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OUTLINE

Jensen’s lower bound and its generalization
E-M upper bound and its generalization
Convergence

Application

Distribution problem
SP with resource problem
Numerical integration



JENSEN’'S LOWER BOUND

e Suppose ¢(t):(a,b)>R is an integrable convex
function. Then Jensen’s inequality:

Huo) < [ pO)AF (t) =
provides a lower bound to the expected value of ¢



EXAMPLE

t~U(0,2) & 1079 difference
o (t) =t 1 1 0
¢ (t) =t’ 1.33 1 0.33
o (t) =t° 2 1 1
#(t) =t* 3.2 1 2.2
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GENERALIZATION OF JENSEN’S LOWER
BOUND (1)

TaHEOREM 1. Let ¢(i) be an inlegrable convex function defined on the convex
sel C < R” and t be an integrable random vector such thal Pl e C] = 1. Then

Et e C and

¢(Et) = Pup(E(t|teAd)) + Posp(E(t|teC/A) = E¢(l),
(b) (a)

for all measurable sets A < C, such that A and C/A are convez.

Proot (a) o(Et) < E((t)) =

HE(tlt e A) < B0t € A)  xPy

Pagp(E(tt € A)) + Poap(E(t|t € C|A)) < Eo(t).

(b) Et = PiE(t|t € A) + Po E(t]t € C|A)
¢ convex = H(Et) < Pad(E(t|t € A)) + Poad(E(t|t € C|A)).



Example
o(t) =1 t~ U(0,2)

A=(0,1) (1) <0.5¢(0.5)+ 0.5¢(1.5) < o
= 1<1.75<2
A=(0,05) ¢(1) <0.254(0.25) +0.754(1.25) < ¢

= 1<147<2



GENERALIZATION OF JENSEN’'S LOWER
BOUND
A A

o(t)
o(po)
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GENERALIZATION OF JENSEN’S LOWER
BOUND (2)

TaEOREM 2. (a) Suppose (a, b) is subdivided at arbitrary poinis do, -- -,
Am, where a = dy < +++ < dn = b. Let J" = _i=7 ap(B:), denote the
m-fold generalized Jensen bound, where «; = 5f-_l dF(t) > 0,
B: = a; [§i_tdF(l), i = 1, ---, m. Then, assuming that the partition
corresponding to k 4+ 1 1s at least as fine as thal corresponding to k for k =
I« ,m— lweobtain Jo = J' < --- = J" = 4.

(b) Suppose (a, b) s subdivided n times on the basis of the partial means
of the previous subintervals. Let J, = Zi:iﬂ Ceip(pr:), £ = 0, 1, -+, n,
denote the generalized Jensen bound obtained from the kth subdivision. Then
Jo £ S oo £ Ju S 6, where e = 1, pn = po and the 1" interval of
the kth subdivision is denoted by [ax, bul, c: = [aridF(f) > 0,
Pri = fﬁ:jtdﬁ’(t}/ch, where Cipoia = ol dF(t) > 0 and cey1a:

= [WidF(t) > 0.



Example =2

o(t) =13t~ U(0,2)

—
s
R
[=]
=
[3%]
L

(0,2) Jo=T'=0(1) =1 A
(0,2)(3,2 JP=16(3)+30(3) =~ 147
(0,3)(3,1)(1,2 J3 = 10(3) + 16(3) + 30(3) =~ 1.80
0,11, 1)(1,2)(1,2) J*=16(3) + 10(3) + 36(3) + jo(1) = 1.94
(b)
(0,2) Jo=J'=¢(1) =1
(0,1)(1,2) Ji = QU( )+ 30(3) =

1



THE EDMUNDSON-MADANSKY UPPER
BOUND

For a convex function, we can use Jensen’s
inequality to get its lower bound. But how
can we find its upper bound, if it is bounded
in the whole domain?



THE EDMUNDSON-MADANSKY UPPER
BOUND

In nonlinear programming, conjugate dual play
important role.

Let f:S C E" — R. Its conjugate transform is a function i with domain
Q= {y € E"Suppes[zly — f(z)] < +o0}.

and

hy) = Supsesle’y — f(2)] = —infres[f(z) —2"y), Yy € Q.

One property of conjugate dual problem is that :

For a concave function f, suppose its conjugate dual
function is h. Then the conjugate dual of h is the convex hull
function of f, which is a lower bound function of f.



