NC STATE UNIVERSITY

Review of:

“Decomposition Algorithms for Stochastic
Programming on a Computational Grid”,
Jeff Linderoth and Stephen Wright, 2003

IS5

Questions

e What is this paper about?
« Compute the following:

Paper ()1 Class

In other words, what methods described in this paper
did we also cover In class?

Grid Computing

« This paper discusses an
adaptation of the L-shaped
method to leverage parallel
computing

 Computational Grid Challenges
— Geographically distributed
— Poor communication properties
— Unreliability of nodes
— Heterogeneity

More Questions

 Which methods that we have covered in class are
most related to those discussed in the paper?
— Multi-cut L-shaped method
— Regularized decomposition

* Why the multi-cut L-shaped method? Why not just
apply the standard L-shaped method?

Parallel Algorithms

« Parallel implementation of decomposition methods
like the L-shaped method takes advantage of
separable nature of the recourse function

Q(X) =cx+ Z P;Q; (X)

e Scenarios can be partitioned into clusters to define
discrete tasks for “workers”

Asychronous Algorithms

 In this context an asychronous algorithm considers
different points, x, simultaneously (why not
synchronous?)

 The master process and second stage (worker)
processes can execute in parallel and share
Information asynchronously

« This is possible since cuts generated at an candidate
solution, X, are valid everywhere

Questions

 What is the “synchronicity” parameter?

— Proportion of tasks that must be completed to trigger an
update of the master problem

 What is a “trust region” in this paper?

—Ae< x—x¥<Ae

RN

Trust regions Current iterate
radius

Questions

 What is the difference between a “major iterate” and a
“minor iterate”?
— Major iterate XX — x***

— Minor iterate X% — x**1

 What is the “acceptance criteria”?

Q(x*") = Q(X*) = &(Q(X*) —m, , (X))

Algorithm

ALS: partial _evaluate(x?,q,r)

Given x9, index ¢, and task number r, evaluate Q;;(x9) from (7) for all j € 7,
together with partial subgradients g; from (9);

Activate act_on_completed_task (x7, g, r) on the master processor. \

ALS: evaluate (x9. q) Evaluate recourse

forr =1,2,....,T (possibly concurrently) function
partial_evaluate(x9,g.r):
end (for)

ALS: initialize Solve subproblems

determine number of clusters C and number of tasks T,
and the partitions N7, A5,, Neand 71,75 ..., Ty
choose tolerance €

choose starting point x";
choose threshold & = (0, 1]; \ Setup L—shaped
Qmin <« 00 methOd

k <« 0O, specevaly <« false, f; «— 0:
evaluate(x”, 0).

Algorithm

ALS: act_on_completed_task(x?, g, r)
fg <13+ 1;
for each j € 7,

add Qy;1(x?) and cut g; to the model m;

Add cuts

o :Q:m «— min(Qmin, Q(x7)): CheCk If SUﬁiCient
elseif 7, = oT and not speceval, — number Of taSkS
speceval, < true; CompIEted

k«—k—+1:
solve current model problem (14) to obtain x**!;

if Qmin — ””-T;{_J} E 'Etﬂl(l + |Qmin|)

STOP;
evaluate (x*, k); \
end (if)

Optimality criteria

Trust Region Algorithm

Basic ldea:

Master node solves the master problem
periodically

Worker nodes simultaneously solve clusters of
subproblems and provide optimality cuts when
available

“Acceptance criteria” is used to decide when to
update the current iterate, x* — x***

Cuts are added and deleted at each minor
iteration, X — x**

The algorithm stops when the current iterate is
“close enough” to the optimal solution

Trust Region Algorithm

Procedure Model-Update (k, £)
for each optimality cut
possible_delete <« true:
if the cut was generated at x*
possible_delete <« false:
else if the cut is active at the solution of (17) with positive Lagrange multiplier
possible_delete <« false:
else if the cut was generated at an earlier minor iteration
£=0,1,...,¢—1such that

Q(x*) — mee(x*Y) > [Q(*) — my 7 (x*0)]

possible_delete <« false:
end (if)
if possible_delete
possibly delete the cut;
end (for each)

Implementation

* The goal of the Condor® Project is to develop, implement,
deploy, and evaluate mechanisms and policies that support High
Throughput Computing (HTC) on large collections of
distributively owned computing resources...

