−1(𝑗) .

2. Set 𝑁𝑖 = 𝑁𝑖−1 ∪ 𝑘𝑖 .

3. Compute 𝑣𝑖 𝑗 as:

𝑣𝑖 𝑗 = ൝
𝑣𝑖−1 𝑗 𝑖𝑓 𝑗 ∈ 𝑁𝑖

min{𝑣𝑖−1 𝑗 , 𝑣𝑖−1 𝑘𝑖 + 𝑑𝑘𝑖,𝑗} 𝑖𝑓 𝑗 ∉ 𝑁𝑖

Set i = i+1 and return to step 1.
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Example: General Networks

Find the shortest path between nodes S and F in the following 
network:

S F

5

1

6

2

7 1

34

2

8

For a general cyclic network there is no consistent node labeling. 
Instead, the algorithm controls the order of nodes.
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General Networks

Algorithm for the General Shortest Path Problem:

Boundary Condition: For stage 1 set 𝑁1 = 1 , 𝑣1 𝑗 = 𝑑1𝑗. Note that 

𝑑1𝑗 = ∞ if there is no arc from node 1 to j. Set i=2.

1. Find 𝑘𝑖 = argmin
𝑗∉𝑁𝑖−1

𝑣𝑖−1(𝑗) .

2. Set 𝑁𝑖−1 ∪ 𝑘𝑖 .

3. Compute 𝑣𝑖 𝑗 as:

𝑣𝑖 𝑗 = ൝
𝑣𝑖−1 𝑗 𝑖𝑓 𝑗 ∈ 𝑁𝑖

min{𝑣𝑖−1 𝑗 , 𝑣𝑖−1 𝑘𝑖 + 𝑑𝑘𝑖,𝑗} 𝑖𝑓 𝑗 ∉ 𝑁𝑖

Set i = i+1 and return to step 1.
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Dijkstra’s Algorithm

Dijkstra’s algorithm attempts to simplify the forward DP solution process by 

using node labels to keep track of estimates in the forward DP solution process.

Step 1: Start with node 1. Give it a permanent label of 0 and label each 

connected node with a temporary label equal to the distance from node 1. All 

other nodes have temporary label ∞.

Step 2: Choose the node with the smallest temporary label and make its label 

permanent (call this node i). For each connected node j that has a temporary 

label replace the temporary label with:

Min{current label, node i’s permanent label + dij }

Make the new smallest temporary label a permanent label. Continue through the 

network repeating Step 2.
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Example: Iteration 1—Step 1
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Step 1: Start with node 1. Give it a permanent label of 0 and label 

each connected node with a temporary label equal to the 

distance from node 1. All other nodes have temporary label ∞.
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Example: Iteration 2—Step 2

Iteration 1 Node Labels: {0*, 6, 5*, 9, ∞, ∞}

Step 2:
• Choose the node with the smallest temporary label 

and make its label permanent (call this node i). 
• For each connected node j that has a temporary label 

replace the temporary label with:

min{𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑎𝑏𝑒𝑙, 𝑛𝑜𝑑𝑒 𝑖 𝑙𝑎𝑏𝑒𝑙 + 𝑑𝑖𝑗}

1

2

3

5

4 6

6

5

1

3

4 1

1
4

0

6

5

∞

∞ ∞
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Optimal Solution

1
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5
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1
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Iteration 1 Node Labels: {0*, 6, 5*, 9, ∞, ∞}

Iteration 2 Node Labels: {0*, 6*, 5*, 9, 7, ∞}

Iteration 3 Node Labels: {0*, 6*, 5*, 8, 7*, 11}

Iteration 4 Node Labels: {0*, 6*, 5*, 8*, 7*, 9}

Optimal solution: 1  2  5  4  6, Path Length = 9
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Reading

We will start getting into stochastic dynamic 
programming next class:

A this point you should 
have covered Chapters 1 
– 3 of Dreyfus and Law 
(Sections 1.11 and 3.5-
3.10 are not “required”)

Chapters 2 – 5 of 
Puterman are on Ctools

Start reading Chapter 2 
of Puterman to stay 
ahead of class

http://www.amazon.com/gp/reader/0471727822/ref=sib_dp_pt
http://www.amazon.com/gp/reader/0471727822/ref=sib_dp_pt