THE EDMUNDSON-MADANSKY UPPER
BOUND

For E-M method, they follow the same idea and
find the upper bound for convex function.

y

F(x)



THE EDMUNDSON-MADANSKY UPPER
BOUND

Let ¢ e[a, b] C R have distribution function F and finite mean po. Sup-
pose ¢ is a bounded convex function of ¢ ¢ [a, b]. The classic upper bound
is the Edmundson-Madansky inequality My = [(b — w)/(b — a)lé(a)
+ [(ke — @) /(b — a)]p(b) Z ¢.

Proof. Since ¢ 1s convex and [a(b — {) 4+ ({ — a)b]/(b — a) = {, for

all tela, b], we have [(b — t)/(b — a)le(a) + [(t — a)/(b — a)le(b)
= ¢(t). Integrating gives the result.



GENERALIZATION OF THE EDMUNDSON-
MADANSKY UPPER BOUND (1)




GENERALIZATION OF THE EDMUNDSON-
MADANSKY UPPER BOUND (2)

Tueorem 3. (a) Suppose [a, b] is subdivided at arbitrary points dy, -« - , dum,
wherea = dy < +++ < dw = b. Let M™ = ;.23 6.¢ (d.) denote the m-fold
generalized E-M bound, where 6; = a(B:i — ,_.,1},/(d —  diy)]
-+ t:t;+1[(d;+1 — ﬁ-;+1:]'j"(:d,.|_1 —d)],i=0,1, -, ma; = di L dF(t) >0,
B: = a; [§i_tdF(1), 7 =1, -, m a0 = amp = 0. Then M, = M
= ... = M" = ¢, assuming thal the partition EGTTE&‘pﬂHdE?Ig to k + 1 1s
al least as fine as that corresponding to k for k =1, --- , m — 1.

(b) Suppose |a, b] is subdivided n times on the Emsw {}f the partial means
of the previous subintervals. Let
M = Za:fk Ceid ((bri — prs) /(Bri — Qi) Jo(ax:)
+ ((uee — aes) /(e — ars) )p(bei) ], E=01,--,n,

denote the generalized E-M bound obtained from the k" subdivision. Then

Moz My = --- = M, = ¢, where the cri, uri, ar: and by; are defined in
Theorem 2.



Example =2

3.375

o(t) =13t~ U(0,2)

(ﬂ) 0.125
(0,2) My =M = 2=L6(0) + 06(2) =4~ o >
0,H)(1.2) M? = 36(0) + 56(3) + 36(2) ~ 3.06
(0,53 1)(1.3)(3.2) M'=36(0) + 16(3) + 76(1) + 16(35) + §6(2) = 2.125
(b)
0,2) My=M"'=4
(0,1)(1,2) My = 1o(0) + 1o(1) + 19(2) = 2.5

0.9)GDLGE2) My = M*=2125



CONVERGENCE

THroREM 4. Suppose ¢(4) is a continuous convex function on [a, b], and
Et is finite. Then @ is finite, J* — ¢ « M", assuming that each subinterval
becomes arbitrary small as n — o, and J, — ¢ «— M,.

Proof. Since ¢ is continuous and F is nondecreasing and hence of bounded
variation, ¢ exists (see Apostol [1, pp. 168, 211]). Let U, = Z:;:fk crilM i
and Ly = Zi::%k CriMy:, where My, = sup {@(8) | € law:, b} and mp:
= Inf f:ﬁ)(.ﬁ) [fré [ag;, br:l}. By construction L, = J'"=¢=M" = U,and
L, =< J, 2 ¢ = M, £ U,.Since F is nondecreasing on [a, b], existence of
¢ implies that L, — ¢ — U, (see Apostol [1, p. 206]). Hence the result.



GENERALIZATION (1)

E-M bounds are presented for the case when
t 18 a bounded random variable.
If eithera = — @, b = -+ « or both, then, all the bounds exist
(except for M, in the case (— «, «)) if one assumes that for:
(—o,b] lim_,o¢(l)/t =« existsand is finite;
[a, =) lim,,, ¢(t)/t = B, exists and is finite; and

(—oo, o) lim o0 @() /1 exists and is finite.



