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Announcements

• In-Class Assignment from last class and Assignment 3 

are is due now

• Assignment 4 on Canvas – due next Tuesday

• Homework assignment 2 is graded:

• This time I graded question 2

• Median was about 8/10

• Most common causes of lost points: no model description, i.e., not 

definition of states, actions, rewards, optimality equations. Solution without 

using DP.
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Last Time

• Policy evaluation

• Optimal solution to Markov Decision Processes
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Today

Examples:

• Zombies

• Inventory control
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Zombie Avoidance 

Formulate and solve a DP for the following 
problem:
 You must traverse the following network in which edge 

weights are the probability of encountering a zombie

 If you encounter a zombie along an edge then at the next 
vertex you randomly select an edge with equal 
probability; otherwise you select deterministically.

 Your goal is to minimize encounters
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Zombie Avoidance 

 What is the goal of solving the problem?

 What will the optimal policy look like?

 What is the state?

 What does the value function represent?

Optimality Equations
Define the value function as the probability of not 
encountering a zombie

Boundary Condition: 𝑣6 = 1

Stage 5:  𝑣5 = 0.95𝑣6 = .95

Stage 4: 𝑣4= max
5,6

0.99𝑣5, 0.9𝑣6 = .94

Stage 3:  𝑣3 = max
4,5

0.98𝑣4, 0.5𝑣5 = .92

Stage 2:  𝑣2 = max
3,4,5

0.90𝑣3, 0.9𝑣4, 0.7𝑣5 = .85

Stage 1:  𝑣1 = max
2,3

{0.8𝑣2, 0.75𝑣3} = .69

Optimal path is:  1 345 6, probability of no encounter on this path = 0.69
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Inventory Control

The lotsizing problem can be extended to the case of 

uncertain demand

• A Markov chain is used to 
represent demand 
uncertainty 

• Decision maker chooses 
how much to produce at 
each decision epoch

• If inventory exceeds 
demand an inventory cost 
is incurred
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Inventory Control

The timing of events for the decision process:

Demand that is not filled is lost. 

Epoch t Epoch t+1

Inventory level 𝑠𝑡 Inventory level 𝑠𝑡+1

Order a𝑡 units

Demand 𝐷𝑡occurs

Fill orders
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Inventory Control MDP

Decision epochs: 𝑡 = 1,2, … . , 𝑇. 

Actions: order quantity:  at ∈ {0,1,2, … ,M − st}, where 𝑀 is max available space for 

inventory

States: the state is the inventory level, defined by the following transfer equation:

st+1 = max 𝑠𝑡 + 𝑎𝑡 − 𝐷𝑡, 0 = 𝑠𝑡 + 𝑎𝑡 − 𝐷𝑡
+

States are uncertain because demand, 𝐷𝑡, is a random variable.

Transition Probabilities: pt 𝑗|𝑠𝑡 , 𝑎𝑡 = ൞

0, 𝑗 > 𝑠𝑡 + 𝑎𝑡
𝑝𝑠𝑡+𝑎𝑡−𝑗 , 𝑖𝑓 𝑠𝑡 + 𝑎𝑡 ≥ 𝑗 > 0

𝑞𝑠𝑡+𝑎𝑡 , 𝑖𝑓 𝑗 = 0

where 𝑞𝑠𝑡+𝑎𝑡 is the probability demand exceeds supply.
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Inventory Control MDP

Rewards are expected profit which includes expected revenue (𝑝 per unit) minus 

production cost and inventory cost.

Expected revenue: 𝐸𝐷𝑡[𝑝 × 𝑚𝑖𝑛 𝑠𝑡 + 𝑎𝑡, 𝐷𝑡 ]

Production cost (fixed + variable):  K × I(at) + c at ,  where 𝐼 𝑎𝑡 = ቊ
0 𝑖𝑓 𝑎𝑡 = 0
1 𝑖𝑓 𝑎𝑡 > 0

Inventory cost: h × st + at

Rewards:

rt 𝑠𝑡 , 𝑎𝑡 = 𝐸𝐷𝑡 𝑝 × 𝑚𝑖𝑛 𝑠𝑡 + 𝑎𝑡, 𝐷𝑡 − K × I at + c at − h × st + at , ∀(𝑠𝑡 , 𝑎𝑡)

𝑟𝑇 𝑠𝑇 = 𝑅 𝑠𝑇 , ∀𝑠𝑇
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Example

Consider the following specific example of the inventory control MDP:

Assume K = 4, c at = 2𝑎𝑡, 𝑅 𝑠𝑇 = 0, ∀𝑠𝑇 , ℎ 𝑥 = 𝑥, 𝑀 = 3, 𝑇 = 3,
𝑝 = 8, and demand distribution

