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Today’s Class

0 Research Paper Presentations
e Decomposition

© Optimality Cuts

@ Infeasibility Cuts

e Algorithm

@ L-Shaped Method
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0 Research Paper Presentations
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Research Paper Presentations

Starting in mid October we will begin reviewing research papers:

@ Statistical sampling

@ Multi-Stage Stochastic Linear Programming
@ Bounding methods

Integer L-shaped Method (Piper, ?)
Probabilistic Constraints (Dr. Uzsoy)
Robust Optimization

Stochastic Decomposition

You can work in groups of 1 or 2.

Let me know your topic and who you want to work with by Friday.
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9 Decomposition
@ 2-SLP
@ Bender’s Decomposition
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2-SLP

Two-Stage Recourse Problem (2-SLP):
min{cx + Q(x) | Ax = b, x > 0}

@ Computational Problem: as the number of scenarios grows
computing the recourse function, Q(x), is hard

@ There are many algorithms that take advantage of the special
structure of 2-SLPs:

L-Shaped Method

Dantzig Wolf Decomposition

Specialized Methods for Basis Factorization
Bunching...
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Bender's Decomposition
Bender’s Decomposition

Bender’'s Decomposition: Consider the following (deterministic) LP....

min z =cx + fy

s.t.
Ax+By=>b
x>0,y>0

for a fixed x = x we would solve...
min fy
S.t.

By > b — AX
y=0

This problem may be easy (e.g. a network flow problem)
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Bender's Decomposition
Bender’s Decomposition

If the problem is easy for fixed x then it may be (computationally)
advantageous to solve the following....

min{cx + Q(x)|x > 0}

where

Q(x) = min{fy|By > b — Ax,y > 0}

Q(x) is convex, continuous, but not necessarily differentiable

In the context of SP Bender’s decomposition is called the L-shaped
method:

Van Slyke, R.M, Wets, R. 1969, L-Shaped Linear Programs with Applications to Optimal Control and Stochastic Programming, SIAM
Journal on Applied Mathematics, 17(4), 638-663.
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Bender's Decomposition
Decomposition

Replace Q(x) with a variable 6 and solve the relaxation (master problem):

min{cx + 6 |x > 0, optimality cuts, infeasibility cuts}
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Bender's Decomposition
Decomposition

Replace Q(x) with a variable 6 and solve the relaxation (master problem):

min{cx + 6 |x > 0, optimality cuts, infeasibility cuts}

Optimality cuts are supporting hyperplanes of the epigraph of Q(x).
Consider the dual of Q(x)....

Q(x) = max{n(b — Ax) | 7B < f,n > 0}

for a particular x = X the following is a supporting hyperplane of Q(x) at X:

0 > n(b — Ax)

Why?
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© Optimality Cuts
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Optimality Cuts

Optimality cuts, 8 > n(X)(b — By), follow from the subgradient inequality
where 7 is the solution to the dual of the following primal problem:

min{fy | By > b — Ax,y > 0}

taking the dual it follows that for a particular x = X:

Q(x) = max{n(b — AX) | 7B < f,n > 0}

From the subgradient inequality we have:

Q(x) = Q(X) + 1(X)((b - Ax) — (b — AX)) = n(X)(b — Ax)

Therefore 6 > n(x)(b — Ax) is a valid lower bound on Q(x) for all x
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@ Infeasibility Cuts
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Infeasibility Cuts

Infeasibility Cuts

Feasibility is represented by K>. When the master problem produces an x
that is infeasible an infeasibility cut is added to the master problem.

Feasibility is tested by solving the following (Phase I) LP:

min w=ev" +ev"

s.t.
By + Ivt — v = b — Ax
y,vt,v= >0
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Infeasibility Cuts

Feasibility is represented by K>. When the master problem produces an x
that is infeasible an infeasibility cut is added to the master problem.

Feasibility is tested by solving the following (Phase I) LP:

min w=ev" +ev"

s.t.
By + Ivt — v = b — Ax
y,vt,v= >0

If w* > 0 then a feasibility cut is needed to separate b — Ax from pos(B).
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Infeasibility Cuts

If o is the dual solution to the Phase | LP then the feasibility cut is...

o(b-Ax)<0 (1)
This has the properties:

@ o(b—-AX)>0,i.e., (b —AX) does not satisfy the infeasibility cut

@ ot < 0forallt e pos(B), i.e, it does not cut off any of the feasible
region
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e Algorithm
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Algorithm

Bender’s Decomposition:
Step 0: v =1
Step 1: Construct and solve master problem for
x¥ = argmin{cx + 0 |optimality cuts, infeasibility cuts,¥v, x € X}
Step 2: Solve Phase | LP for subproblem with x = x”.

If feasible go to Step 3. If infeasible generate infeasibility cut, set
v =v+ 1, and add to master. Return to Step 1.

Step 3: Solve w” = min{fy | By > b — Ax”,y > 0}. If 8" > w” then stop with
x¥ as optimal solution. Otherwise generate optimality cut, setv =v + 1,
and add to master. Return to Step 1.
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@ L-Shaped Method
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L-Shaped Method

L-Shaped Method

Bender’'s decomposition is well suited to solving 2-SLPs. Assume finite =

with scenarios indexed by k = 1, ..., K with probabilities, px. The extensive
form of 2-SLP is:

min cx + SK_, prai Yk
S.t.

Ax=b>b
Tkx + Wy = hg, k =1,.., K,
x>0,y 20,k =1,...K.

Where W is the (fixed) recourse matrix. gk, hk, Tk, all depend on the
scenario k.
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L-Shaped Method
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L-Shaped Method

L-Shaped Method

The L-shaped method is the most well known method for 2-SLPs. It solves

the first stage problem and “outer linearizes” the recourse function, Q(x).
To use this method:

@ Assume ¢ has finite support
@ k=1,2,..., K indexes scenarios
@ py is the probability of scenario k

and extensive form:

min cx + 1, Pk Gk Yk
S.t.

Ax=0>b
Tkx + Wy = he, k =1,.., K,
x>0,y >0,k =1,..,K.
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L-Shaped Method

Algorithm

@ Step0: Setr=s=v=0.
@ Step 1: Set v = v + 1. Solve the master problem:

min ¢x + 6
S.t.
Ax = b,
Dy>dpe, £t=1,..,r1,
Ex+6>e, t=1,..,8,x>0,0€R.

Let (x”,6”) be an optimal solution. If no optimality cuts present then
¢¥ = —oco and is not considered in computation of x”.
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L-Shaped Method

@ Step 2: fork =1,..., K solve:

min w =evh +ev”
s.t.
Wy + vt — Iv- = hg — Tyx?,
y,vt,v >0
If for some k, the optimal solution w’ > 0 stop and generate an
infeasibility cut as follows. Let o be the associated simplex multiplier
and define:

Dry1 = ok Tk, dry1 = oxhk.

Set r = r + 1, add the new constraint to the master problem, and
return to Step 1. Otherwise if w/ = 0 for all k then go to Step 3.

Dr. Brian Denton (NCSU) Stochastic Programming Lecture 8 September 28, 2010 22/28



L-Shaped Method

@ Step 3: For k =1, ..., K solve the linear program

min w = gxy

S.t.
Wy = hk - TkXV
y=>0

Let 7 be the optimal solution to the dual. Define:

K K
Esi1 = Z Pkrk Tk, €sy1 = Z Pr7k hi.
k=1 k=1

Let w¥ = es11 — Es11x”. If 8 > w” stop with x” as an optimal
solution. Otherwise set s = s 4 1, add the new constraint (optimality
cut) to the master problem, and return to Step 1.
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