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ABSTRACT
Surgical services are large revenue sources that account for a large portion of hospital expenses. Thus, effi-
cient resource allocation is crucial in this system; however, this is a challenging problem, in part due to
the interaction of the different stages of the surgery delivery system and the uncertainty of surgery and
recovery durations. This article focuses on single-day in-patient elective surgery scheduling considering
surgeons, operating rooms (ORs), and the post-anesthesia care unit (recovery). We propose amixed-integer
programming formulation of this problem and then present a fast two-phase heuristic: phase 1 is used for
determining the number of ORs to open for the day and surgeon-to-OR assignments, and phase 2 is used
for surgical case sequencing. Both phases have provable worst-case performance guarantees and excel-
lent average case performance.We evaluate schedules under uncertainty using a discrete-event simulation
model based on data provided by a mid-sized hospital. We show that the fast and easy-to-implement two-
phase heuristic performs extremely well, in both deterministic and stochastic settings. The new methods
developed reduce the computational barriers to implementation anddemonstrate that hospitals can realize
substantial benefits without resorting to sophisticated optimization software implementations.

1. Introduction

Hospital surgical services are sources of both great revenue and
high expenses for human and physical resources. Since most of
these resources represent large and long-term investments, there
is a very high fixed cost associated with inefficient scheduling
that requires an unnecessarily high number of operating rooms
(ORs). Studies suggest that demand for surgery will increase
by 14–47% by 2020, where the wide range is due to differences
in specialty (Etzioni et al., 2003). Moreover, “aggregate surgical
expenditures are expected to grow from $574 billion in 2005
(4.6% of US GDP [gross domestic product]) to $912 billion
(2005 dollars) in the year 2025 (7.3% of US GDP)” Muñoz et al.
(2010, p. 195). If these predictions are correct and surgical vol-
ume increases in the future, inefficient use of ORs, supporting
resources, and nurse overtime costs caused by poor scheduling
will have greater financial impact on the hospital, and therefore
increased efficiency will become even more important.

One of the challenges to achieving greater efficiency in elec-
tive surgery scheduling is that surgical cases that complete
in an OR must quickly move to the recovery stage (i.e., the
post-anesthesia care unit (PACU)). Without effective planning
and scheduling, the coupling of these stages can cause delays
in the surgical schedule, overtime, and employee dissatisfac-
tion. Inherent randomness in surgery and recovery durations
makes scheduling challenging. Randomness in surgery dura-
tions occurs due to natural variation and unforeseen complica-
tions that can arise. Similarly, recovery duration is random, as
patients can vary in their physiological response to the surgical
procedure and anesthetic agents received.

CONTACT Mark P. Van Oyen vanoyen@umich.edu
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There are several resource assignment challenges as well. In
most cases, patient–surgeon assignments have to be respected
and surgeons should perform all of their surgeries consecutively
to avoid large gaps in their schedule. Physical resources, such
as PACU beds and ORs, can only be used by one patient at a
time. As the PACU is less expensive to operate, we focus on the
key drivers of performance for the ORs, including minimizing
overtime and surgeon elapsed time (the time between when the
surgeon starts his or her first case and finishes his or her last
case), which is equivalent to minimizing surgeon idle time.

This article emphasizes deterministic models; however, we
discuss methods for making judicious choices of input param-
eters that can mitigate the impact of uncertainty, leading to
an approach that we show is both tractable and effective in
the stochastic setting. We propose fast heuristics that we show
have attractive worst-case performance guarantees and average
case performance. Moreover, we test the methods that we pro-
pose using a discrete-event simulation model based on data
from a partner hospital.

2. Background and literature review

The scope of this article includes the main ORs of a hospital and
methods to generate elective surgery schedules for a single day.
Once a patient and surgeon agree that surgery is necessary, the
office of the surgeon typically calls a scheduling office to check
for OR availability. In most hospitals, a surgeon can only sched-
ule a surgery if his or her service has block time allocated to him
or her or if there is open OR time available. The basic idea of
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Figure . Stages of the surgery delivery system for elective surgeries with n preop bays, n ORs, and n PACU beds.

block scheduling is that either a surgeon or a service is guar-
anteed the use of a set of rooms for either the entire day or a
fraction of a day, and this reservation is known well in advance.
The length of the block in block scheduling indirectly places a
limit on the number of cases a surgeon can perform and on the
choices for assigning physicians to rooms when there is a suf-
ficiently low number of rooms available. However, most hospi-
tals have methods by which unused block time is released and
reallocated as the start of the day of surgery approaches, typi-
cally 72 hours before the day of surgery. Thus, the actual day-of
scheduling may break the constraints of the block schedule. In
the problem we solve, the block scheduling rules in place have
already informed the list of surgeries to be performed by each
surgeon. We only consider elective surgeries, because it is fairly
common practice in hospitals to have ORs dedicated to emer-
gent surgeries, and this is also the case at our partner hospital.

Figure 1 shows the stages of the surgery delivery system at
our partner hospital, and this system is common to many hos-
pitals. First, on the day of surgery, if the patient has already been
admitted to the hospital, he or she is transferred to the preoper-
ative unit. If the patient is just arriving to the hospital, he or she
has to go to a check-in area before he or she can go to the pre-
operative unit. In the preoperative unit the patient is seen by a
nurse, an anesthesiologist, and his or her surgeon, each of whom
confirms the procedure with the patient to avoid errors. When
the patient, the surgical team, and the OR are all available and
ready for surgery, the procedure can start. After surgery, most
patients are transferred to the PACU to start recovery, if there is
a bed available, and a nurse to monitor the recovery. Otherwise,
the patient will start the recovery process in the OR, causing
delays in the consecutive cases scheduled in that OR and poten-
tially compromising patient safety. This phenomenon is called
OR boarding. As this scenario is disadvantageous to all, the hos-
pital tries very hard to avoid it, if possible. After recovery, the
patient can go to his or her desired ward, an alternate ward if the
desired ward is full, or be discharged.

There is a substantial literature on surgery planning and
scheduling. In our review, we focus on the most relevant lit-
erature that considers the PACU in addition to the ORs. For
more general and comprehensive recent literature reviews, see
Erdogan and Denton (2010), Guerriero and Guido (2011),
Cardoen et al. (2010). Unlike the approach of this article, an
alternate approach is to generate schedules considering the ORs
only and then study the effect of the schedule on the inter-
action between the ORs and the PACU. In this vein, Mar-
con and Dexter (2006) considered seven sequencing rules and
found the one that reduces the peak in the number of patients
in the PACU. Using discrete-event simulation, they found that

using simple sequencing rules, hospitals can achieve significant
reduction in the percentage of days with at least one PACU
delay. Saadouli et al. (2015) used mathematical programming
to decide which cases to perform and in which ORs to perform
the cases but without accounting for PACU resources. They also
used a discrete-event simulation model to measure the impact
of uncertainty on PACU resources.

Like this article, some authors have considered the PACU
in the schedule generating phase. Gul et al. (2011) used a
discrete-event simulation for an outpatient procedure cen-
ter to evaluate sequencing rules and methods to mitigate
the effect of uncertainty with respect to the competing
criteria of expected patient wait time and expectedORovertime,
where they account for intake, preoperative care (or “preop” for
short), surgery, and recovery. Then they used a genetic algo-
rithm to improve on the heuristic solutions. They assumed that
a single surgeon has an OR for the entire day, an assump-
tion that we relax to better model the behavior of many hos-
pitals. We also allow for multiple surgeons in an OR with the
constraint that each surgeon performs all of his or her cases
consecutively.

