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Paper

 Monte Carlo (Importance) Sampling Within
Benders Decomposition Algorithm for
Stochastic Linear Programs

e By Gerd Infanger

* Annals of Operations Research 39 (1992)
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Outline

Introduction

Crude Monte Carlo

Importance Sampling

e Importance Sampling in Benders

 Bounds (Clay and Omar)
— Upper and Lower Bounds
— Stopping
— Confidence Bounds
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Assumptions

2-Stage stochastic program

Fixed recourse

« 2"d stage cost coefficients are deterministic
« Components of & or V are independent.
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Introduction

e Main idea of importance sampling
— Reduce time to achieve desired accuracy

» Need to sample if distribution of & is
continuous or large and discrete

» Individual components of £ don’t have to have
large discrete support if dimension is even
modestly sized
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Example

. f IS 15-dimensional and each component is
Independent and uniformly distributed over the
Integers 1,2,...,10.

 How many scenarios are required to obtain
universe solution?

 Why might this be a problem?
— (say It takes 1 second to solve each LP...)
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Crude Monte Carlo

2= C(v")p(v*)

we()

3.1. CRUDE MONTE CARLO

Suppose v® @w=1,...,n are scenarios, sampled independently from their
joint probability mass function, then C“= C(v®) are independent random variates
with expectation z.

n
7=(1/n) Y, C® (6)
w=1
is an unbiased estimator of z and its variance is
oz = o%/n,

o? = var(C(V)).

Thus, the standard error is decreasing with sample size n by n~%3. The convergence
rate of Z to z is independent of the dimension h of the random vector V.



ncsareonversvf

Importance Sampling

« Reduce the variance of Z
— Could just increase sample size

* Introduce a new probability mass function that
gives greater weight to some scenarios

C(v®)p(v®)gq(v®?)
qg(v®)

z = 2 C(v?)p(v?) = Z

wme () wme 2

1 < C(w®)p(w®)

7= —
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Intuitively...

We want to sample scenarios which contribute
most to the expectation

e Scenarios with high value
e Scenarios with high mass (pmf)
 |deally, both!
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How to choose q?

 The perfect q requires what we are measuring

C(w?)p(w®)
ngﬁc(wm)p(wm)

q (Ww®) =

e Try to approximate the perfect g

— Penalty for bad approximation is just higher sample
size
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How to choose q?

e Additivity reduces number of scenarios by
Isolating each component of 5

— No combinatorial explosion
h

C(V)= ), CGi(V)
=]

hC(wm ) p(w?®) |
EI=1 Emsﬂ C"(wm)

q(w?®) =
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Example:
Expectation of a random variable
B PMF 1: Value of C(x)
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Importance of each scenario

CX)"p(x) « Can you calculate g*?
- B — Try it
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Matlab Example
(1,000 points and 10,000 batches)

Crude Sampling Importance sampling good (not perfect) g
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4.5

3.5

2.5

Matlab Example

(1,00 points and 10,0000 batches)

Comparing Crude and Importance Sampling
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Matlab Example
(100 points and 100 batches)
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Convergence comparison

Crude versus Importance Sampling convergence
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Importance of “good” g
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How to choose g In practice?

 Entriken and Nakayama approach

— Get huge reduction in variance for one experiment
over Crude Monte Carlo

— Via additive approximation and independence, we
construct a base case

— Then from the base case we can construct marginal
cost functions

— Then from those we can find weights (q values)
which we sample from
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h
C(V, X) TV, X) = C(r, X) + 3 Mi(Vi, X), (1)
=1

M.'(";'uf}=C(Thn~.7'.'-l,1"i11'i+1.n-+Tmi'} - C(r, X).

Mi(X) = E My(Vi, X) = ) My(vf, X)p(v}) (8)
wEn,;

C(v?,X)-C(r, X)

Flv*. X) = !
W) = S e )

h
(X)=C(r,.X)+ ) M(X)) F(x* X) MH“H p;(v¥).  (10)

i=1 wES}
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B and L example, pgs 338-9



10,2 Using Sampling in the L-Shaped Method 339
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FIGURE 2. Objective values for crude Monte Carlo and importance sampling.
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Other Good References on IS specifically

* Notes by Eric C Anderson

— http://ib.berkeley.edu/labs/slatkin/erig/classes/guest_|
ect/mc_lecture_notes.pdf

e P H Borcherds

— http://iopscience.iop.org/0143-
0807/21/5/305/pdf/ej0505.pdf
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Other Good References on IS In SP

e Our Book
e Shapiro paper
— Mathematical Programming 81 (1998)
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