
The Vehicle Routing Problem with Stochastic
Travel Times

Laporte, Louveaux, Mercure
Transportation Science, vol 26, 1992

presented by Hamed Yarmand and Brian Piper

October 26,2010



Outline

1 Introduction

2 Modeling
Chance-Constrained Model
Three-Index Recourse Model
Two-Index Recourse Model

3 Algorithm

4 Example



Vehicle Routing Problem (VRP)

Deterministic VRP

Let G = (V0,E ) be a graph where V0 = {v0, v1, . . . , vn} is the
vertex set and V = V0\{v0} and E is the arc set of V0. The vertex
v0 is a depot where exactly m or at most m vehicles are based.
C = (cij): Distance or Travel Cost Matrix. Assume C is symmetric,
then E is the set of undirected edges (vi , vj) where i < j .

min f (m, x)

s.t. i .routes start and end at depot

ii .every vertex of V is visited exactly once by exactly one vehicle

iii .some side constraints on vehicle routes

where f is a linear combination of m and x, where x = (xij), the
route assignments decision variables.
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VRP (continued)

When C satisfies the triangle inequality, cij ≤ cik + ckj ∀i , j , k, then
constraint ii is not restrictive. (Why?)

Does this reasonably model the situation in reality?
What are the sources of uncertainty?

Travel times

Service times at each vertex

Demand from each customer (Laporte, Louveaux and Mercure
1989)

Random customers (Laporte, Louveaux and Mercure 1994)
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Vehicle Routing Problem with Stochastic Travel Times
(SVRP)

SVRP

Objective is to plan optimal vehicle routes with random travel time
and service time.

T = (tij) is the travel time associated with E
τ = (τi ) is the stochastic service time vector defined on V
B = maximum non-penalized route duration. Routes that take
longer than B are penalized in proportion to the excess time.

Note that travel or service times can be continuous or discrete and
independent or dependent. Dependent random variables can limit
the number of scenarios and make for an easier problem to solve.



Chance Constrained Model

Objective

Minimize vehicle and routing costs while ensuring the probability of
a route exceeding B is less than or equal to a given α.

Notation

xij(i < j): the number of times edge (vi , vj) is used in the optimal
solution. This variable is equal to 0 or 1 if 0 < i < j and to 0, 1 or
2 if i = 0;

Why? the case x0j = 2 corresponds to a return trip
between the depot and vj .
f : the fixed cost (per planning period) of a vehicle
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Chance Constrained Model (continued)

min
x ,m

fm +
∑
i<j

cijxij

s.t.
n∑

j=1

x0j = 2m (1)

∑
i<k

xik +
∑
j>k

xkj = 2 (vk ∈ V ) (2)

Illegal route elimination constraints (3)

xij ∈ {0; 1} (vi , vj ∈ V ) (4)

x0j ∈ {0; 1; 2} (vj ∈ V ) (5)

m ≥ 1 and integer (6)



Subtour Elimination

Standard Subtour elimination taken from the TSP.

Let QS = {(vi , vj) : vi ∈ S , vj /∈ S or vi /∈ S , vj ∈ S , i < j}. Then∑
(vi ,vj )∈QS

xij ≥ 2 (S ⊆ V , 3 ≤ |S | ≤ n − 3) (7)

eliminates subtours not including v0.



Illegal Route

Consider a route L = (vi0 = v0, vi1 , . . . , viu , vi0). This is illegal if

P

(
u∑

k=0

[tik ik+1
+ τik ] > B

)
> α, (8)

where iu+1 = i0 and τi0 = 0.

In this case, L can be eliminated by
imposing

u∑
k=0

xik ik+1
≤ u. (9)

But permutations of L may still be legal!
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Assumption 1

Let S ⊂ V and let LS be a permutation of the elements of
S ∪ {v0}, corresponding to a vehicle route.

t(LS) = total duration of LS including service
time

c(LS) = total cost of LS
L∗S ∈ argmin{c(LS)} = least cost permutation of the cities of

S ∪ {v0}

Assumption 1

P(t(LS) > s) ≥ P(t(L∗S) > s) ∀s ≥ B
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Proposition 1

If L∗S satisfies (8), and Assumption 1 is valid, then the following
constraint is valid: ∑

QS

xij ≥ 2Vα(S) (S ⊂ V ) (10)

where Vα(S) is a lower bound on the number of vehicles required
to visit v0 and all cities of S , so that the probability of incurring a
penalty in S ∪ {v0} does not exceed α. It can be taken as the
smallest integer satisfying

P(t(L∗S) > BVα(S)) ≤ α. (11)



Proposition 1 (continued)

Proof.

