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Summary of Today’s Class

Summary of Today’s Class

So far we have discussed the L-shaped method and several extensions
including

Multi-cut L-shaped method

Full decomposability

Bunching

Today we will discuss:

Inner Linearization

Extreme point methods

Special cases (simple recourse, network flow)
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Inner Linearization

Inner Linearization

An alternative to the L-shaped method (outer linerization) is inner
linearization.
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Inner Linearization

Inner Linearization

We can relate D-W Decomposition to the L-shaped method by examining
the dual of the L-shaped master problem:

min z = cx + θ

s.t. Ax = b
D`x ≥ d`, ` = 1, ..., r ,
E`x + θ ≥ e`, ` = 1, ..., s,
x ≥ 0, θ ∈ <.

Dual of L-shaped master:

max w = ρb +
r∑

`=1

σ̄`d` +
s∑

`=1

π̄`e`

s.t. ρA +
∑r
`=1 σ̄`D` +

∑s
`=1 π̄`E` ≤ c∑s

`=1 π̄` = 1, σ̄` ≥ 0, ` = 1, ..., r , π̄` ≥ 0, ` = 1, ..., s.
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Inner Linearization

Inner Linearization

The dual of the L-shaped master includes columns that are:

Convex combinations of expectations of subproblem extreme points

Directions of recession (extreme rays)

Consider the dual to the subproblem at iteration ν:

max{π(hk − Tk xν) | s.t . πW ≤ q} (1)

If (1) is unbounded for any k then add a column (dr+1, Dr+1) to the dual
master problem.

If (1) has finite optimal value for all k then add a column (es+1, Es+1) to the
dual master problem.
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Inner Linearization

Inner Linearization

Algorithm:

Step 0: r = s = ν = 0

Step 1: Set ν = ν + 1 and solve master. Let solution be (ρν, σ̄ν, π̄ν) with a
dual solution , (xν, θν).

Step 2: For k = 1, ...,K solve (1). If an unbounded solution with extreme
ray σν is found for any k , then form new column
(dr+1 = σνhk ,Dr+1 = σνTk ), set r = r + 1, and return to Step 1. If (1) is
solvable for all k then add a column (es+1),(Es+1) to the master.

Step 3: If es+1 − Es+1xν − θν ≤ 0, then stop; Otherwise return to Step 1.
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Extreme Point Methods

Extreme Point Methods

Important Points:

Extreme point methods are powerful approaches for solving
large-scale LPs.

Basis factorization is a computationally intensive part of extreme point
methods

The 2SLP has a constraint matrix with special structure for basis
factorization (see Birge and Qi, 1988).

The basis at an iteration of an extreme point method can be written as:

W =


AI0
TI0 WJ1
...

. . .

TI0 WJK


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Extreme Point Methods

Extreme Point Methods

Basic idea is to take advantage of the block diagonal structure of part of
the matrix to decompose basis factorization.

Proposition 5 (Birge and Louveaux, p. 180): A basis matrix, B, is
equivalent after permutation P to

B′ = PB =

[
D C
F L

]
where D is square invertible and at most n1 × n1 and L is an invertible
matrix of K invertible blocks of sizes at most m2 ×m2 each.
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Extreme Point Methods

Extreme Point Methods

Using proposition 5 the linear system can be written as:

DxB + CyB = b ′, FxB + LyB = h′

Using this form we can write the following efficient way to evaluate xB , yB :

yB = L−1(h′ − FxB)

and substituting back into the first system of equations yields

(D − CL−1F)xB = b ′ − CL−1h′

Most of the effort in computing xB and yB involves basis (D − CL−1F) and
using L−1 which is easy to evaluate because it is block separable.
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Special Cases

Special Cases

Sometimes the recourse LP has a special structure that can be leverage to
achieve computational advantage. Two common special cases are

Simple recourse

Network flow

Simple recourse problems are Fully Decomposable owing to their
separable second stage.

Computational advantages can be achieved when network flow structure
exists either

As part of the first stage decision

Or in the second stage recourse problem
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