
Today

Introduction to stochastic dynamic programming

• Refresher on Markov chains

• Definition of policies in the stochastic context

• Examples:

• Stochastic shortest path



Homework Assignment Grading

I grade a subset of the solutions to homework assignments

Example: For assignment 1 I graded question 5

Solutions to all problems are on Canvas – carefully review 

these

Important:

Matlab Code: The code you develop for all assignment 

questions must be submitted on Canvas. The hardcopy 

should include a copy of the commented code, a screen shot 

of the output, and an explanation of the output



Markov Chain Refresher

 A random variable that evolves over time follows a 

stochastic process

 A Markov chain is a particular kind of stochastic 

process in which the states are discrete

We will be interested mainly in discrete time Markov 

chains



Stochastic Processes

Suppose we observe some characteristic of a system at 

discrete points in time…

Let Xt be the value associated with the characteristic at 

time t

A discrete-time stochastic process is a description of 

the relation between the random variables X0 , X1, X2,…



Markov Chains

A discrete-time stochastic process is a Markov chain if, for t = 

0,1,2…, and for all states

𝑃 𝑋𝑡+1 = 𝑖𝑡+1 𝑋𝑡 = 𝑖𝑡 , 𝑋𝑡−1 = 𝑖𝑡−1, … , 𝑋1 = 𝑖1, 𝑋0 = 𝑖0

= 𝑃 𝑋𝑡+1 = 𝑖𝑡+1 𝑋𝑡 = 𝑖𝑡)

The probability distribution of the state at time t+1 depends only on the 

state at time t

The vector q = (q1, q2, … , qN) is the initial probability distribution for 

the Markov chain at time 0 where P(X0=i) = qi



Transition Probabilities

We refer to 𝑃 𝑋𝑡+1 = 𝑗 𝑋𝑡 = 𝑖) = 𝑝𝑖𝑗
𝑡 as the transition probability

If transition probabilities do not change over time the Markov chain is 

a stationary Markov chain

The transition probability matrix for an N-state stationary Markov chain 

is: 
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n-Step Transition Probabilities

If a stationary Markov chain is in a state i at stage m, the probability that 

n stages later the Markov chain is in state j is

𝑃 𝑋𝑚+𝑛 = 𝑗 𝑋𝑚 = 𝑖) = 𝑃 𝑋𝑛 = 𝑗 𝑋0 = 𝑖 = 𝑝𝑖𝑗(𝑛)

where 𝑝𝑖𝑗(𝑛) is the ijth element of Pn,  called the n-step probability.

For example, for n=2 
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Example

If for a 2 state stationary system:

Then P(X2 = 1|X0 = 2) = P21(2) = element (2,1) of P2:
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Important Definitions

 Given two states, i and j, a path from i to j is a sequence of 

transitions that begins in i and ends in j, such that each transition 

has a positive probability

 A state j is reachable from state i if there is a path leading from i to 

j

 Two states, i and j, communicate if j is reachable from i, and i is 

reachable from j.

 A set of states S in a Markov chain is a closed set if no state 

outside of S is reachable from any state in S



Classification of States

States of a Markov chain can be classified into different types:

 A state i is an absorbing state if pii=1

 A state i is a transient state if there exists a state j that is reachable from i, but the 

state i is not reachable from state j

 All other states are recurrent states

Exercise: For the following transition probability matrix draw a 

graphical representation and identify the “type” for each state. 
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Today

Reading: Today we will start covering topics discussed in 

Chapter 4.1-4.3 of Puterman (on Canvas)

Following are applications we will cover in future classes:

• Inventory control

• Medical treatment decisions

• Finance

• Zombies

• Others….



Markov Decision Process (MDP)

Following is the standard form of a finite horizon MDP:

• Time horizon: 𝑡 ∈ {1,2, … , 𝑁}

• States: 𝑠𝑡 ∈ 𝑆

• Actions: 𝑎𝑡 ∈ 𝐴

• Rewards: 𝑟𝑡 𝑠𝑡 , 𝑎𝑡

• Discount rate: 𝜆

• Transition Probabilities: p(st+1|st, at)

• Optimality Equations:

𝑣𝑡 𝑠𝑡 = min
𝑎𝑡∈𝐴

𝑟𝑡 𝑠𝑡, 𝑎𝑡 + 𝜆σ𝑠𝑡+1∈𝑆
𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) 𝑣𝑡+1 𝑠𝑡+1 , ∀𝑠𝑡

