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More Methods for Solving 2SLPs

So far we have discussed the L-shaped method and several extensions
including

Multi-cut L-shaped method

Full decomposability

Bunching

Inner Linearization

Extreme point methods

Special cases of recourse (simple recourse, network flow)
Today we will discuss:

@ Regularized decomposition
@ A CPLEX Example using C/C++ and the callable library
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Regularized Decomposition

Regularized Decomposition

A common problem with the L-shaped method is that early iterations do
not produce useful optimality cuts.

Regularized Decomposition provides a means for dampening variation in
the first stage solution using a quadratic penalty term (Ruszczynski, 1986).
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Regularized Decomposition

Algorithm:

Step0: Setr=v=0,sk =0forall k =1, ..., K. Select a', afeasible
solution.

Step 1: Set v = v + 1. Solve the regularized master:

K

minz=cx+ » 6 +a(x—a’)?
=

st. Ax=0>b

Dy>dp, €=1,..,r,
Eg(k)x + 6k > €¢(k)> f(K) =1,..., 8,
x>0,0eR.

Let (x”,6”) be an optimal solution. If cx” + e” = ca” + Q(a”) stop with a”
optimal.

Dr. Brian Denton (NCSU) Stochastic Programming Lecture 12 October 7, 2010 7/14



Regularized Decomposition

Step 2: Solve Phase 1 LPs for k = 1, ..., K. If a feasibility cut is generated
set a’t! = a” (called a null infeasible step) and return to Step 1.

Step 3: Solve subproblems for k = 1, ..., K. If stopping criteria is not
satisfied (0k < pk (k) (hkx — Tkx") for some k) then generate an optimality
cut. Set sk = sk + 1. Otherwise continue.

Step 4: If 6k < px(mk)(hk — Tix”) for all k then set a**' = x” (called an
exact serious step). Go to Step 1.

Step 5: If cx” + Q(x”) < ca” + Q(a”) then @' = x” (called an

approximate serious step). Go to Step 1. Else set 8" = a” (null feasible
step) and go to Step 1.
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Regularized Decomposition

Convergence of regularized decomposition was established by
Ruszczynski (1986)

Lemma 1 (B&L Ch 6, Section 6.1).
e’e” <n(x",0,a") < Q(a"). J

Proof Sketch:
The first inequality follows from ||x* — a”||> > 0.

The second inequality follows from the fact that a” is always feasible. The
solution (a”, §) where 6x = pxQk(a”). k = 1, ..., K satisfies all optimality
cuts since 6 is a lower bound on py Qk(-). It follows that

n(x”,0,a") <n(x’,d,a") = Q(a).
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Regularized Decomposition

Lemma 2 (B&L Ch 6, Section 6.1).

If the regularized decomposition algorithm stops at Step 1, then a” solves
the original problem.

Proof Sketch:

By Lemma 1 and the optimality criterion, e6” = Q(a”), and it follows
ed” = n(x*,8",a”), which implies ||x* — a”||> = 0 and therefore x” = a”.
Thus, a” solves the regularized master and the unregularized master
which means a” solves the original problem.
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Regularized Decomposition

Lemma 3 (B&L Ch 6, Section 6.1).
If there is a null step at iteration v, then

n(Xv+1 , 9v+1 , av+1) > U(Xv’ 9\/’ aV)

Proof Sketch: Because the regularized master problem is strictly convex it
has a unique optimal solution. A null step at iteration v may be either a null
feasible step or a null infeasible step. In the first case a cut is generated
that renders x” infeasible. In the second case a cut renders x”, 6"
infeasible. Thus the objective function necessarily increases.
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Regularized Decomposition

Lemmas 4-5 establishes finite convergence as the number of serious and

approximate serious steps are finite. Lemmas 1 - 5 are used to prove the
main result...

Theorem 8 (B&L Ch 6, Section 6.1).

If the original problem has a solution, then the algorithm stops after a finite
number of iterations. Otherwise, it generates a sequence of feasible points
a” such that Q(a”) tends to —o as v — .
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C/C++ - CPLEX Example

@ ILOG CPLEX comes with a callable C/C++ library that includes
simplex, network simplex, dual simplex, interior point, quadratice, and
MIP solvers

@ Using the callable library requires some understanding of C/C++ and
the CPLEX functions used to build, solve, modify, and extract
information from LPs
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