Jebali et al. (2006) proposed a two-step method for daily OR
scheduling. In step 1 they selected cases to perform from a wait
list and assigned them to ORs considering Intensive Care Unit
(ICU) bed availability and special OR equipment constraints,
while minimizing the cost of keeping patients in the hospi-
tal waiting for surgery as well as the cost of OR overtime and
OR undertime. In step 2 they sequenced the cases assigned
to each OR with the possibility of reconsidering patient–OR
assignments and also considering recovery constraints, while
minimizing OR overtime. In this step, they allowed for OR
boarding. They considered surgeon availability, but consecutive
surgeries for surgeons are not guaranteed, whereas our approach
ensures consecutive surgeries for each surgeon. They used two
disjoint mixed-integer programs (MIPs) in the two steps and
assumed that all durations are deterministic. They found that
their models work well on small examples with three ORs, four
surgeons, four PACUbeds, and 11–15 surgeries; however, unlike
our article, they did not demonstrate that their approach could
scale to problems encountered by larger hospitals.

Fei et al. (2010) developed a two-stage heuristic approach,
where in the first phase they assigned dates to surgeries
using a column generation–based heuristic to solve their set-
partitioning IPmodel. Theymodeled the secondphase as a flexi-
ble flow shop problem,where they assigned surgeries toORs and
sequenced them using a hybrid genetic algorithm. Their mod-
els respect patient–surgeon assignments but, unlike our article, a
surgeon might not perform all of his or her cases consecutively.
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They accounted for recovery time and allowed for OR board-
ing assuming deterministic surgery and recovery durations. Our
approach yields an intuitive and computationally lightweight
method.

Wang et al. (2015) considered a particle swarm opti-
mization algorithm for the surgery scheduling problem with
post-anesthesia resources. They formulated the problem as
a deterministic MIP and proposed a discrete particle swarm
optimization algorithm combined with heuristic rules, where
they found the number of ORs to open and the number of
PACU beds needed. They found that their method performs
well when compared with optimal solutions. However, they
did not consider surgeon blocks or uncertainty. Cardoen et al.
(2009a) used six objectives, including minimizing PACU over-
time and the peak number of PACU beds used, to optimize case
sequencing in an outpatient procedure center but also consid-
ered factors such as patient travel time to the procedure center
and infection occurrence. They showed that the surgical case
sequencing optimization problem is NP-hard and developed
optimization-based exact and heuristic solution approaches for
their formulated MIP. Cardoen et al. (2009b) elaborated on this
approach by proposing an exact branch-and-price approach.

Augusto et al. (2010) investigated the logistical benefit of OR
boarding when PACU workload is greater than OR workload.
They considered surgery scheduling as a four-stage determinis-
tic flexible flow shop machine scheduling problem with the fol-
lowing stages: transfer from ward to OR, surgery and recovery,
OR turnover, and finally transfer from OR to ward. They used a
Lagrangian relaxation–based method to solve their determinis-
tic mathematical program with the objective of minimizing the
sum of a function of the surgery completion times. They showed
that allowing recovery in the ORs can improve efficiency, which
is intuitive. Their tested instances had 10–30 surgeries, two to
six ORs, one to four PACU beds, and one or two transporter
teams. Depending on the algorithm they used to build a feasible
schedule, their worst-case duality gap in computational experi-
mentswas 16.5%or 31.25%.Our article indicates that evenwhen
PACU workload is lower on average than surgical workload in
total for the day, poor sequencing can cause instances where the
PACU is full and causes OR boarding. Our approach also pro-
vides insight into the problem, which we can claim is due to the
accuracy of our heuristic. Moreover, our experience in practice
is that recovery in the OR as opposed to the PACU is strongly
discouraged, and our approach seeks to avoid it.

2.1. Our contributions to the literature

This articlemakes new contributions to surgery scheduling aris-
ing from our collaboration with a mid-sized hospital. Despite a
substantial literature, a number of open questions exist. Most of
the existing literature relies on the use of complex models and
methods (e.g., optimization, genetic algorithms, particle swarm
algorithms, and Lagrangian-based methods) that are not acces-
sible tomost healthcare professionals at hospitals. The complex-
ities of this problem also make it computationally infeasible to
obtain optimal solutions for the large problem instances that are
relevant to hospitals. As seen in the literature review, state-of-
the-art approaches grapple with the size and complexity of the
models. Our goal is to generate new models, algorithms, and

insights for the purpose of improving surgery scheduling in hos-
pitals. The approacheswe propose are both intuitive and compu-
tationally tractable and yield good performancewhen compared
with optimization-based solutions for small test instances and
when compared with current practice. This strongly suggests
that the insights contributed in the reasoning behind the heuris-
tic are sound and offer good intuition. We comprehensively
address the relatively complex problem of scheduling surgeries
for a single day under limited availability of ORs and PACUbeds
with a fast, easy-to-understand, and easy-to-implement two-
phase heuristic, supported by a combination of theoretical anal-
ysis of worst-case performance and computational analysis of
average case performance.

2.2. Article organization

The remainder of the article is organized as follows. To capture
how shortages of one resource can affect the others, Section 3
presents a new MIP formulation for creating elective surgery
schedules that consider resources directly supporting surgery
(e.g., surgeon, OR) and also the limited availability of the PACU.
This model uses deterministic surgery times and recovery times
(both durations are surgeon and case specific) that are carefully
selected as percentiles from the duration distributions to miti-
gate the impact of uncertainty in surgery and recovery durations
to increase the reliability of the schedule. These durations, which
we refer to as hedged durations, are determined through numer-
ical experiments using a discrete-event simulation detailed in
Section 7.2. In our deterministic optimization, we ensure that
there is no OR boarding, and patient–surgeon assignments are
respected. The objective is to minimize the fixed cost of open-
ing the ORs, the variable cost of OR overtime, and the variable
cost of surgeon elapsed time. In Section 4 we propose a fast two-
phase heuristic that exploits the problem structure, where the
first phase finds the number of ORs to open and assigns sur-
geons to ORs and the second phase sequences cases for each
surgeon while considering the PACU. The heuristic is intuitive
for healthcare professionals and is easy to implement. Also in
Section 4, we propose a decomposition heuristic for the MIP to
be used as a benchmark for the two-phase heuristic, since the
overall problem is too computationally challenging to solve to
optimality. In Section 5 we describe a discrete-event simulation
model that is used to evaluate the generated schedules under
uncertainty. In Section 6 we provide worst-case performance
guarantees for each of the phases of the two-phase heuristic and
show that on average the heuristic solutions are very close to the
optimal solutions. Section 7 presents case studies based on data
from our partner hospital that use the simulation as a realistic
model that incorporates stochasticity. We evaluate the heuristic
schedules and the optimization-based heuristic benchmark and
compare their cost to measure performance of the two-phase
heuristic in this more realistic setting.