http://www.cs.wisc.edu/condor/

What is “high throughput computing”

http://www.cs.wisc.edu/condor/htc.html�
http://www.cs.wisc.edu/condor/htc.html�
http://www.cs.wisc.edu/condor/�
http://www.cs.wisc.edu/condor�

Results

e Condor implementation used to solve test instances:
— CPLEX used for master problem
— SOPLEX used for subproblems

— Pool consisted of PCs running linux and PCs and Sun
workstations running Solaris

— High variation in work availibility

— SMPS format used to define test instances
* Network design application (SSN)
» Cargo flight scheduling (Storm)

Results

Critical parameters:

ol = 1072, Ap=10°, Ago=A¢g=1, &=10"%

Cuts deleted if not tight for more than 100 master
problems in a row

Synchronicity parameter varied between 0.5 and 1.0

Clusters varied from 1 to 14

Results

Table 1. SSN, with N = 10,000 scenarios, Algorithm ALS.

Master Wall

Max. Max. no. problem clock

Points No. of No.of processors Av. Parallel of cuts solve time

Run evaluated o tasks (T) clusters (C) allowed processors efficiency in model time(min) (min)

ALS 08) 25 200 200 38 35 19505 8.8 26.2
ALS 93 1 25 200 200 33 34 18545 7.9 24.1
ALS 99 .85 25 200 200 34 25 19776 8.7 332
ALS 98 5 50 200 200 33 37 19501 8.6 23.6
ALS 97 i 50 200 200 31 .36 19339 8.6 284
ALS 08 .85 50 200 200 32 33 19573 8.7 29.7
ALS 97 5 100 200 200 26 45 19297 8.6 248
ALS 106 i 100 200 200 16 52 20420 9.6 35.6
ALS 99 .85 100 200 200 29 41 19771 8.7 22.8
ALS 97 5 200 200 200 28 44 19292 8.5 26.2
ALS 99 7 200 200 200 36 39 19736 8.9 248
ALS 99 .85 200 200 200 40 32 19767 9.0 27.0

Conclusion: not very sensitivetocor T

Results

600

- .-.l!..iuh—.!
?.u.mn
.n.u
*
3
T,
Ly
.
<
7
ey
-
s
LI
=
P
r
._F\\.lr--_u.-
H
I-:\W
—
2
s PR e T
[l I TP 4 _ :
o = 3 : nU
= = - 0 nu
Iy .a._ 3 2 l

SI9YIOMY

40000 60000 80000 100000 120000 140000

20000

Sec.

Results

Comparison to regularized decomposition:

Table 8. Storm, with N = 107 scenarios.

Master Wall

Max. Max. no. problem clock

Points |B| No. of No. of processors Av. Parallel of cuts solve time

Run evaluated (K) tasks(7T) clusters (C) allowed processors efficiency inmodel time (hr) (hr)

ATR 38 4 1024 1024 800 433 668 39647 1.9 31.9

Table 10. RD code performance on problem storm.

N Starting point Iterations Final objective Time (min)
1,000 Cold start 38 15508008.1 13.1
10,000 Warm start (N = 1,000) 41 154994327 255.6
100,000 Warm start (N = 10,000) 3* - 877.0*

*Terminated prior to convergence.

Conclusions

This paper presented a trust-region approach suitable
for asynchronous parallelization

Proof of convergence

Design and implementation of the methods to solve
large sampled tests instances

This paper demonstrates that it is possible to solve
large stochastic programs efficiently with inexpensive
computational platforms

ISE 789 Wrap-up

Course Objectives:

* To build a general understanding of Stochastic
Programming and the theory and methodologies identified
with it

e To understand state-of-the-art in the research literature

e To set a foundation for future research in stochastic
optimization

Next Time

* Project Presentations by Alex, Behzad, Bjorn, Brian, Clay,
Hamed, and Nils

« Max of 10 minutes

« Send me your slides by noon on Tuesday

	Review of:�� “Decomposition Algorithms for Stochastic Programming on a Computational Grid”, �Jeff Linderoth and Stephen Wright, 2003
	Questions
	Grid Computing
	More Questions
	Parallel Algorithms
	Asychronous Algorithms
	Questions
	Questions
	Algorithm
	Algorithm
	Trust Region Algorithm
	Trust Region Algorithm
	Implementation
	Results
	Results
	Results
	Results
	Results
	Conclusions
	ISE789 Wrap-up
	Next Time

