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We propose a multistage stochastic mixed-integer programming formulation for the assignment of surg-
eries to operating rooms over a finite planning horizon. We consider the demand for and the duration of

surgery to be random variables. The objective is to minimize three competing criteria: expected cost of surgery
cancellations, patient waiting time, and operating room overtime. We discuss properties of the model and an
implementation of the progressive hedging algorithm to find near-optimal surgery schedules. We conduct numeri-
cal experiments using data from a large hospital to identify managerial insights related to surgery planning and
the avoidance of surgery cancellations. We compare the progressive hedging algorithm to an easy-to-implement
heuristic for practical problem instances to estimate the value of the stochastic solution. Finally, we discuss an
implementation of the progressive hedging algorithm within a rolling horizon framework for extended planning
periods.
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1. Introduction
Operating rooms (ORs) are responsible for a large
portion of total hospital revenues (HFMA 2003) and
costs. Therefore, substantial revenue increases and
cost reductions might be achieved through better
management of ORs. In many cases, a two-phase pro-
cess is followed to plan for a day of surgery. In the
first phase, surgeries are assigned to days. This is
often done weeks prior to the day of surgery. In the
second phase, surgeries are sequenced and scheduled
within ORs, often days prior to the day of surgery.
Surgery assignment, sequencing, and scheduling deci-
sions have the potential to influence the cost of over-
time and cancellations.

Surgery cancellations result in prolonged hospital
stays, delayed perioperative treatments, and repeated
preoperative tests and treatments, as well as anxi-
ety and emotional hardship for the patient and the
patient’s family (for other causes of surgery cancel-
lations, see Dexter et al. 2014). A recent study indi-
cates that as many as 50% of cancellations can be pre-
vented (Gillen et al. 2009). One way to prevent them is

to create surgery plans that carefully consider future
uncertainty in demand and duration of surgeries.

Designing surgery plans is a complicated task be-
cause of the uncertainty in demand for and duration
of surgery. The occurrence of urgent and emergent
cases is one of the reasons that uncertainty in demand
is a significant factor (Gerchak et al. 1996, Zonderland
et al. 2010). However, McManus et al. (2003) found
that the principal source of uncertainty in demand is
not the unscheduled cases. There also exists a consid-
erable amount of uncertainty in demand for elective
surgeries. Thus, the mix of surgeries requested varies
from day to day. Combining this with uncertainty in
the duration of individual surgeries (Gul et al. 2011)
makes the task of creating surgery plans challenging.

In this article, we study the problem of assignment
of surgeries into future days and ORs over a finite
planning horizon. Decisions in our model include
scheduling and rescheduling of surgeries, where the
latter results from cancellations that may occur on the
day of surgery. Cancellations are an important con-
sideration, because they are commonly observed and
they significantly influence efficiency and quality of
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patient care. For example, one study found that the
percentage of cancelled surgeries ranges between 5%
and 20% across institutions in the United States (Argo
et al. 2009), and the cancellation rates on the day of
surgery are reported to be greater than 10% in many
facilities (Schuster et al. 2011). Evidence suggests that
careful rescheduling of cancelled surgeries may avoid
increases in variability in surgical workload (Epstein
and Dexter 2013).

We formulate a multistage stochastic mixed-integer
program for surgery planning. We consider three com-
peting criteria in the objective function: expected cost
of surgery cancellations, patient waiting (the num-
ber of days between when the surgery is requested
and the day it is performed), and OR overtime. We
implement a customized version of the progressive
hedging algorithm (PHA), which exploits the under-
lying problem structure to find near-optimal surgery
plans. In particular, we propose a Lagrangian mul-
tiplier update method that is motivated by having
binary variables in the relaxed constraints. We also test
a penalty update method that uses the information
about the convergence pattern of the primal and dual
variables. We compare the PHA with a deterministic
heuristic that is similar to planning rules likely to be
used in practice. We also discuss an implementation
of the PHA within a rolling horizon framework for
extended planning periods. We use our model to solve
instances of the problem based on data from a large
medical center. Our results provide insight regarding
answers to the following three questions:

1. Which factors in the model have significant im-
pact on surgery cancellations?

2. What is the value of considering the randomness
in demand and total daily surgery durations when
planning surgeries?

3. Which PHA parameters have the greatest impact
on the performance and solution quality of the PHA?

The remainder of this article is organized as fol-
lows. In the next section, a brief literature review
of surgery planning studies is presented. In §3, the
decision-making process is described and a multistage
stochastic mixed-integer programming model is for-
mulated. In §4, our implementation of the PHA is
discussed. In §5, an experimental study is presented.
Concluding remarks are given in §6.

2. Literature Review
The literature review is divided into three categories.
The first category is deterministic models for OR
planning. The second category includes articles that
consider uncertainties related to the surgery dura-
tions, but not demand uncertainty for elective surg-
eries. Since the demand for elective surgeries over
the planning period is assumed to be known in these

studies, the models are static; i.e., all decisions are
given at the beginning of the planning period. The
third category of articles considers uncertain elective
surgery demands in the context of dynamic planning.