3. Problem formulation

A common approach for OR scheduling in the presence of
uncertain surgery durations is to formulate the problem as a
stochastic program (see, for example, Denton et al. (2010)).
However, due to the addition of the PACU, which results in a
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large number of decision variables and multiple stages of deci-
sion making, this approach would not lead to a model that is
solvable in a reasonable time. Indeed, as we show, even the deter-
ministic problem is extremely difficult to solve for typical prob-
lem instances. Instead, we begin by formulating a deterministic
MIP and then use a discrete-event simulation model to evaluate
schedules under uncertainty.Moreover, we combine thesemod-
els to investigate the ideal choice ofmodel parameters in theMIP
to mitigate the impact of uncertainty.

Our cost model is designed to match the reality of most ORs
in hospitals in the United States. We assume that the objective is
tominimize the fixed cost of opening anOR for the day, the vari-
able cost per unit time of OR overtime, and the variable cost per
unit time of surgeon elapsed time, while accounting for limited
availability of ORs, surgeons, and PACU beds. At the surgical
stage, we account for OR availability and require that patient–
surgeon assignments be respected and that each surgeon per-
forms all of his or her cases consecutively. We also include con-
straints that ensure there is no OR boarding; i.e., recovery in the
PACU starts right after surgery. At the recovery stage, we assume
limited PACU bed availability. Our focus is on the PACU, as
opposed to the ICU, for example, because the vast majority of
patients have to go to the PACU after surgery, and we are focus-
ing on this majority of services; only a few surgery types require
the patient to go to the ICU (e.g., cardiothoracic surgery), and
bed availability is carefullymanaged tomake certain that a bed is
available. Moreover, similar to surgery duration, recovery time
in the PACU is on the order of hours, whereas length of stay in
the ICU is on the order of days. Once a schedule is created, we
use a discrete-event simulation model to evaluate the schedule
under uncertainty according to the same criteria as established
for the MIP, where surgery durations and recovery durations
are randomly generated according to probability distributions
based on historical data.

Some hospitals, like our partner hospital, strategically invest
in standardized, flexible OR suites to promote operational effi-
ciency. In our MIP model we consider multiple services that
do not have special equipment needs and thus we assume that
ORs are interchangeable and can be used by any service; how-
ever, the inclusion of additional constraints for equipment or
other requirements is straightforward. We also assume that the
surgery duration includes turnover time, as this is the current
practice at our partner hospital, where turnover time represents
the time after each surgery that is needed to clean the OR and
potentially set up for the next surgery.Moreover, we assume that
cancellations are not allowed, since cancellations the day before
surgery are rare.

We begin by introducing an MIP model formulation for
OR scheduling, which lays the foundations for incorporating
PACU constraints into the model. Our formulation approach
is to break up time into discrete time slots to easily track the
whereabouts of patients and surgeons at any given slot. Thus,
every time parameter is given in terms of numbers of time slots,
with the horizon including the planned length of the day plus
overtime for the day, if applicable. The smaller the length of
the time slot, the more accurate the schedule is; however, small
length also makes the model more computationally challeng-
ing. Therefore, the length of a time slot is chosen to be large
enough for computational tractability but small enough to be

consistent with hospital needs. In our case studies, we used a
time slot length of 15 minutes. Decision variables include the
number ofORs to be opened and assignment of surgeries toORs
and time slots to minimize total cost. The model also respects
patient–surgeon assignments and makes sure that each surgeon
performs all of his or her surgeries one after the other to reflect
block scheduling. Our notation is the following.

Indices:

i index for surgeries (and thus for patients), i = 1, . . . ,P,
with P being the number of patients to schedule.

j index for ORs, j = 1, . . . ,R, with R being the number of
ORs available.

k index for surgeons, k = 1, . . . ,K, with K being the number
of surgeons to operate.

t index for time slots, t = 1, . . . ,T , with T being the end of
the time horizon.

Model parameters:

di duration for surgery i, including turnover time.
sik binary parameter representing if patient i is assigned to

surgeon k.
S j planned session length of OR j.
n number of time slots needed for turnover.
c f fixed cost of opening an OR for a day.
cv variable cost per time slot to keep OR j open past time S j,

(i.e., overtime).
cs variable cost per time slot of surgeon elapsed time.

Decision variables:

x j binary decision variable indicating whether OR j is
opened (x j = 1) or not (x j = 0).

αi jt binary decision variable indicating whether surgery i is
allocated to OR j and starts in time slot t (αi jt = 1) or
not (αi jt = 0).

qi jt binary decision variable indicating whether patient i is in
OR j in time slot t (qi jt = 1) or not (qi jt = 0).

uikt binary decision variable indicating if surgeon k operates
on patient i in time slot t (uikt = 1) or not (uikt = 0).

o j decision variable representing overtime for OR j.
�k decision variable representing the last time slot surgeon k

is operating.
δk decision variable used to calculate the first time slot sur-

geon k is operating with T − δk being the first time slot
when surgeon k operates.

The following is the MIP formulation for the scheduling of
ORs only:

min
R∑
j=1

(
c f x j + cvo j

)+
K∑

k=1

cs(�k − (T − δk) + 1−n)

(1)

s.t.
P∑
i=1

αi jt ≤ x j ∀ j, t (2)

P∑
i=1

R∑
j=1

qi jt ≤
R∑
j=1

x j ∀t (3)
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R∑
j=1

T∑
t=1

αi jt = 1 ∀i (4)

P∑
i=1

qi jt ≤ 1 ∀ j, t (5)

qi jt ≥ αi jt ∀i, j, t (6)
t+di−1∑
t ′=t

qi jt ′ ≥ diαi jt ∀i, j, t = 1, . . . ,T − di + 1

(7)
R∑
j=1

T∑
t=1

qi jt = di ∀i (8)

tqi jt ≤ S j + o j ∀i, j, t (9)
P∑
i=1

uikt ≤ 1 ∀k, t (10)

T∑
t=1

uikt = disik ∀i, k (11)

R∑
j=1

qi jt =
K∑

k=1

uikt ∀i, t (12)

P∑
i=1

(T − t )uikt ≤ δk ∀k, t (13)

P∑
i=1

tuikt ≤ �k ∀k, t (14)

x j, αi jt , qi jt , uikt ∈ {0, 1};
o j, δk,�k ≥ 0 ∀i, j, k, t. (15)

The objective function (1) minimizes the fixed cost of open-
ing the ORs, the variable cost per time slot of overtime of all
ORs and the variable cost per time slot of surgeon elapsed time
(including operating time and idle time but not including the
turnover time after the surgeon’s last patient). Constraints (2)
make sure that ORs are opened if they have patients assigned to
them. Constraints (3) make sure that at any point in time the
number of patients that are being operated on does not exceed
the number ofORs opened. Constraints (4)make sure that every
patient starts surgery; thus, no cancellations are allowed. Con-
straints (5) make sure that at most one patient can occupy an
OR in any given time slot. Constraints (6) make sure that if a
patient starts surgery in a time slot in an OR, the patient occu-
pies that OR in that time slot. Constraints (7) make sure that the
number of time slots allocated to each patient in the OR after
surgery is begun is at least the patient’s surgery duration. Con-
straints (8) make sure that the number of time slots allocated
to each patient in the OR equals the patient’s surgery duration.
Constraints (9) make sure that if a patient is in the OR after the
planned session length of the OR, then overtime is used. Con-
straints (10) make sure that each surgeon can operate on at most
one patient at any given time. Constraints (11) make sure that if
a patient is assigned to a surgeon, then that surgeon operates
on that patient for the required time, and if the patient is not
assigned to that surgeon, then the surgeon does not operate on
that patient. Constraints (12) make sure that a surgeon operates

on the patient when the patient is in the OR. Constraints (13)
and (14) are used to calculate the first and last time slots during
which a surgeon is busy.

