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Today’s Class
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© Extreme Point Methods

e Special Cases
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Summary of Today’s Class

So far we have discussed the L-shaped method and several extensions

including
@ Multi-cut L-shaped method
@ Full decomposability
@ Bunching
Today we will discuss:
@ Inner Linearization
@ Extreme point methods
@ Special cases (simple recourse, network flow)
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@ Inner Linearization
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Inner Linearization

An alternative to the L-shaped method (outer linerization) is inner
linearization.
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Inner Linearization

We can relate D-W Decomposition to the L-shaped method by examining
the dual of the L-shaped master problem:

minz=cx+6

st. A x=0>b

Dex>dp, €=1,...,1,
Ex+0>¢e, €=1,...,8,
x>0,0€R.

Dual of L-shaped master:

maxw = pb + Z Tedp + Z Trer
—1 =

s.t. pA-i—Z{ 10‘5D(+Z[ 17T5E[<C
25217[5—10’[205—1 Ly >0,6=1,..,8
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Inner Linearization

The dual of the L-shaped master includes columns that are:

@ Convex combinations of expectations of subproblem extreme points
@ Directions of recession (extreme rays)

Consider the dual to the subproblem at iteration v:

max{n(hx — Tkx”) | s.t. atW < g} (1)

If (1) is unbounded for any k then add a column (d;1, Dr1) to the dual
master problem.

If (1) has finite optimal value for all k then add a column (es4.1, Es+1) to the
dual master problem.
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Inner Linearization

Algorithm:
Step0:r=s=v=0

Step 1: Set v = v + 1 and solve master. Let solution be (p”, 5", 7") with a
dual solution , (x*,6").

Step 2: For k =1, ..., K solve (1). If an unbounded solution with extreme
ray o is found for any k, then form new column

(dry1 = 0"hg, Dry1 = 0" Ti), set r =r+ 1, and return to Step 1. If (1) is
solvable for all k then add a column (es1),(Es+1) to the master.

Step 3: If e51 — Es+1X” — 6V < 0, then stop; Otherwise return to Step 1.
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© Extreme Point Methods
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Extreme Point Methods

Important Points:

@ Extreme point methods are powerful approaches for solving
large-scale LPs.

@ Basis factorization is a computationally intensive part of extreme point
methods

@ The 2SLP has a constraint matrix with special structure for basis
factorization (see Birge and Qi, 1988).

The basis at an iteration of an extreme point method can be written as:

W,

W,
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Extreme Point Methods

Basic idea is to take advantage of the block diagonal structure of part of
the matrix to decompose basis factorization.

Proposition 5 (Birge and Louveaux, p. 180): A basis matrix, B, is
equivalent after permutation P to

F L

where D is square invertible and at most ny x ny and L is an invertible
matrix of K invertible blocks of sizes at most m> X m» each.

B’—PB—[D C]
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Extreme Point Methods

Using proposition 5 the linear system can be written as:

Dxg + Cyg =b’, Fxg+ Lyg = h’
Using this form we can write the following efficient way to evaluate xg, y35:
yg = L7'(h" - Fxg)
and substituting back into the first system of equations yields
(D-CL'F)xg =b’ - CL™'H

Most of the effort in computing xg and yg involves basis (D — CL~'F) and
using L~ which is easy to evaluate because it is block separable.
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Special Cases

Sometimes the recourse LP has a special structure that can be leverage to
achieve computational advantage. Two common special cases are

@ Simple recourse
@ Network flow

Simple recourse problems are Fully Decomposable owing to their
separable second stage.

Computational advantages can be achieved when network flow structure
exists either

@ As part of the first stage decision
@ Orin the second stage recourse problem
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