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Research Paper Presentations

Research Paper Presentations

Starting in mid October we will begin reviewing research papers:

Statistical sampling

Multi-Stage Stochastic Linear Programming

Bounding methods

Integer L-shaped Method (Piper, ?)

Probabilistic Constraints (Dr. Uzsoy)

Robust Optimization

Stochastic Decomposition

You can work in groups of 1 or 2.

Let me know your topic and who you want to work with by Friday.
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Decomposition 2-SLP

2-SLP

Two-Stage Recourse Problem (2-SLP):

min{cx + Q(x) | Ax = b , x ≥ 0}

Computational Problem: as the number of scenarios grows
computing the recourse function, Q(x), is hard
There are many algorithms that take advantage of the special
structure of 2-SLPs:

L-Shaped Method
Dantzig Wolf Decomposition
Specialized Methods for Basis Factorization
Bunching...
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Decomposition Bender’s Decomposition

Bender’s Decomposition

Bender’s Decomposition: Consider the following (deterministic) LP....

min z = cx + fy
s.t.

Ax + By ≥ b
x ≥ 0, y ≥ 0

for a fixed x = x̄ we would solve...

min fy
s.t.

By ≥ b − Ax̄
y ≥ 0

This problem may be easy (e.g. a network flow problem)
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Decomposition Bender’s Decomposition

Bender’s Decomposition

If the problem is easy for fixed x then it may be (computationally)
advantageous to solve the following....

min{cx + Q(x)|x ≥ 0}

where

Q(x) = min{fy |By ≥ b − Ax, y ≥ 0}

Q(x) is convex, continuous, but not necessarily differentiable

In the context of SP Bender’s decomposition is called the L-shaped
method:

Van Slyke, R.M, Wets, R. 1969, L-Shaped Linear Programs with Applications to Optimal Control and Stochastic Programming, SIAM
Journal on Applied Mathematics, 17(4), 638-663.

Dr. Brian Denton (NCSU) Stochastic Programming Lecture 8 September 28, 2010 8 / 23



Decomposition Bender’s Decomposition

Decomposition

Replace Q(x) with a variable θ and solve the relaxation (master problem):

min{cx + θ |x ≥ 0, optimality cuts, infeasibility cuts}

Optimality cuts are supporting hyperplanes of the epigraph of Q(x).
Consider the dual of Q(x)....

Q(x) = max{π(b − Ax) | πB ≤ f , π ≥ 0}

for a particular x = x̄ the following is a supporting hyperplane of Q(x) at x̄:

θ ≥ π(b − Ax)

Why?
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Optimality Cuts

Optimality Cuts

Optimality cuts, θ ≥ π(x̄)(b − By), follow from the subgradient inequality
where π is the solution to the dual of the following primal problem:

min{fy | By ≥ b − Ax, y ≥ 0}

taking the dual it follows that for a particular x = x̄:

Q(x̄) = max{π(b − Ax̄) | πB ≤ f , π ≥ 0}

From the subgradient inequality we have:

Q(x) ≥ Q(x̄) + π(x̄)((b − Ax) − (b − Ax̄)) = π(x̄)(b − Ax)

Therefore θ ≥ π(x̄)(b − Ax) is a valid lower bound on Q(x) for all x
.
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Infeasibility Cuts

Infeasibility Cuts

Feasibility is represented by K2. When the master problem produces an x̄
that is infeasible an infeasibility cut is added to the master problem.

Feasibility is tested by solving the following (Phase I) LP:

min w = ev+ + ev−

s.t.
By + Iv+ − Iv− = b − Ax
y, v+, v− ≥ 0

If w∗ > 0 then a feasibility cut is needed to separate b − Ax̄ from pos(B).
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Infeasibility Cuts

Infeasibility Cuts

If σ is the dual solution to the Phase I LP then the feasibility cut is...

σ(b − Ax) ≤ 0 (1)

This has the properties:

σ(b − Ax̄) > 0, i.e., (b − Ax̄) does not satisfy the infeasibility cut

σt ≤ 0 for all t ∈ pos(B), i.e, it does not cut off any of the feasible
region
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Algorithm

Algorithm

Bender’s Decomposition:

Step 0: ν = 1

Step 1: Construct and solve master problem for

xν = argmin{cx + θ |optimality cuts, infeasibility cuts,∀ν, x ∈ X}

Step 2: Solve Phase I LP for subproblem with x = xν.
If feasible go to Step 3. If infeasible generate infeasibility cut, set
ν = ν + 1, and add to master. Return to Step 1.

Step 3: Solve wν = min{fy | By ≥ b − Axν, y ≥ 0}. If θν ≥ wν then stop with
xν as optimal solution. Otherwise generate optimality cut, set ν = ν + 1,
and add to master. Return to Step 1.
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L-Shaped Method

L-Shaped Method

Bender’s decomposition is well suited to solving 2-SLPs. Assume finite Ξ
with scenarios indexed by k = 1, ...,K with probabilities, pk . The extensive
form of 2-SLP is:

min cx +
∑K

k=1 pk qk yk

s.t. :
Ax = b
Tk x + Wyk = hk , k = 1, ...,K ,
x ≥ 0, yk ≥ 0, k = 1, ...,K .

Where W is the (fixed) recourse matrix. qk , hk , Tk , all depend on the
scenario k .
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L-Shaped Method

L-Shaped Method
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L-Shaped Method

L-Shaped Method

The L-shaped method is the most well known method for 2-SLPs. It solves
the first stage problem and “outer linearizes” the recourse function, Q(x).
To use this method:

Assume ξ has finite support

k = 1, 2, ...,K indexes scenarios

pk is the probability of scenario k

and extensive form:

min cx +
∑K

k=1 pk qk yk

s.t.
Ax = b
Tk x + Wyk = hk , k = 1, ...,K ,
x ≥ 0, yk ≥ 0, k = 1, ...,K .
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L-Shaped Method

L-Shaped Method

Algorithm

Step 0: Set r = s = ν = 0.

Step 1: Set ν = ν + 1. Solve the master problem:

min cx + θ

s.t.
Ax = b ,
D` ≥ d`, ` = 1, ..., r ,
E`x + θ ≥ e`, ` = 1, ..., s, x ≥ 0, θ ∈ <.

Let (xν, θν) be an optimal solution. If no optimality cuts present then
θν = −∞ and is not considered in computation of xν.
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L-Shaped Method

L-Shaped Method

Step 2: for k = 1, ...,K solve:

min w′ = ev+ + ev−

s.t.
Wy + Iv+ − Iv− = hk − Tk xν,
y, v+, v− ≥ 0

If for some k , the optimal solution w′ > 0 stop and generate an
infeasibility cut as follows. Let σν be the associated simplex multiplier
and define:

Dr+1 = σk Tk , dr+1 = σk hk .

Set r = r + 1, add the new constraint to the master problem, and
return to Step 1. Otherwise if w′ = 0 for all k then go to Step 3.
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L-Shaped Method

L-Shaped Method

Step 3: For k = 1, ...,K solve the linear program

min w = qk y
s.t.

Wy = hk − Tk xν

y ≥ 0

Let πk be the optimal solution to the dual. Define:

Es+1 =
K∑

k=1

pkπk Tk , es+1 =
K∑

k=1

pkπk hk .

Let wν = es+1 − Es+1xν. If θν ≥ wν stop with xν as an optimal
solution. Otherwise set s = s + 1, add the new constraint (optimality
cut) to the master problem, and return to Step 1.
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