By Assumption 1, if L∗S is a route of least duration, there is no
other permutation LS such that (11) would be satisfied with a
strictly smaller value of Vα(S). So at least Vα(S) vehicles are
required to visit v0 and all cities of S , and twice as many edges
must link S and its complement.
The second equation computes the probability that at least one
vehicle will incur a penalty while visiting S ∪ {v0}. Compares the
minimum time required by all vehicles to visit S ∪ {v0}, to the
total time Vα(S) vehicles can travel in S ∪ {v0} without incurring
a penalty.



Three-Index Recourse Model

m : an upper bound on the number of vehicles
xijl(i < j) : the number of times (0, 1 or 2) edge (vi , vj) is

traversed by vehicle l in the optimal solution
x = (xijl)

zkl =

{
1 if vk is visited by vehicle l
0 otherwise

ξ : a vector of random variables for travel and service
times, specific realizations given with ω

Ξ : the support of ξ, assumed finite in this model
yl(ω) : excess duration of route l in scenario ξ



Three-Index Recourse Model (continued)

cijl : the travel cost of vehicle l on edge (vi , vj)
tijl(ω) : the travel time of vehicle l on edge (vi , vj) in sce-

nario ω
τil(ω) : the service time of vertex vi by vehicle l in scenario

ω
βl : the (positive) unit penalty cost for excess duration

on the route traveled by vehicle l
fl : the fixed cost of vehicle l
Bl : the maximum time for route l , over which a

penalty is incurred



Three-Index Recourse Model Formulation

min
x ,z

m∑
l=1

flz0l +
m∑
l=1

∑
i < jcijlxijl + Eξ

(
m∑
l=1

βlyl(ω)

)

s.t.
m∑
l=1

zkl = 1 (vk ∈ V )

n∑
j=1

x0jl = 2z0l (l = 1, . . . ,m)

∑
i<k

xikl +
∑
j>k

xkjl = 2zkl (vk ∈ V ; l = 1, . . . ,m)

∑
i ,j∈S,i<j

xijl ≤ |S | − 1

(S ⊂ V , 3 ≤ |S | ≤ n − 3; l = 1, . . . ,m)



Three-Index Recourse Model Formulation (continued)

Bl −
∑
i<j

tijl(ω)xijl −
1

2

∑
i<j

(τil(ω)− τjl(ω))xijl + yl(ω) ≥ 0

(l = 1, . . . ,m, ∀ω)

xijl ∈ {0, 1} (vi , vj ∈ V ; l = 1, . . . ,m)

x0jl ∈ {0, 1, 2} (vj ∈ V ; l = 1, . . . ,m)

zkl ∈ {0, 1} (vk ∈ V0; l = 1, . . . ,m)

yl(ω) ≥ 0 (l = 1, . . . ,m;∀ω)



Two-Index Recourse Model (Notation Changes)

Decision Variable
xij(i < j): the number of times (0, 1, or 2) edge (vi , vj) is

traversed
x = (xij)
m can be a constant or decision variable indicating

maximum number of vehicles available

ξ: vector of random variables corresponding to travel
and service times

Ξ: support of ξ. Not necessarily assumed to be finite
y : the total expected excess duration of a first stage

solution x
β: the (positive) unit cost of excess duration



Two-Index Recourse Model

min
x ,m,y

fm +
∑
i<j

cijxij + βy

s.t.
n∑

j=1

x0j = 2m (12)

∑
i<k

xik +
∑
j>k

xkj = 2 (vk ∈ V ) (13)

∑
(vi ,vj )∈QS

xij ≥ 2 (S ⊆ V , 3 ≤ |S | ≤ n − 3) (14)

xij ∈ {0; 1} (vi , vj ∈ V ) (15)

x0j ∈ {0; 1; 2} (vj ∈ V ) (16)

m ≥ 1 and integer (17)



Calculation of Excess Duration

No linear continuous expression of y in terms of x exists. But, the
SVRP has a finite number of first stage solutions, index these by r .
Sr= {(vi , vj) : vi , vj ∈ V and (vi , vj) belongs to the r th

feasible SVRP solution}
θr : a constant equal to the total expected excess du-

ration of solution r .