𝑣𝑁 𝑠𝑁 = 𝑅(𝑠𝑁), ∀𝑠𝑁



Decision Rules and Policies

• A policy is a collection of decision rules 𝜋 = 𝑑1, 𝑑2, … , 𝑑𝑁−1

• A decision rule, 𝑑𝑡 𝑠𝑡 ∈ 𝐴𝑠𝑡 defines the action to take in a given 

state, 𝑠𝑡, and stage, 𝑡

• The history at stage t is defined as:

ℎ𝑡 = 𝑠1, 𝑎1, 𝑠2, 𝑎2, … , 𝑠𝑡−1, 𝑎𝑡−1, 𝑠𝑡 = ℎ𝑡−1, 𝑎𝑡−1, 𝑠𝑡

There are four types of decision rules:

History Dependence Action Choice

Deterministic Randomized

Markovian 𝑑𝑡 𝑠𝑡 ∈ 𝐴𝑠𝑡
𝐷𝑡
𝑀𝐷

𝑞𝑑𝑡(𝑠𝑡) ∈ 𝑃(𝐴𝑠𝑡)

𝐷𝑡
𝑀𝑅

History Dependent 𝑑𝑡 ℎ𝑡 ∈ 𝐴𝑠𝑡
𝐷𝑡
𝐻𝐷

𝑞𝑑𝑡(ℎ𝑡) ∈ 𝑃(𝐴𝑠𝑡)

𝐷𝑡
𝐻𝑅



Induced Stochastic Process

• A policy induces a particular stochastic process. In a finite horizon 

MDP the set of possible sample paths is

Ω = 𝑆 × 𝐴 × 𝑆 × 𝐴 ×⋯× 𝐴 × 𝑆 = 𝑆 × 𝐴 𝑁−1 × 𝑆

• A sample path, 𝜔 ∈ Ω, defines the states and actions for a 

realization of the induced stochastic process

𝜔 = (𝑠1, 𝑎1, 𝑠2, 𝑎2, … , aN−1, sN)

that occurs with path probability p(𝜔)



Evaluating Policies

Policies are often compared on the basis of the mean reward process

𝑊(𝜔) = ෍

𝑡=1

𝑁−1

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝑟𝑁 𝑠𝑁

𝐸𝜔
𝜋 𝑊 𝜔 = ෍

𝜔=1

|Ω|

𝑝 𝜔 𝑊 𝜔

Alternative policies can be compared on the basis of this criteria to ascertain 

which policy is better.

Question: What other ways can policies be compared?



General Formulation of Stochastic DPs

Evaluation Problem: For policy 𝜋 what is the expected discounted reward?

𝑢𝑁
𝜋(𝑠) =𝐸𝑠

𝜋[σ𝑡=1
𝑁−1 𝜆𝑡−1𝑟𝑡 𝑋𝑡 , 𝑌𝑡 + 𝑟𝑁 𝑋𝑁 ]

Optimization Problem:  An optimal policy 𝜋∗ satisfies 

𝑢𝑁
𝜋∗(𝑠) ≥ 𝑢𝑁

𝜋 𝑠 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑒𝑠 𝜋 ∈ Π

To find 𝜋∗ solve the following problem:

𝑢𝑁
𝜋∗ 𝑠 = max

𝜋∈Π
𝑢𝑁
𝜋(𝑠)

Total discounted expected future rewards over all N stages 
given policy 𝜋 is applied when system starts in state 𝑠.

State Action



Stochastic Shortest Path 

Consider the following stochastic shortest path problem 

Assume the state transition outcomes depend probabilitically
on the choice of action:

Pr 𝑢 𝑎 = 𝑢 ≡ 𝑝𝑢 and Pr 𝑑 𝑎 = 𝑑 ≡ 𝑝𝑑

where 𝑢 is the decision to move up to the right and 𝑑 is the 
decision to move down to the right.
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Stochastic Shortest Path MDP

We want to know the optimal solution to this problem, but 
let’s start with the easier question: what is the expected path 
length for a particular policy?

Policy Example:

Consider the following policy:

1) At vertex S choose the action “up”

2) At all future states choose the action “up” if you have ever 
gone up in the past; otherwise choose the action “down” 
(remember choosing actions “up” or “down” do not 
guarantee you will go up in this stochastic problem)

What is the expected path length for this policy?