To speed up the solve time, we can add the following inequal-
ities to fix αi jt variables based on the fact that surgery has to
start in time to finish the procedure before the end of the time
horizon:

R∑
j=1

T∑
t=T−di+1

αi jt = 0 ∀i. (16)

We also add additional constraints to eliminate symmetry in the
problem; e.g., to make sure ORs are opened in order (Denton
et al. (2010)).

Next we build on the above model to develop our compre-
hensive deterministic model, which we call MIP[OR, PACU],
to solve the problem of allocating surgeries to ORs, given lim-
ited PACU capacity. This formulation augments formulation
(1)–(15) with additional decision variables and constraints that
ensure that a surgery is only started if there will be a PACU
bed available for the patient. Note that unlike at the OR stage,
where patients are assigned to specificORs, in the PACU they are
not assigned to specific beds, as is typically the case in practice.
MIP[OR, PACU] focuses on the OR costs and the prevention of
OR boarding, because they outweigh the costs of the PACU. The
following is a list of new parameters and decision variables.

Parameters:

ri recovery time of patient i.
B number of available beds in the PACU.

Decision variables:

βit binary decision variable representing whether patient i
starts recovery in time slot t (βit = 1) or not (βit = 0).

zit binary decision variable representing whether patient i is
in the PACU in time slot t (zit = 1) or not (zit = 0).

MIP[OR, PACU]: OR and PACU Scheduling Model

min
R∑
j=1

(c f x j + cvo j) +
K∑

k=1

cs(�k − (T − δk) + 1 − n)

(17)
s.t. Constraints (2)–(14)

βi,t+di−n ≤
R∑
j=1

αi jt ∀i, t = 1, . . . ,T − di

(18)
T∑
t=1

βit = 1 ∀i (19)

zit ≥ βit ∀i, t (20)
t+ri−1∑
t ′=t

zit ′ ≥ ri βit ∀i, t = 1, . . . ,T − ri + 1

(21)
T∑
t=1

zit = ri ∀i (22)
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P∑
i=1

zit ≤ B ∀t (23)

x j, αi jt , qi jt , uikt , βit , zit ∈ {0, 1};
o j, δk,�k ≥ 0 ∀i, j, k, t. (24)

The objective function (17) includes as before, the fixed cost
of opening the ORs, the variable cost per time slot of OR over-
time, and the variable cost per time slot of surgeon elapsed time.
Constraints (18) make sure that recovery can only start in the
time slot immediately following surgery. Note that turnover has
to be subtracted from surgery duration, since by definition it
includes turnover time. Constraints (19) make sure that recov-
ery starts exactly once. Constraints (20) make sure that if the
patient starts recovery in a time slot, then the patient is in the
PACU. Constraints (21) make sure that the number of time slots
allocated to each patient in the PACU after he or she starts
recovery is at least the patient’s recovery duration. Constraints
(22) make sure that the number of time slots allocated to each
patient in the PACU equals the patient’s recovery duration. Con-
straints (23) make sure that the number of patients in the PACU
in any given time slot does not exceed the number of beds
available.

Note that the objective function and the constraints in this
model strive to achieve high utilization; therefore, overtime and
OR boarding are not counted. To accomplish this, the model
picks the number of ORs to open, sets surgeon-to-OR assign-
ments, and sequences patients to avoid OR boarding while min-
imizing OR idling.

As before, we can add additional constraints to fix αijt vari-
ables, since surgery has to start in time to finish both surgery and
recovery before the end of the time horizon. Note that recovery
starts parallel to the turnover of theOR, so ri + di − n is the total
time that each patient needs to finish both surgery and recovery.
Moreover, we can also add constraints to fix βit variables, since
we know that recovery cannot start at the beginning of the time
horizon, when surgery could not have finished yet; i.e., the ear-
liest recovery can start is in time slot di − n + 1.

4. Solutionmethods

In this section, we focus on solution methods for MIP[OR,
PACU]. Due to the computationally challenging nature of the
problem, we develop a very fast and intuitive two-phase heuris-
tic that exploits the problem structure. In the first phase, we
find the surgeon-to-OR assignments. Note that this also means
finding the number of ORs to open. Considering these deci-
sions fixed, sequencing decisions are made in the second phase.
Since we cannot compute the optimal solutions to realistic prob-
lems, due to the computational challenges, we evaluate the per-
formance of the two-phase heuristic as follows. We propose a
decomposition heuristic in Section 4.2 that, similar to the two-
phase heuristic, separates the decisions about the number ofORs
to open and surgeon-to-OR assignments in a preprocessing step
and fixes them before the overall problemwith sequencing deci-
sions is solved in the second step. Although this decomposition
heuristic does not guarantee optimal solutions, we show that it
provides good error bounds; thus, it serves as a benchmark for
measuring performance of the two-phase heuristic. In Section 7

we compare the approaches on the basis of computational time
and solution quality.

4.1. Fast two-phase heuristic

First, we introduce the very intuitive and easy-to-implement
two-phase heuristic for the surgery scheduling problem. We
explain each of the two phases of the heuristic in this section.

... Phase : Surgeon-to-OR assignment heuristic
In this phase, we first fix the number of ORs and assign sur-
geons to ORs using the Longest Processing Time (LPT) first
algorithm; then, using this method, we find the ideal number of
ORs to open through exhaustive search. Some have considered
this problem in the on-line setting, where decisions are made
without knowing the duration distributions (for example, Berg
and Denton (2017)); however, we consider a different context
in which the surgeries to be scheduled are known, and duration
distribution information can be used in the scheduling process.
To our knowledge, we are the first to prove the result we present
for the LPT algorithm, which is an extension to the results of
Dell’Olmo et al. (1998) where they do not distinguish between
cost of regular time and overtime.

Consider each surgeon’s block (i.e., all of the surgeries they
perform for the day) and order the blocks in decreasing order
based on their total surgical time duration (including turnover).
Given a fixed number of ORs, we take the ordered list of surgery
blocks and then perform the assignment of surgeons to ORs by
always selecting next theORwith themost available time, break-
ing ties arbitrarily. When the planned session length is the same
for all ORs, this is equivalent to choosing the least utilized OR.
(Note that this does not consider the PACU at all; rather, that
will be considered in the second phase.) This problem is exactly
the extensible bin packing problem, whereORs are the bins, sur-
geon blocks are the items, and OR overtime means extending
the bins. The version of the problem where surgeon blocks of
size no greater than S/3 can be preempted is called the semi-
preemptive version. Let CH be the cost of the heuristic solution
to the surgeon-to-OR assignment problem andC∗ be the cost of
the optimal semi-preemptive solution for the same instance. By
extending the results of Dell’Olmo et al. (1998), we prove that
LPT has the following worst-case performance bound when the
number of ORs is fixed.
Theorem 1. For any instance where the planned session length of
each OR is S we have

CH

C∗ ≤ 1 + Scv

12c f
,

where an instance is defined by the list of surgeon blocks and the
number of ORs available.Moreover, there exist instances for which
this bound is tight.

The proofs and definitions, which are presented in Online
AppendixA, closely parallel the proofs inDell’Olmo et al. (1998)
and extend them to the case of arbitrary costs c f and cv and
planned session length S.