Then the following constraints can be added:

y ≥ θr

 ∑
(vi ,vj )∈Sr

xij − (n −m − 1)

 ∀r (18)

y ≥ 0 (19)

Why is constraint (18) valid?
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Constraint Types I

i. degree constraints which specify the vehicles used at various
vertices and the degree of each vertex.

n∑
j=1

x0j = 2m

∑
i<k

xik +
∑
j>k

xkj = 2 (vk ∈ V )

ii. lower and upper bounds on the variables

y ≥ 0

iii. integrality requirements on the variables



Constraint Types II

iv. illegal route and subtour elimination∑
(vi ,vj )∈QS

xij ≥ 2 (S ⊆ V , 3 ≤ |S | ≤ n − 3)

u∑
k=0

xik ik+1
≤ u.

v. lower bound on penalties for excess route durations

y ≥ θr

 ∑
(vi ,vj )∈Sr

xij − (n −m − 1)

 ∀r



Algorithm I

Step 0 Let z∗ be the cost of the best known feasible
solution. If no solution is known, set z∗ :=∞.
Define a first current problem as the relaxed problem
containing constraints (i) and (ii). Insert the current
problem in a list.

Step 1 If the list is empty, print the best known solution and
stop. Otherwise, select a problem from the list.

Step 2 Solve the current problem and let z be the value of
its optimal solution. If z ≥ z∗, fathom the current
problem and go to Step 1.

Step 3 If the solution is not integer, create subproblems by
branching on a fractional variable, insert them in the
list and go to Step 1.



Algorithm II

Step 4 At an integer solution, check first for subtours, and
then for illegal routes. If any violation is detected,
add the appropriate illegal route of subtour
elimination constraints to the current problem and go
to Step 2.

Step 5 At a first stage feasible solution, let z
′

be the value
of z , plus the value of expected penalty for excess
duration. If z ≥ z∗, fathom the current problem and
go to Step 1. If z

′
< z∗, update the best known

solution and set z∗ := z
′
. Introduce in the current

problem the appropriate type (v) constraint and go
to Step 2.



Algorithm Comments

Does it converge? Why?

Convergence

Guaranteed by

1 finite number of feasible first stage solutions

2 finiteness of the number of potential constraints in each model

Specific Modifications for each model

Chance Constraints (v) and so step 5, does not apply.

Three-Index Whenever a constraint (v) is generated for a given
vehicle, it is generated for all vehicles.

Two-Index A more accurate lower bound on y can be obtained
in Step 0 (see Proposition 3).
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Proposition 2:

Assume C satisfies the triangle inequality and consider an optimal
solution to the current problem containing no subtours identified in
Step 4 of the algorithm. Let LS be a route corresponding to this
optimal solution. Then this solution is the least cost way of visiting
all vertices of S .

Proof.

The current solution is feasible and optimal for the m-TSP at the
current node of the search tree. Since C satisfies the triangle
inequality, each vehicle route LS taken separately is also optimal:
(i) permuting or partitioning it cannot decrease the total distance
required to serve S ∪ v0; (ii) moreover, sharing its vertices between
several routs including vertices in V \S cannot yield a shorter
distance since for any vertex sequence (vi1 , vi2 , vi3) on a route L
with vi2 /∈ S , a route of equal or shorter distance can be obtained
by deleting vi2 and connecting vi1 to vi3 . Hence, there is no less
costly way of visiting all vertices of S ∪ v0.
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Proposition 3

A valid lower bound on y is given by

y ≥ Eξ

∑
i<j

tξijxij +
1

2

∑
i<j

(τ ξi + τ ξj )xij −mB

+

(20)

where (x)+ = max(x , 0).

This is equivalent to

y ≥
|Ξ|∑
k=1

pkyk (21)

yk ≥
∑
i<j

tkij xij +
1

2

∑
i<j

(τki + τkj )xij −mB (k = 1, . . . , |Ξ|) (22)

yk ≥ 0 (k = 1, . . . , |Ξ|) (23)
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Example

i vi v0 v1 v2 v3 τi
0 v0 - 3 5 4 0
1 v1 3 - 6 2 2
2 v2 5 6 - 7 3
3 v3 4 2 7 - 1

Table: Service and Travel Times/Costs
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