𝑝𝑑 = ൞

0.25, 𝑖𝑓 𝑑 = 0
0.5, 𝑖𝑓 𝑑 = 1
0.25, 𝑖𝑓 𝑑 = 2

What is the expected profit if zero stock is available at the first stage? What is the 

optimal ordering policy?
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Solution

States: 𝑠𝑡= inventory level at start of epoch t

Actions: 𝑎𝑡 = order quantity during epoch t

Rewards: 𝑟𝑡 𝑠𝑡 , 𝑎𝑡 can be expressed as an 𝑆 × 𝐴 matrix as follows

0 − 1 − 2 − 5

Rew𝑎𝑟𝑑 𝑀𝑎𝑡𝑟𝑖𝑥 = 5 0 − 3 𝑋

6 − 1 𝑋 𝑋

5 𝑋 𝑋 𝑋

Transition Probability Matrix (example for 𝑎𝑡 = 0):

1 0 0 0

𝑃𝑡 0 =
3
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Solution

Backward Induction Algorithm:

Epoch 4: Set 𝑡 = 𝑇 + 1 = 4 , 𝑣4
∗ 𝑠 = 0 𝑓𝑜𝑟 𝑠 = 0,1,2,3

Epoch 3: Since 𝑡 ≠ 1 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒. 𝑆𝑒𝑡 𝑡 = 3.

𝑣3
∗ 𝑠 = max

𝑎∈𝐴
{𝑟 𝑠, 𝑎 + σ𝑗∈𝑆 𝑝 𝑗 𝑠, 𝑎 𝑣4

∗(𝑗)}, 𝑠 = 0,1,2,3

= max
𝑎∈𝐴

{r s, a }

It follows that 𝑣3
∗ 0 = 0, 𝑣3

∗ 1 = 5, 𝑣3
∗(2) = 6, 𝑣3

∗ 3 = 5

and 𝑎3
∗ 𝑠 = 0, 𝑓𝑜𝑟 𝑠 = 0,1,2,3
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Solution Cont’d

Epoch 2: Since 𝑡 ≠ 1 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒. 𝑆𝑒𝑡 𝑡 = 2.

𝑣2
∗ 𝑠 = max

𝑎∈𝐴
{𝑟 𝑠, 𝑎 + σ𝑗∈𝑆 𝑝 𝑗 𝑠, 𝑎 𝑣3

∗(𝑗)}, 𝑠 = 0,1,2,3

= max
𝑎∈𝐴

{v2
∗(s, a)}

0 0.25 2 0.5

Since 𝑣2
∗ 𝑠, 𝑎 = 6.25 4 2.5 𝑋

10 4.5 𝑋 𝑋

10.5 𝑋 𝑋 𝑋

it follows that 𝑣2
∗ 0 = 2, 𝑣2

∗ 1 = 6.25, 𝑣2
∗ 2 = 10, 𝑣2

∗ 3 = 10.5 𝑎𝑛𝑑 𝑎2
∗ 0 =

2, 𝑎2
∗ 1 = 0, 𝑎2

∗ 2 = 0, 𝑎2
∗ 3 = 0 .
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Solution Cont’d

Epoch 1: Since 𝑡 ≠ 1 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒. 𝑆𝑒𝑡 𝑡 = 1.

𝑣1
∗ 𝑠 = max

𝑎∈𝐴
{v1

∗(s, a)}

2.00 2.06 4.12 4.19

𝑣1
∗ 𝑠, 𝑎 = 8.06 6.12 6.19 𝑋

12.12 8.19 𝑋 𝑋
14.19 𝑋 𝑋 𝑋

It follows that 𝑣1
∗ 0 = 4.19, 𝑣1

∗ 1 = 8.06, 𝑣1
∗ 2 = 12.12, 𝑣2

∗ 3 = 14.19 𝑎𝑛𝑑 𝑎1
∗ 0 = 3, 𝑎1

∗ 1 = 0, 𝑎1
∗ 2 =

0, 𝑎1
∗ 3 = 0

Optimal Policy:

If initial inventory is 0, order 3 units in period 1 and nothing after that.

𝑠 𝑑1
∗(𝑠) 𝑑2

∗(𝑠) 𝑑3
∗(𝑠)

0 3 2 0

1 0 0 0

2 0 0 0

3 0 0 0
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Example

Consider a game where at the start of each of n turns you 

can bet some number of coins that you currently have. You 

will win with probability p and lose with probability 1-p. Your 

goal is to end the game with maximum expected reward.

1) Write the optimality equations in general form

2) Solve the problem for n=3, p = 0.75, and given you start 

with 3 coins

3) How do you think the results will change as p changes?