To complete phase 1, we employ exhaustive search in R; i.e.,
we perform the heuristic and vary the number of ORs available,
to easily find the solution with minimal cost, which will also
possess the above shown worst-case performance guarantee.
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Note that Theorem 1 is valid under the assumption that the
planned session length of each OR is S, but the approach can
be applied to the more general case where the planned session
length differs by OR.

Observe that based on the block scheduling rules in place,
the list of surgeries to be performed that feeds into our algo-
rithm is already consistent with the block schedule. We do allow
two surgeons from different services to use the same room
on the same day. If this is not acceptable in certain hospital
contexts, one can restrict attention to each service to enforce the
constraint.

... Phase : Sequencing heuristic
LPT assigns surgeon blocks toORs, which only requires the total
duration of a surgeon block (i.e., the sum of the durations of
all surgeries of a surgeon) while recovery information is dis-
regarded. The LPT heuristic is insensitive to the sequence of
surgeries within a surgeon’s block; any sequence of surgeries
will give the same block duration when recovery is ignored.
However, the question of sequencing surgeries within a block
given limited PACU capacity still remains. This problem is sim-
ilar to the scheduling problem F2|block|Cmax, which is a two-
machine flow shop problem with blocking (i.e., if there is OR
boarding, the patient’s surgery will be delayed until such time
that a PACU bed is available at the end of surgery), where the
objective is to minimize overall makespan. However, in our
setting, the goal is to minimize makespan with respect to the
first stage, the ORs (which also minimizes OR overtime). This
goal is justified by the much lower cost of operating the PACU
and the objectives of a typical hospital practice. Moreover, if
OR boarding occurs (which we allow in the simulation model
which has randomdurations), thatmeans that a job spends some
of its machine 2 processing time on machine 1 (i.e., recover-
ing in the OR) and will have a correspondingly smaller pro-
cessing time on machine 2 as a result. Thus, this problem is
different from the machine scheduling context. We propose a
heuristic for sequencing patients within a single surgeon’s block.
OR overtime is a non-decreasing function of surgeon elapsed
time; thus, through minimizing surgeon elapsed time we also
minimize OR overtime. Moreover, surgeons also like to avoid
the potential idle time induced by patient recovery in the OR.
Therefore, the objective of the heuristic is to minimize sur-
geon elapsed time. The heuristic tries to match the recovery
time of the patient currently in the OR to the next patient’s
surgery time to avoid OR idling due to a PACU bed being
unavailable and thus minimize surgeon elapsed time and OR
overtime.

Let W be a P × P matrix, with Wij = ri − d j for i �= j and
Wii = ∞. Let W j = miniWi j ∀ j, and let p∗ = argmax j W

j be
the first patient in the sequence. Then the heuristic follows.

for (a = 1, . . . ,P − 2) do
if min j Wp∗ j > 0 then

p∗
new = argmax jWp∗ j

else
p∗
new = argmax j:Wp∗ j≤0Wp∗ j

end
add p∗

new to the end of the sequence and exclude this
patient from further consideration.
p∗ = p∗

new
end

Once the sequence is set, we assign start times to patients,
inserting idle time into the OR schedule to avoid OR boarding.
Note that as before, recovery and turnover are parallel events.
We refer to this as the difference heuristic.

We have the following performance bound for the difference
heuristic.

Theorem 2. In the difference heuristic setting, where Wi j = ri −
d j for i �= j andWii = ∞, let

Wi = max
j: j �=i

(Wij)
+; W̄ i = min

i
Wi; wi = min

j: j �=i
(Wij)

+;

w̄i = max
i

wi ∀i,
W j = max

i:i �= j
(Wij)

+; W̄ j = min
j
W j; w j = min

i:i �= j
(Wij)

+;

w̄ j = max
j

w j ∀ j.

Then for any instance we have

CDH −C∗
1 ≤ cs × min

{ P∑
i=1

Wi − W̄ i −
( P∑

i=1

wi − w̄i

)
,

P∑
j=1

W j − W̄ j −
⎛
⎝ P∑

j=1

w j − w̄ j

⎞
⎠
⎫⎬
⎭ ,

whereCDH is the cost of the schedule given by the difference heuris-
tic, andC∗

1 is the cost of the optimal solution. Moreover, there exist
instances for which this bound is tight.

It can also be shown that the difference heuristic is optimal
in the following case that often happens in practice with long
procedures.

Theorem 3. For any instance with a single surgeon, the differ-
ence heuristic results in an optimal sequence if the number of cases
assigned to the surgeon is two.

For proofs of these theorems, please refer toOnlineAppendix
B. Note that the idea behind Theorem 3 also applies for sequenc-
ing two surgeons in the sameOR. To see this, considering allow-
ing for each surgeon to have an arbitrary number of patients
and fix the surgery sequence of each surgeon. By associat-
ing each surgeon with the surgery duration of his or her first
patient and the recovery duration of his or her last patient, the
argument proving Theorem 3 also applies to this problem: the
difference heuristic will find the optimal sequence of the two
surgeons. From this we can further observe that if two surgeons
share an OR with one associated PACU bed, each has at most
two surgeries, and if one surgeon follows the other, then the dif-
ference heuristic will find an optimal sequence for each surgeon
and also an optimal ordering of the surgeons, conditional on the
sequence of surgeries for the two surgeons being fixed first.

In some hospitals, multiple surgeons may use an OR on a
given day. In such cases, once the sequence within each sur-
geon’s block is decided, if for each surgeon block we consider
the first patient’s surgery duration and the last patient’s recovery
duration, we can again use the difference heuristic to sequence
surgeons that are assigned to the same OR. In the following,
when referring to the difference heuristic, we mean sequencing
patients within each surgeon’s block and then sequencing sur-
geons that are assigned to the same OR.
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4.2. MIP decomposition heuristic

To evaluate the performance of the two-phase heuristic, we pro-
pose the following decomposition heuristic as a benchmark,
which also has two parts, which we will call steps to avoid con-
fusion with the phases defined in Section 4.1. In step 1 we use
an MIP to assign surgeons to ORs in the absence of PACU con-
straints; in step 2 we fix the surgeon-to-OR assignments in the
MIP[OR, PACU] and sequence surgeries using the restricted
instance of MIP[OR, PACU].

We presented a formulation for the OR scheduling problem
that assigns surgeons to ORs in Section 3. To lay the foundation
for incorporating PACU constraints into the model, that formu-
lation was more complex due to accounting for discrete time
slots. However, theOR scheduling problem, which is the same as
the extensible bin packing problem, can be formulated in a sim-
pler way that we present now. We refer to the following model
as MIP[OR] for short. Let θ jk = 1 if surgeon k is assigned to
OR j and θ jk = 0 otherwise. Using the same notation as defined
before, the following is the MIP[OR]:

min
R∑
j=1

(c f x j + cvo j) (25)

s.t.
K∑

k=1

(
θ jk

P∑
i=1

disik

)
≤ S jx j + o j ∀ j (26)

R∑
j=1

θ jk = 1 ∀k (27)

θ jk, x j ∈ {0, 1}; o j ≥ 0 ∀ j, k. (28)

The objective function (25)minimizes the fixed cost of open-
ing the ORs and the variable cost of OR overtime. Constraints
(26) make sure that if a surgeon is assigned to an OR it will be
open and that overtime is used if necessary. Constraints (27)
make sure that each surgeon is assigned to exactly one OR.
Moreover, symmetry-eliminating constraints can be added as
before.

