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Probabilistic or Chance Constraints

Probabilistic or Chance Constraints

The form of probabilistic (chance) constraints:

P{A i(ω)x ≥ h i(ω)} ≥ αi

where αi ∈ [0, 1] denotes the confidence level.

The feasible sets are

K i
1(αi) = {x |P{A i(ω)x ≥ h i(ω)} ≥ αi}

and K1 = ∩iK i
1(αi)

Note: when αi = 0 or 1, the chance constraints reduce to deterministic
constraints.
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Probabilistic or Chance Constraints

Probabilistic or Chance Constraints

The feasible region defined by chance constraints is
not necessarily convex or connected

For the special case of a single linear constraint

P{Ax ≥ h(ω)} = F(Ax)

where F(·) is the cdf of h(ω) and

K1(α) = {x | F(Ax) ≥ α} = {x | Ax ≥ F−1(α)}
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Probabilistic or Chance Constraints

Probabilistic or Chance Constraints

In the joint constraint case there is class of probability distributions for
which K1(α) is provably convex.

Definition: A probability measure, P, is quasi-concave, if for any convex
measurable sets U and V and 0 ≤ λ ≤ 1:

P((1 − λ)U + λV) ≥ min{P(U),P(V)}

This class includes normal, beta, and Dirichlet distributions.

Definition: A probability measure is logarithmically-concave if:

P((1 − λ)U + λV) ≥ P(U)λP(V)1−λ)

Dr. Brian Denton (NCSU) Stochastic Programming Lecture 6 September 14, 2010 6 / 17



Probabilistic or Chance Constraints

Probabilistic or Chance Constraints

Theorem 16 (B&L Ch 3).

Suppose A is fixed and the components hi , i = 1, ...,m1, of vector h are
independent random variables with logarithmically concave probability
measures, Pi(·), and distribution functions, Fi(·), then K1(α) is convex.

Proof:
P(Ax ≥ h) =

∏m1
i=1 Pi(Ai·x ≥ hi) =

∏m1
i=1 Fi(Ai·x) and

K1(α) = {x | Fi(Ai·x) ≥ α)}. Taking logarithms (a monotonically increasing
function), it follows that K1(α) = {x |

∑m1
i=1 ln(Fi(Ai·x)) ≥ ln(α)}. Because

Fi(Ai·(λx1 + (1 − λ)x2) ≥ Fi(Ai·x1)λFi(Ai·x2)1−λ,

ln(Fi(Ai·x)) is a concave function and it follows K1(α) is convex.
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Stochastic Integer Programming

Stochastic Integer Programming

Definition: Two Stage Stochastic Integer Programs:

min = cT x + Q(x)
s.t. :
Ax = b , x ∈ X

Q(x) = Eξ[min
y∈Y
{q(ω)T y |Wy = h(ω) − T(ω)x}]

where X and/or Y contains some integrality restrictions on x and/or y.

How do integrality constraints affect Q(x) and K2?
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Stochastic Integer Programming

Stochastic Integer Programming

Some important distinctions between 2-SLP and 2-SIP with integer
recourse from Birge and Louveaux, Section 3.3....

Proposition 20 (B&L Ch 3).

The expected recourse function Q(x) of an integer program is in general
nonconvex and discontinuous.

Prosposition 22 (B&L Ch 3).

The second-stage feasibility set K2(ξ) is in general nonconvex.

In general, problems with integer recourse are very hard to solve.
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Stochastic Integer Programming

Simple Integer Recourse

Integrality restrictions can make things a lot harder

Integrality restrictions on x do not interfere with properties of Q(x)

Integrality restrictions on y are worse because many of the useful
properties of the recourse function are lost

Following is the simple integer recourse problem...

min cx + Eξ[min{q+y+ + q−y− | y+ ≥ ξ − Tx, y− ≥ Tx − ξ, y+, y− ∈ Zm
+ }

s.t. :
Ax = b , x ∈ X
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Multi-Stage Stochastic Linear Programs (MSLP)

Multi-Stage Stochastic Linear Programs (MSLP)

2-SLP can be generalized to multiple stages (MSLP)

min c1x1 + Eξ2 [min c2(ω)x2(ω2) + · · ·+ EξH [min cH(ω)xH(ωH)] · · · ]
s.t. :
W1x1 = h1

T1(ω)x1 + W2x2(ω2) = h2(ω)
...

TH−1(ω)xH−1(ωH−1) + WHxH(ωH) = hH(ω)
x1 ≥ 0; x t (ωt ) ≥ 0, t = 2, ...,H;

where c1 ∈ <n1 and h1 ∈ <m1 are deterministic,
ξt (ω) = (c t (ω), ht (ω),T t−1

1 (ω), ...,T t−1
mt

) is a random Nt -vector defined on
(Ω,Σt ,P) (where Σt ⊂ Σt+1) for all t = 2, ....,H.
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Multi-Stage Stochastic Linear Programs (MSLP)

Multi-Stage Stochastic Linear Programs (MSLP)

Decisions x depend on the history up to time t , denoted by ωt . The
support of ξt is Ξt .

The MSLP can be expressed as a dynamic program with stages 1 to H,
and states x t (ωt ). The terminal condition is

QH(xH−1, ξH(ω)) = min cH(ω)xH(ω)
s.t. :
WHxH(ω) = hH(ω) − TH−1(ω)xH−1

xH(ω) ≥ 0

Let Q t+1(x t ) = Eξt+1 [Q t+1(x t , ξt+1(ω))] for all t . The MSLP can be
expressed as a dynamic program with stages 1 to H, and states x t (ωt ).
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Multi-Stage Stochastic Linear Programs (MSLP)

Multi-Stage Stochastic Linear Programs (MSLP)

The period t recourse problem is

Q t (x t−1, ξt (ω)) = min c t (ω)xH(ω) + Q t+1(x t )
s.t. :
W tx t (ω) = ht (ω) − T t−1(ω)x t−1

x t (ω) ≥ 0

The complete deterministic equivalent problem is:

min c1x1 + Q2(x1)
s.t. :
W1x1 = h1

x1 ≥ 0
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Summary

Summary

Things we learned today (in plain english)...

Probabilistic constraints can be hard to deal with because constraints
induced on the first stage are not necessarily convex or even
connected

Integer variables on the first stage make the problem harder, and
integer constraints on the second stage make the problem
much harder because nice properties of the recourse function (like
convexity) are lost

Multi-stage stochastic linear programs are hard to solve because they
grow very large as the number of stages grows (the curse of
dimensionality)
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