Example: Stochastic Shortest Path 

• Problem data: Assume outcomes of actions have the 
following probabilities: Pr 𝑢 𝑎 = 𝑢 = 0.8 and Pr 𝑑 𝑎 = 𝑑 = 0.7

• Assume the following graph in which you start at node S 
and the goal is to reach the “finish line” F

• What is the expected distance travelled under policy 𝜋 ? 
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Assumptions

For now we will make the following assumptions:

• The set of actions, A, and states, S, are finite

• The rewards, r(s,a), are bounded, i.e., r(s,a) ≤ M

• The decision maker’s goal can be represented by linear additive 

rewards 



Policy Evaluation Algorithm

Definition: expected value to go, at stage t , given history ℎ𝑡, and policy 𝜋:

𝑣𝑡
𝜋(ℎ𝑡) =𝐸ℎ𝑡

𝜋 [σ𝑛=𝑡
𝑁−1 𝜆𝑛−1𝑟𝑛 𝑋𝑛, 𝑌𝑛 + 𝑟𝑁 𝑋𝑁 ]

Algorithm (Policy Evaluation):

1. Set t = N, 𝑣𝑁
𝜋 ℎ𝑁 = 𝑟𝑁 𝑠𝑁 , 𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ𝑁

2. 𝐼𝑓 𝑡 = 1 𝑠𝑡𝑜𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 3

3. 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑡 − 1 𝑓𝑜𝑟 𝑡 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑣𝑡
𝜋 ℎ𝑡 , 𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ𝑡 , 𝑎𝑠:

𝑣𝑡
𝜋 ℎ𝑡 = rt st, dt ht + 𝜆෍

𝑗∈𝑆

𝑝𝑡 𝑗 𝑠𝑡 , 𝑑𝑡 ℎ𝑡 𝑣𝑡+1
𝜋 ℎ𝑡+1

𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑜 𝑠𝑡𝑒𝑝 2
Stage t “decision rule” defined by policy 𝜋



Policy Evaluation Algorithm

Theorem (≈4.2.1 Puterman): For 𝜋 ∈ Π𝐻𝐷 at each stage t the policy 

evaluation algorithm generates vt
𝜋 ht for all ℎ𝑡 and 𝑣1

𝜋 𝑠 = 𝑢𝑁
𝜋 𝑠 for all 

s ∈ 𝑆.

Proof: By induction (completed in class)

Note:

(1) Linear additive rewards are assumed in the proof

(2) The proof is for HD but is easily extended to HR



Example 

• Pr 𝑢 𝑎 = 𝑢 = 0.8 and Pr 𝑑 𝑎 = 𝑑 = 0.7

• Policy 𝜋: At vertex S go up. At all future states go up if 
you have ever gone up in the past; otherwise go down.

• What is 𝑣1
𝜋 𝑆 According to the HD policy evaluation 

algorithm?
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Complexity of Policy Evaluation

Consider the effort in evaluating policies:

For policies of type HD or HR, if there are |S| states and |A| actions then 

at decision epoch t there are S 𝑡 𝐴 𝑡 histories

For policies of type MD or MR each decision epoch requires evaluation 

of only S value functions



Summary of Policy Evaluation

The policy evaluation algorithm provides a method for evaluating 

policies

For Markovian policies it is efficient in the sense that it requires a 

number of value function evaluations that is:

 Linear in the state space

 Linear in the number of stages



Next Time: Optimization of  Stochastic DPs

For policy 𝜋 the expected discounted reward is:

𝑢𝑁
𝜋(𝑠) =𝐸𝑠

𝜋[σ𝑡=1
𝑁−1 𝜆𝑡−1𝑟𝑡 𝑋𝑡 , 𝑌𝑡 + 𝑟𝑁 𝑋𝑁 ]

Optimization Problem:  An optimal policy 𝜋∗ satisfies 

𝑢𝑁
𝜋∗(𝑠) ≥ 𝑢𝑁

𝜋 𝑠 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑒𝑠 𝜋 ∈ Π

To find 𝜋∗ solve the following problem:

𝑢𝑁
𝜋∗ 𝑠 = max

𝜋∈Π
𝑢𝑁
𝜋(𝑠)



Next Class

Next time we will cover optimality equations for MDPs 

Read Sections 4.1 – 4.3 of Puterman in advance