Solving MIP[OR] in the first step of the decomposition
heuristic generates the surgeon-to-OR assignments. To enforce
these surgeon-to-OR assignments in the complete model, we
add the following constraint to MIP[OR, PACU]:

T∑
t=1

qi jt ≥ sikθ jk ∀i, j, k. (29)

Since surgeons are preassigned to ORs, only one patient is
allowed to be in an OR at any given time, and because surgeon
elapsed time is minimized, there is no need for the variables uikt ,
andwe can replace Constraints (10)–(14) inMIP[OR, PACU] by
the following constraints to reduce the number of decision vari-
ables:

P∑
i=1

tqi jt sik ≤ �k ∀ j, k, t (30)

P∑
i=1

(T − t )qi jt sik ≤ δk ∀ j, k, t. (31)

This decomposition is not guaranteed to find the overall optimal
solution to the problem; however, the following is a lower bound

on the overall optimal solution:

c f
R∑
j=1

x∗
j + cv

R∑
j=1

o∗
j + cs

P∑
i=1

di,

where x∗
j and o∗

j is the optimal solution to MIP[OR] for all j.
Thus, the first two terms represent the fixed cost of opening
the ORs and the variable cost of OR overtime when the PACU
is ignored. The last term is a lower bound on surgeon elapsed
time, and can be calculated from the data. This is a lower bound,
since the MIP[OR] is a relaxation of the overall problem with
the assumption that the PACU has infinite capacity. We provide
some insight into the performance of the decomposition heuris-
tic in Section 7.3.

5. Simulationmodel

Since the previous models assume deterministic surgery and
recovery durations, the question arises of how the resulting
schedules would perform under uncertainty. To account for the
stochastic nature of surgery and recovery durations, we have
developed a discrete-event simulation model to evaluate the
daily schedules generated by the decomposition heuristic and
the two-phase heuristic. Figure 2 shows the steps of generating
and evaluating a schedule. To generate a schedule using the two-
phase heuristic, first we use LPT to get surgeon-to-OR assign-
ments and, second, we use the difference heuristic to sequence
patients within a surgeon’s block and surgeons that are assigned
to the same OR. In the decomposition heuristic setting, we first
use theMIP[OR] from Section 4.2 to get surgeon-to-OR assign-
ments and then use the restrictedMIP[OR, PACU] from Section
3 to sequence surgeries. Once a schedule is generated, we eval-
uate it with the discrete-event simulation model to find the
expected cost of the schedule.

Inputs to the discrete-event simulation model include the
number of ORs available, the number of PACU beds available,
patient–surgeon assignments, surgery start times, surgery and
recovery duration distributions, turnover duration, the fixed
cost of opening an OR, the variable cost of OR overtime,
and the variable cost of surgeon elapsed time. The planned
session length of each OR is 8 hours, which is consistent in
both heuristics. For both surgery and recovery durations, we
assumed lognormal distributions (Zhou and Dexter, 1998;
May et al., 2000). If enough data were available, we considered
surgeon and case-specific surgery and recovery durations.
However, some surgeries are performed often by a surgeon,
whereas others are not. Due to this, not all surgeon–case pairs
have enough data points to obtain a distribution to find per-
centiles. To overcome this challenge, for each surgeon–case
pair that did not have at least 10 samples, we used the over-
all mean and variance for all surgeon samples for the case
type.

Patients move to the OR after their surgery start time as
soon as their surgeon and an OR is available. A random surgery
duration for the patient is generated from the surgery duration
distribution based on historical data. Once the surgery is over,
the patient moves to the PACU if there is a bed available. Other-
wise, the patient waits in the OR until a bed becomes available
or his or her recovery duration is up, which is generated
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Figure . The process of schedule generation and evaluation using two two-stage heuristics: the two-phase heuristic and the decomposition heuristic.

from the recovery duration distribution, based on histori-
cal data. As soon as the patient leaves the OR, a 30-minute
turnover time starts, after which the OR is ready for the next
patient.

Simulation evaluation criteria included cost as defined
before: cost of opening the ORs, OR overtime, and surgeon
elapsed time. Moreover, in the deterministic setting, we make
sure that OR boarding does not occur. In the simulation, how-
ever, OR boarding can happen if recovery takes longer than
expected and there are no beds available in the PACU. This is
an additional performance metric measured in the simulation
model.

6. Numerical results

The worst-case performance of each phase of the two-phase
heuristic provides an upper bound on the error across all possi-
ble model instances; however, the average performance is also a
critical metric, as it more closely reflects what can be expected
in practice. We demonstrate the performance of the combined
phases through a case study in the next section. In this section,
for a set of random test cases we compare the numerical per-
formance of the phases of the two-phase heuristic: LPT and the
difference heuristic.

6.1. Surgeon-to-OR assignment: LPT heuristic

In order to estimate the average performance of phase 1 of the
two-phase heuristic, we tested LPT on 270 randomly generated
instances where surgeon block durations were independent and
identically distributed uniform random variables between zero
and one and an OR day is one unit (S = 1). Instances were
defined in terms of the number of surgeon blocks and the vari-
able cost of OR overtime, cv ; the fixed cost of opening an OR, c f ,
was one for all cases, without loss of generality. Each instance
was tested on 30 replications. The number of surgeon blocks
considered was 10, 15, and 20 and the values considered for cv
were two, four, and eight. The choice of cv/c f = 4 is intended to
be representative of a hospital setting with the additional values

of two and eight selected. The performance was calculated using
the following formula for the optimality gap:

CLPT −C∗
N

C∗
N

× 100%,

where C∗
N is the optimal solution of the non-preemptive prob-

lem.
Overall, the average gap was 0.42%, the worst-case gap was

6.99%, and the optimal solution was found 77.41% of the time.
The heuristic is most prone to error when the mean surgeon
block duration is around half of the OR day. This is intuitive,
since as surgeon block durations tend to zero or to the OR day
duration, the heuristic is expected to have zero error (e.g., dura-
tions close to zero approach a continuous relaxation, whereas
surgeon block durations close to the OR day durationmean that
there are no alternative arrangements of surgeon blocks within
ORs). Moreover, the largest error is associated with the largest
ratio of variable cost of OR overtime to fixed cost of opening an
OR, which is also intuitive, as there is a high penalty for errors
in such cases. Our conclusions hold across the different numbers
of surgeon blocks considered.

6.2. Surgery sequencing: Difference heuristic

In order to estimate the average performance of phase 2 of the
two-phase heuristic, we conducted a numerical analysis for the
general, orthopedic, and urology surgery services, which are
common to most hospitals. To generate test instances, we ran-
domly sampled days from our data set when surgeries in these
specialties were performed. To match the heuristic’s setup, days
were only considered if each surgeon performed all of his or her
cases in the sameOR.On the days selected, eachORwas consid-
ered separately. Each day we took all surgeons and surgeries per-
formed in the sameOR and sequenced themusing the difference
heuristic (sequenced surgeries within each surgeon’s block and
then sequenced surgeons in the OR) with one PACU bed avail-
able. We considered 270 single OR, single PACU bed instances.
Then we used the MIP to obtain the optimal solution and com-
pared the two schedules based on surgeon elapsed time, since in
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these environments minimizing surgeon elapsed time also min-
imizesOR overtime. The optimality gapwas calculated based on
the following formula:

CDH −C∗
1

C∗
1

× 100%.

