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Review of Linear Programming

Review of Linear Programming

Since stochastic linear programs are extensions of linear programs (LPs)
we will draw heavily on properties of LPs, algorithms for solving
large-scale LPs, duality, and other important topics you covered in
(ISE/OR505). Some important things to know....
Deterministic LP in standard form:

min{cx |Ax = b , x ≥ 0}

where x, c ∈ <n, b ∈ <m, A ∈ <m×n.

Polyhedral theory

LP structural properties

Simplex method

Duality

Branch-and-bound
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Review of Probability Spaces

Review of Probability Spaces

Since we are going to be talking a lot about random variables, let’s
formalize the concepts of random variables...

The triplet (Ω,A,P) defines a probability space:

Ω is the set of all outcomes (indexed by ω)

A is the set of all subsets of Ω, called events

P is a probability measure

Probability spaces must satisfy certain properties:
Axiom 1. P{Ω} = 1.
Axiom 2. P{A } ≥ 0 for any A ∈ A.
Axiom 3. For every countable sequence of mutually disjoint events {Ai}

∞
i=1,

we have

P

 ∞⋃
i=1

Ai

 =
∞∑

i=1

P{Ai}.
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Review of Probability Spaces

Review of Probability Spaces

Definition

A random variable is a measurable function from a probability space
(Ω,A,P) to the set of real numbers.

Example:
Let Ω = {ω1, ω2} and P{ω1} = P{ω2} = 0.5. Then the function

ξ(ω) =

{
−1, if ω = ω1

1, if ω = ω2

is a random variable.
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Review of Probability Spaces

Review of Probability Spaces

For a particular random variable, ξ, define a cumulative distribution
function as Fξ(x) = P(ξ ≤ x) (or as Fξ(x) = P(ω | ξ ≤ x})

Discrete random variable are described by finite or countable
outcomes, ξ(ωk ), k ∈ K

Continuous random variables are described by a probability density
function (pdf) where:

P(a ≤ ξ ≤ b) =

∫ b

a
f(ξ)dξ
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Decisions and Stages

Decisions and Stages

Recourse problems have recourse actions that can be taken after the
uncertain parameters are disclosed. Decisions are divided into 2 groups:

first stage decisions that are made before the uncertain parameters
are disclosed

second stage decisions that are made after the uncertain paraemters
are disclosed

The sequence of events can be summarized as:

x → ξ(ω)→ y(ω, x)

This can be generalized to multiple stages....
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Multi-Stage Example: Financial Planning and Control

Multi-Stage Example: Financial Planning and Control

Example (College Savings Plan): Suppose you want to save for a child’s
college education 15 years from now. You currently have $b to invest in
stocks (i = 1) and bonds (i = 2) and you plan to rebalance your portfolio
every 5 years. In each 5-year period there are two possible outcomes:

Stocks return 1.25 and bonds return 1.14 (good scenario)

Stocks return 1.06 and bonds return 1.12 (bad scenario)

Let st index the two possible outcomes in each period. In total there are 8
possible scenarios {LLL , LLH, LHL , .....,HHH}.

Assume each scenario is equally likely, i.e.,
p(s1, s2, s3) = 0.125,∀(s1, s2, s3)
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Multi-Stage Example: Financial Planning and Control

Model Formulation

Let ξ(i, t , st ) denote the return for investment i, in period t , and outcome,
st .

Decision Variables:

x(i, t , s1, ..., st−1) is the amount of investment i in period t given
history {s1, ..., st−1}.

w(s1, s2, s3) and y(s1, s2, s3) are shortage and surplus variables at
the end of the planning horizon.

exceeding target G results in you getting an income of q% of the
surplus, y(s1, s2, s3)

not meeting the goal requires borrowing at a cost of r% of the
shortage, w(s1, s2, s3)
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Multi-Stage Example: Financial Planning and Control

Model Formulation

max
∑

s3

∑
s2

∑
s1 p(s1, s2, s3)(−rw(s1, s2, s3) + qy(s1, s2, s3))

s.t. :∑
i x(i, 1) = b∑
i −ξ(i, 1, s1)x(i, 2) +

∑
i x(i, 1, s1) = 0∑

i −ξ(i, 2, s1, s2)x(i, 2, s1) +
∑

i x(i, 2, s1, s2) = 0∑
i ξ(i, 3, s1, s2, s3)x(i, 3, s1, s2) − y(s1, s2, s3) + w(s1, s2, s3) = G

x(i, t , s1, ..., st−1) ≥ 0, y(s1, s2, s3) ≥ 0,w(s1, s2, s3) ≥ 0,∀i, t , s1, s2, s3

You can solve this deterministic equivalent problem (DEP) for the optimal
action at each period for each possible history of outcomes.

What happens as the number of periods increases?
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Multi-Stage Example: Financial Planning and Control

Probability Constrained Example

The deterministic setcovering problem is:

min{
n∑

j=1

cjxj |
∑
j∈Ni

xj ≥ 1,∀i, xj ∈ {0, 1},∀j}

In the probabilistic version of set covering assume that selected sets may
be “unavailable” with probability q and P(at least one set covers item j) ≥ α
is required. Thus the probability an item is “covered” is:

1 − q
∑

j∈Ni
xj ≥ α,∀i

This can be converted to a deterministic linear constraint (how?)
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Multi-Stage Example: Financial Planning and Control

Relationships to Other Decision Making Models

How does stochastic programming relate to other methods for decision
making under uncertainty?

Decision analysis

Dynamic programming and Markov decision processes

Stochastic control
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