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Announcements 

Presentations in class next Tuesday and Thursday. Maximum of 10 minutes for 

your presentation. Send me  your slides no later than 9am the day of your 

presentation. 

Dec 5 Presentations

 Isaac, Adam, Shuzhe: Ventilation in Intensive Care Units

 Huiwen, Siyu: Treasure hunting

 Suyanpeng, Liyang: Pac Man

 Seok-Joo, Aditi, Ryan: Blackjack

 Andrew, Valerie, Anna: Fantasy Football Draft

 Derek, Chandra, Sajan: Robot Navigation

Last homework due next Tuesday
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Last time we covered:

• Sampling of Markov chains

• Monte Carlo policy evaluation

Today we will cover methods for 

policy improvement for finite horizon 

problems

Stanislaw Ulam

Model-free Approaches
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Monte Carlo Policy Iteration

The basic idea of MC Policy Iteration parallels standard 

policy iteration for MDPs:

1) Select an initial policy to evaluate

2) Evaluate the current policy using MC Policy Evaluation

3) Improve the current policy 

4) Stop if convergence criteria is satisfied; Otherwise go to 

Step 2.
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MC Policy Iteration Assumptions

In order to achieve convergence in the Monte Carlo context 

there are two important assumptions that must be met:

Assumption 1 (Exploration): When following a fixed policy there are some 

state action pairs, 𝑠, 𝑎 , that may not be visited. Therefore a randomized policy 

is necessary to guarantee all state action pairs are visited.

Assumption 2 (Convergence): An infinite number of sample paths is 

necessary to guarantee convergence to the optimal policy.

Assumption 1 can be satisfied using a 𝜖-randomized policy to 

guarantee all state action pairs are visited. Assumption 2 is impractical 

and we must use a finite number of iterations and settle for an 

approximation of the optimal policy. 
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𝜖 – randomized policy

For any deterministic policy, 𝜋, we wish to evaluate we can generate an 

𝜖- randomized policy, ො𝜋, as follows:

ො𝜋(𝑠) = ቊ
𝜋 𝑠 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜖
ො𝑎 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖

Where action ො𝑎 is a randomly selected action from a uniform 

distribution over actions a ∈ 𝐴:

ො𝑎 = 𝑎 ∈ 𝐴 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
1

𝐴
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Monte Carlo Policy Iteration

The following algorithm will converge to an 𝜖 −optimal policy for a finite 

horizon problem with N stages.

Algorithm (MC Policy Iteration):

1. For all states 𝑠 ∈ 𝑆 initialize 𝜋 s ; initialize 𝜖 to create randomized policy ො𝜋(𝑠).

2. 𝑷𝒐𝒍𝒊𝒄𝒚 𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒊𝒐𝒏:

Randomly select an 𝐢𝐧𝐟𝐢𝐧𝐢𝐭𝐞 number of starting pairs, s, 𝑎 , and a corresponding sample path

For all s, 𝑎 in the sample path compute:

෨𝑄ෝ𝜋 𝑠, 𝑎 = 𝑟0 𝑠, 𝑎 + 

𝑡=1

𝑁−1

𝜆𝑡𝑟𝑡 𝑠𝑡, ො𝜋(𝑠𝑡) + 𝜆𝑁𝑟𝑁 𝑠𝑁

3. 𝑷𝒐𝒍𝒊𝒄𝒚 𝑰𝒎𝒑𝒓𝒐𝒗𝒆𝒎𝒆𝒏𝒕:

For all s: π s ∈ argmaxa∈A Q s, a

Return to Step 2;



7

Assumption 2: Infinite Sample Paths

For practical implementation of MC Policy Iteration a finite number of 

samples must be specified for Step 2 (policy evaluation) and a stopping 

criteria must be specified.

Finite Samples: Use experiments with test policies to estimate the number 

of samples necessary to achieve reasonable confidence in estimates of 
෨𝑄ෝ𝜋 𝑠, 𝑎 .

Stopping Criteria: Test the norm of difference in ෨𝑄ෝ𝜋 𝑠, 𝑎 from one iteration 

to the next. Stop if:

|| ෨𝑄ෝ𝜋,𝑛+1 ෪−𝑄ෝ𝜋,𝑛+1|| < 𝜹

Where 𝛿 is a suitably chosen tolerance.
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Example: Blackjack

Black jack is a sequential card game with a 
“player” and a “dealer”. The player receives two 
cards face up; the dealer one card face down 
and one face up. The player must decide one at 
a time whether to take a card (hit) or not 
(stick). The goal is to get as close to 21 without 
going over.

Results from MC Policy
Iteration:

Taken from “Reinforcement Learning: An Introduction”, By Sutton and Barto, MIT Press
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Other Reinforcement Learning Methods

There are many other RL methods that have been shown to be more 

efficient than MC Policy Iteration. 

A common theme of these methods is to learn more quickly by updating 

the policy frequently (e.g. every time a path is sampled). 

Q-Learning is one such method that estimates the Q-value of a given state 

action pair 𝑠, 𝑎 , defined as:

𝑄𝑚 𝑠, 𝑎 = 1 − 𝜇𝑚 𝑄𝑚−1 𝑠, 𝑎 + 𝜇𝑚(𝑟 𝑠, 𝑎 + 𝜆max
𝑎′∈𝐴

𝑄𝑚−1 𝑠, 𝑎′ )

Parameter 𝜇𝑚 ∈ (0,1) generates a weighted average that weights 

the most recent estimate of the Q-value against the newly updated 

estimate. 
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Incremental updating

Q-Learning uses the Robins-Monro (RM) Algorithm which is a recency-

weighted updating approach to estimate the expectation of random 

variables incrementally.

Algorithm (Robins-Monro):

1. Let Xi denote the 𝑖
th sample of random variable X,

and let Ym denote the estimate of E X in the mth iteration; Set Y0 = 0.

2. Update Y as follows: Ym = 1 − 𝜇𝑚 𝑌𝑚−1 + 𝜇𝑚𝑋𝑚

3. If Ym − Ym−1 < 𝜖 then stop; Otherwise m = m+ 1 and return to Step 2

The parameter 𝜇𝑚 ∈ [0,1] is the step size and it defines the relative weight 

of the current estimate and most recent sample.
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Q-Learning for Infinite Horizon Problems

Algorithm (Q-Learning):

1. Set Q s, a = 0 for all s ∈ 𝑆 and a ∈ 𝐴. Set k = 0 and max iterations K.

2. Let the current state be i.With probability ϵ select action, 𝑎,
randomly; with probability 1 − ϵ choose 𝑎 = argmax{Q𝑚 i, a }

3. Sample a new state, j, given action a, and update Qm i, a as

𝑄𝑚 𝑖, 𝑎 = 1 − 𝜇𝑚 𝑄𝑚−1 𝑖, 𝑎 + 𝜇𝑚(𝑟 𝑗, 𝑎 + 𝜆max
𝑎′∈𝐴

𝑄𝑚−1 𝑗, 𝑎′ )

4. If k < K set i = 𝑗 and return to Step 2. Otherwise go to Step 5.

5. For each state, s, choose the action, a, that maximizes QK(s, a)
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Learn More

There are many approaches being developed for 

reinforcement learning and more broadly in the are of 

artificial intelligence. Following are good resources to start 

learning more:

Abhijit Gosavi, 2009, Reinforcement Learning: A Tutorial Survey and 

Recent Advances, INFORMS Journal on Computing, 212, 178-192. (on 

Canvas)

“Reinforcement Learning: An Introduction”, By Sutton and Barto, MIT 

Press