Overall, the average gap was 0.70%, the worst-case gap was
30.30%, and the optimal solution was found 95.19% of the time.
The heuristic tends to perform poorly when the mean recovery
duration exceeds mean surgery duration. This is intuitive, since
recovery duration tends to have less effect on sequencing deci-
sions when surgeries are long and recovery durations are short.

7. Case study

In this section, we present a case study to demonstrate how our
algorithms can be used to generate schedules that work well
under uncertainty.

7.1. Case study description

The data we used were provided by our partner hospital, a
medium-sized teaching hospital. The extensive data set includes
information over a span of 14 months about arrival and depar-
ture times in the ORs and the PACU and procedure and surgeon
information.

To test our proposed heuristics, we selected three services
(orthopedic, general, and urology) that are common to most
hospitals. This provided large enough instances for our results
to be relevant and small enough instances to be able to get solu-
tions using the decomposition heuristic. We randomly sampled
the data set to capture days that had orthopedic, general, and
urology surgeries and there were between 15 and 20 patients of
these types of surgeries. On each day, there were up to 15 ORs
available to open. We compared the two heuristics (two-phase
and decomposition) for each instance using themean cost given
by the simulation, which includes the fixed cost of opening the
ORs, the variable cost of OR overtime, and the variable cost of
surgeon elapsed time.

Based on the assessment of the importance of criteria for the
hospital, the following parameters were used. We set c f = 20
and cv = 4, so that about 1.5 hours of overtime would be
equivalent to opening a new OR. Moreover, cs = 1 to ensure
that surgeon waiting was minimized and that each surgeon

performed all of his or her cases consecutively. Our time slot
length was 15 minutes and OR turnover time was set to 30
minutes. The former was chosen because it provides suitably
detailed resolution of surgery schedules and the latter was based
on expert opinion at our partner hospital.

7.2. Surgery and recovery duration hedging

It is well known in OR scheduling practice that using the mean
surgical durations leads to increasing delays as the day pro-
gresses. In the authors’ experience, hospitals sometimes use the
mean or median durations but often try to hedge against uncer-
tainty by using percentiles from the duration distribution that
range between the 60th and 80th percentiles. Planning for cases
to take longer than the median helps create more reliable sched-
ules.

Our models require deterministic data input; however,
surgery and recovery durations are stochastic. Therefore, we
need a way to estimate these durations that will result in highly
reliable schedules. To achieve this, we performed experiments in
which schedules based on various percentile combinations were
evaluated with the simulation model. From this, we selected a
percentile from the surgery and recovery duration distributions
to be used as deterministic data inputs. As before, surgery and
recovery distributions were surgeon and case specific, if enough
data were available, and we assumed a lognormal distribution to
find the desired percentile (Zhou and Dexter, 1998; May et al.,
2000).

To determine the best percentile given our system parame-
ters, our approachwas to randomly sample days for the practices
considered (general, orthopedic, and urology) to create a set of
test instances. Due to the long tail on surgery and recovery dura-
tions, the durationmean tends to be significantly higher than the
median (typically, the mean is closer to the 60th percentile than
to the 50th). Durations below themean are not expected to have
good performance, due to the very high probability of delays.
Therefore, we evaluated the 60th, 70th, and 80th percentiles for
surgery and recovery durations. For each test instance, we used
the decomposition heuristic to obtain a schedule using all nine
combinations of percentiles and evaluated the schedule with
the simulation model. The large number of runs for each
instance and computational challenges limited the size of the
test suite. Figure 3 shows the cost for 12 instances considered
with 18 patients and eight surgeons on average, as determined

Figure . Hedging analysis of randomly sampled days with surgeon and case-specific surgery and recovery durations under the decomposition heuristic. Nine pairs of
surgery and recovery percentiles are compared for each test instance.
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by the simulation. Mean simulation costs were calculated with
a 95% confidence interval, and the half-width of the confidence
intervals was less then 0.2% in all instances, indicating high pre-
cision. The variation between percentiles for each instance was
not large, indicating relative insensitivity, due to the fact that
the schedules were optimized. In our notation, (60, 80) means
that surgery was considered at the 60th percentile and recovery
was considered at the 80th percentile, for example. We calcu-
lated howmany times each percentile combination achieved the
minimum considering all instances. The pairs (60, 70) and (60,
80) each achieved the minimum in four instances, and the aver-
age total cost of (60, 70) was also less than that of (60, 80), so we
used (60, 70) in our case study in Section 7.3.

We show that modeling the PACU can significantly reduce
overtime costs in the following analysis. As the benchmark for
schedules that do not attempt to optimize sequencing, we used
phase 1 of the two-phase heuristic–i.e., LPT–to assign surgeons
to ORs in a near-optimal manner and then used a random
sequence of surgeon blocks in ORs and a random sequence of
surgeries within each surgeon’s block. Random sequences were
used as the benchmark since there were no discernible pat-
terns based on historical data, and this way the comparison is
based on the importance of sequencing, as opposed to surgeon-
to-OR assignments. We compared overtime for the optimized
and randomized schedules, which are affected by every aspect
of the problem (number of ORs opened, case sequencing, sur-
geon sequencing, and OR idling to avoid OR boarding). When
we use the (60, 70) combination for decomposition, we see that
themean overtime cost for the 12 instances was 88.6 with a stan-
dard deviation of 59.8. Using LPT and random sequence with
the (60, 60) combination, which again was picked by calculat-
ing how many times each percentile combination achieved the
minimumcost considering all instances, themean overtime cost
was 100.6, with a standard deviation of 55.5. Although the stan-
dard deviation was similar, there was a 12% reduction in mean
overtime cost, so we observe that considerable improvements
are possible when the limited availability of the PACU is consid-
ered through sequencing.

7.3. Two-phase heuristic performance—Case study results

We considered 43 randomly sampled days. Statistical informa-
tion about the data considered and computation times are given

Table . Statistics about the data and computational time for the  days consid-
ered for the case study.

Minimum Average Maximum

Surgery duration (minutes)   
Recovery duration (minutes)   
Number of ORs used   
Number of patients   
Number of surgeons   
Two-phase heuristic CPU time (seconds) . . .
Decomposition heuristic CPU time (seconds)     

in Table 1. Observe the dramatic reduction in processing time
for the two-phase heuristic. On average, the decomposition
heuristic took 3 × 106 times as much CPU time.

Figure 4 shows the mean simulation costs associated with
the schedules generated for the 43 instances. As before,
schedule cost is the sum of the fixed cost of opening the ORs,
the variable cost ofORovertime, and the variable cost of surgeon
elapsed time. The figure shows the mean cost obtained from the
simulation associated with schedules generated with the two-
phase heuristic and with the decomposition heuristic. Mean
simulation costs were calculated with a 95% confidence interval,
and the half-width of the confidence intervals was less than 1.2%
in all instances, indicating high precision. We can see from the
figure that the two-phase heuristic performed well when com-
paredwith the decomposition heuristic, sometimes even beating
the decomposition heuristic in part due to the stochastic perfor-
mance analysis.