GENERALIZATION (2)

Suppose f, +++, tn are independent random variables, where each {f is
distributed on [a;, b] with distribution function F and finite mean .
Let {d*},7 = 0, ---, n be a partition of [ax, b such that ar = dy* < d"

< v L s < dby, = B,

a; _f dFy(t) > 0, 8 = (l/a:,)fd tdF (1), P=1, -, m,

1. 1

SBE — dia) /(dF — di)]
+ ﬂf-a.+1 l::dk+1 — ﬂz+1)f(da+1 - d:'k)]; t o= 0, , m,

where oy’ = o, 11 = 0. Suppose ¢(l, - -+, m) is bounded and convex
on [IXZT [a, b A conditioning argument welds

Z:r:r! T E:::fm {Hi:=1 ﬂik}‘b{.ﬂﬂ: Tty ﬂim)
< By(ty, -+ tw) < Doiiet --- irmem (TTEET 85D e(dsy, - -+, dis).



GENERALIZATION (3)

In the dependent multivariate case lower bounds are available using
the conditional form of Jensen’s inequality. For example, suppose Ui—t By
= (' is a partition of C, where each By is convex and = ¢ and B, N B; = ¢
if b # I. For t € B, we have

p(B¢ ([5. (t/p(By) dF (1)) = [s,¢(t) dF(t), p(B) > 0.
Then the conditional form of Jensen’s inequality may be written as
=1 p(Bi)o ([5, (t/p(Br)) dF (1)) £ 22421 [ s, 0(t) dF(1).

One then develops a bound by determing K, the B, p(B:),
¢ (/5 (t/p(Bx)) dF(t)), and adding.
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APPLICATIONS
e The Distribution Problem

e Stochastic Programs with Simple Recourse
e Numerical Integration
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The Distribution Problem

In some researches, the distribution properties of
the random mathematical program are of great
interests. They study the following problem:

¢lc) = max, {W(e, x)|r € K|

Where ¢ and  are scalar functions, c is a

random vector having distribution function G,
and x is a decision vector.



The Distribution Problem

We look at the simplest case which studies the
mean of that problem.

[ ... [max, {T(e,z)|r e K}dG(c).



The Distribution Problem

In general, in order to mathematically solve the
problem above, a large number of mathematical
programs are required.

max,{WV(e, r)lr e K}



The Distribution Problem

Alternatively, they seek approximations to that
problem. Under the assumption that the
components of the random vector c are
independent, they can get the lower and upper
bounds as following:

Jo < [ W(e,Z(T))dG(c) < & < M,



The Distribution Problem

We consider an example

d(c) = max, {177 + c223|0 < xp <10,0 < 29 < 5}

C1and 2 have independent uniform distribution
on [-0.5,0.5] and [0,1].

100c; + 25¢,° if ¢ = 0

25¢,°  otherwise and ¢ = 20.833.

o(c) = {
Using the Jensen and E-M bounds, we can get that
6.25 < 8.33<20.833<37.5

If we subdivide the interval more finer, we can get better
bounds 20.70 < 20.80 < 20.83 < 20.90 < 21.09



Stochastic Programs with Simple Recourse

The bounds can also be used to generate
approximate solutions to certain stochastic
mathematical programs that are difficult to solve.

7 = max, |{[¥(c, z) dG(c) | z € K]

We can use Jensen and E-M bounds to bound
the optimal value of this problem.



Stochastic Programs with Simple Recourse

For J1 and M1 bounds:

max, [cif(p, ) + cof(pw, 2) |veK]l = Z =
max, [cul ((po—pu) /(mo—a) )¥(a, ) +((pu—a) /(po—a) )¢ (uo, x)}

+ cn{((b — p) /(b — po) )¥(po, ©) + ((m12 — mo) /(b—mo) ) (b, 2)}
|z e K].



Numerical Integration

Because when the subintervals become infinitely
small, the bounds converge to the optimal solutions
of the problem. Thus these bounds can be used to
calculate the expected value of a given convex
function of a random variable in an arbitrary given
tolerance.



Numerical Integration

Example:
o(t) =t
t has uniform distribution on [-10, 10]. Optimal solution is
33.3333.
J M

0 0 100

1 25 50

2 31.25 37.5

3 32.8125 34.3750

4 33.2031 33.5938



Numerical Integration

Compared with standard numerical schemes, these
bounds an obvious advantage in cases where one
wishes to perform calculations for several functions
with a give distribution function.



Thank you for listening!