Our computational experiments indicated that MIP[OR,
PACU] cannot be solved for all instances in a reasonable time.
Therefore, in the deterministic setting, we compared solutions
to the lower bound derived from the decomposition heuristic
in Section 4.2 to evaluate how often the heuristics found the
optimal solution to the overall problem. The two-phase heuris-
tic found a solution with an objective function value of the
lower bound in 26% of the instances, and on average the solu-
tions were 6% away from the lower bound with a maximum
of 27%. The decomposition heuristic found a solution with the
objective function value equal to the lower bound in 37 out
of the 43 cases (86% of the time), and on average the solu-
tions were 0.7% away from the lower bound with a maximum
deviation of 9%. These results indicate that the two-phase
heuristic is likely to be very good; thus, the additional advantage

Figure . Simulation cost comparison between the decomposition and the two-phase heuristic. The results are equally good when the cost of OR boarding is considered
at the same rate as OR overtime cost.
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Table . Comparison of two-phase heuristic schedules to hospital schedules with respect to average OR overtime (OT) and surgeon elapsed time (SET) in minutes.

A B C D

Heuristic difference:
realized – planned (min)

Hospital difference:
realized – planned (min)

Planned difference:
hospital – heuristic (min)

Realized difference:
hospital – heuristic (min)

Surgical Avg # Avg # of Avg # of
Case # service OT SET OT SET OT SET OT SET of ORs patients surgeons

 General  −   −        
 Orthopedic      −      
 Urology     −  −  −  −    
 Integrated

model
 −   −        

of using the computationally challenging optimizationmodels is
limited.

Overall, solutions generated by the two-phase heuristic were
within 10% of the decomposition heuristic solutions in 93% of
the instances considered and within 5% in 74% of the instances
considered when evaluated using the simulation model. The
average difference between the cost achieved by the two-phase
heuristic relative to the decomposition heuristic was 2.38% with
a standard deviation of 4.6.

In addition to minimizing cost, our goal is to generate sched-
ules with minimal OR boarding. In the schedules obtained
through the two-phase heuristic, the simulation showed that the
average percentage ofOR time used for boardingwas 0.05%with
amaximumof 0.34%. For the decomposition heuristic, the aver-
age percentage of OR time used for boarding was 0.27% with a
maximum of 3.16%. Moreover, in 33 out of the 43 cases (77%
of the instances), the two-phase heuristic achieved less board-
ing than the decomposition heuristic. This is likely due to the
stochastic performance analysis.

7.4. Hospital case study results

We conducted another case study to compare the partner hos-
pital’s performance with that of the two-phase heuristic perfor-
mance. In this case study, we considered four cases: the three
previously studied services individually (general, orthopedic,
and urology services) and case 4, which combines the three ser-
vices together, allowing for multiple services to share an OR. In
each case, we randomly sampled 25 days from the data set and
compared schedules generated with respect to average OR over-
time and average surgeon elapsed time across the 25 instances.
Note that the 25 instances that combined the services (case 4)
were independently sampled.

Our data set included planned surgery start times (i.e., start
times estimated before the day of surgery) and realized surgery
start times, planned and realized surgery durations, and realized
recovery durations. We divided the data set into two parts. The
first part was used to establish surgery and recovery duration
distributions. The second part was used to sample test instances
for numerical analysis. In the planned schedules of the hospital,
planned surgery start time and planned surgery duration were
used from the data set, and in the realized schedules of the hos-
pital, realized surgery start time and realized surgery duration
were used. In the planned heuristic schedules, we used the two-
phase heuristic with the (60, 70) percentile combination from
the duration distributions to create the schedule. For realized
heuristic schedules, we used the realized surgery and recovery

durations from the data set and the start times from planned
heuristic schedules. If surgery was delayed due to overutiliza-
tion, the surgery started as soon as the OR and the surgeon were
available. We also allowed surgery to start 15 minutes before the
scheduled start time if all resources were available to make the
comparison fair, as this is commonpractice at our partner hospi-
tal. To give insight, we report overtime and surgeon elapsed time
separately.

First, we compared the averages of the realized values minus
the planned values in the heuristic schedules and in the sched-
ules of the hospital in terms of our performance metrics,
OR overtime, and surgeon elapsed time. This is shown in
columns A and B in Table 2. The results show that both the
two-phase heuristic and the hospital tend to underestimate
OR overtime in all cases and surgeon elapsed time in case 2
and 3. However, both the heuristic and the hospital overestimate
surgeon elapsed time in case 1 and 4. Overall, the heuristic is
better.

Second, we looked at the performance metrics in terms of
what the hospital planned for minus what the heuristic planned
for, shown in column C. The results show that the hospital plans
for more overtime in all cases except case 3 and that the hos-
pital plans for more surgeon elapsed time in cases 1 and 4.
Third, shown in column D, we analyzed the performance met-
ric in terms of what was realized at the hospital minus what
would have been realized had the heuristic schedules been used.
We find that, similar to the planned schedule comparison, the
hospital had more overtime and more surgeon elapsed time in
all cases except case 3. The numbers suggest significant benefit
from using the heuristic.

8. Conclusions, limitations, and future work

This article focused on the problem of creating single-day
elective surgery schedules while considering resources directly
supporting surgery (i.e., ORs, surgeons) and resources indirectly
supporting surgery (i.e., PACU). We proposed a fast two-phase
heuristic to solve this problem: in the first phase, LPT decides
on the number of ORs to open and assigns surgeons to ORs,
and in the second phase, the difference heuristic sequences
cases within each surgeon’s block and also sequences surgeon
blocks in ORs. We found that our two-phase heuristic, which is
deterministic in nature, still performed well under uncertainty
when evaluated with a discrete-event simulation model and
achieved high resource utilization and improved schedule pre-
dictability when compared with a much more computationally
intensive heuristic that achieves near-optimal solutions to
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MIP[OR, PACU]. It also performed well when compared
with hospital schedules. Moreover, the two-phase heuristic
is not only fast and performs well but is also very intuitive
and provides researchers with sound insights. Also, it can be
easily implemented and used by healthcare professionals with
a simple computational aid such as Excel and without any
difficult computational implementation or the use of an MIP
solver. This is extremely important to hospitals, as most do not
wish or have the opportunity to invest in and use complex and
high-maintenance systems.

In addition to the practical advantages of the two-phase
heuristic, we proved theoretical worst-case performance guar-
antees for both phases and showed that the bounds are tight.
We also conducted numerical experiments for each heuristic
individually and showed that each has excellent average case
performance.

We recognize the limitation that, although our methodol-
ogy can contribute to reducing hospital costs, surgeon-to-OR
assignments and resequencing cases might have additional
complications. For example, surgeons may wish to perform the
most difficult case first or control sequencing in some other way.
Moreover, unexpected changes in staff availability or changes
in patient condition may require changes to schedules. Nev-
ertheless, we believe that the heuristic we have proposed can
be valuable for generating a high-quality schedule as a starting
point, which can be subsequently adapted to accommodate
unexpected needs. We believe that these methods could be
implemented in hospitals to achieve great benefits to both the
hospital and to the patients.

Future work could include other resources not considered
in this article that support and are coupled to surgery, such as
post-surgical wards and the preoperative unit. Consideration of
other human resources not mentioned in this article, like spe-
cialized surgical teams, OR and PACU nurses, and anesthesiol-
ogists, may also lead to more realistic models.
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