Among articles in the first category of research,
Guinet and Chaabane (2003) used a two-phase ap-
proach based on weekly OR planning. Their integer-
programming model assigns surgeries to ORs and
particular time blocks of each day over a finite plan-
ning horizon. The objective is to minimize patients’
indirect waiting time, i.e., the time between the pro-
cedure and hospitalization date, and OR overtime.
Their model also considers equipment constraints and
availability of surgeons. Fei et al. (2008, 2009, 2010)
proposed an integer-programming model for optimal
assignment of surgeries to ORs and days to minimize
OR overtime and maximize OR utilization. They for-
mulated the problem as a set partitioning model and
applied a column generation-based heuristic to solve
the model.

In the second category, Min and Yih (2010) mod-
eled the problem of allocating surgeries to the blocks
reserved for different surgery specialties. They formu-
lated the problem as a two-stage stochastic mixed-
integer program and used a sample average approxi-
mation method to solve the problem. Their model also
considers the availability of intensive care unit (ICU)
beds during the block assignment phase. The length
of stay in an ICU bed and surgery durations are
the stochastic parameters in their model. The objec-
tive function minimizes patient priority-based waiting
costs and OR overtime costs.

Lamiri et al. (2008a) solved the problem of assign-
ing elective surgeries to periods over a planning
horizon while considering the impact of uncertainty
related to emergency case arrivals. They first modeled
the problem as a stochastic combinatorial optimiza-
tion problem and then provided a reformulation in
the form of a sample average approximation prob-
lem. The authors considered expected overtime costs
and patient-related costs as the performance mea-
sures. The surgery durations are assumed to be deter-
ministic. Lamiri et al. (2008b) extended the model
in another study (Lamiri et al. 2008a) by consider-
ing the allocation of surgeries to ORs. Lamiri et al.
(2009) proposed several heuristics to solve the same
problem in that study (Lamiri et al. 2008a) and com-
pared their performance with the performance of a
Monte Carlo optimization method. Hans et al. (2008)
also solved a stochastic OR-to-day allocation problem,
where the stochasticity exists because of the uncer-
tainty of the surgery durations. Their objective was
to minimize the planned slack time reserved in the
ORs each day that could be used by surgeries run-
ning longer than expected. The authors considered
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the trade-off between the OR utilization and OR over-
time. They found that the surgeries having similar
duration variability should be clustered together and
assigned to the same OR-day.

In the third category of articles, Gerchak et al. (1996)
modeled a surgery planning problem as a stochas-
tic dynamic program. The decision process in their
study was as follows: each day new requests for elec-
tive and emergency surgeries arise. Surgeries were
scheduled for the current or future days and pre-
viously scheduled surgeries may be cancelled. The
objectives included maximizing the expected profit
gained by scheduling elective cases and minimizing
the expected overtime and surgery cancellation costs.
Zonderland et al. (2010) also considered a dynamic
decision process where the days were assigned to
blocks of surgeries at the beginning of every week
for a variety of urgency levels. The different urgency
levels included elective surgeries as well as semi-
urgent surgeries that must be scheduled within one
or two weeks. Based on a Markov decision process
model, the authors provided a planning guideline
by taking the costs related to the OR idle time, OR
overtime, and cancellation of elective surgeries into
consideration.

Our work differs from the studies in the first and
second category in the stochastic dynamic setting for
planning the surgeries. The articles most similar to
ours are those by Gerchak et al. (1996) and Zon-
derland et al. (2010), which also consider a dynamic
decision-making process. This article differs in the
following ways. First, Gerchak et al. (1996) allow
surgeries to be scheduled to the same day that they
are requested; however, this is not a very realistic
representation of many surgery practices. Second, the
surgery durations generated in their model are inde-
pendent from each other and identically distributed.
Third, they do not consider OR allocation decisions
and other scheduling complexities included in our
model.

This article also differs from Zonderland et al.
(2010) in a number of other ways. First, those authors
do not consider the assignment of individual surg-
eries to days, but rather reserve time slots for elective
or semi-urgent surgeries each day. Thus, for exam-
ple, they do not make a distinction between dif-
ferent types of elective surgeries. Furthermore, they
make strict assumptions about the nature of uncer-
tainty, including that surgery requests arise accord-
ing to a Poisson process, and surgery durations are
assumed to be exponentially distributed. In contrast,
our study makes no special assumptions about the
random model parameters, and our numerical results
are based on real data from a large medical center.

3. Problem Description
The model formulated and discussed in the remain-
der of this article considers daily decisions for the
dynamic allocation of surgeries to ORs over a finite
planning horizon under uncertainty (see Figure 1).
The problem is formulated as a multistage stochas-
tic mixed-integer program (MSSMIP). At each stage—
i.e., day—newly requested surgeries are scheduled for
future days; furthermore, some previously scheduled
surgeries may be cancelled and subsequently resched-
uled. In addition to assigning each surgery a day, an
available OR is also assigned.

At the beginning of each day, it is assumed that ran-
dom durations for surgeries are observed for the cur-
rent day. In other words, we assume that the duration
of surgeries of the current day can be accurately esti-
mated at the start of the day. After the final schedule
is determined for each day, the cumulative duration
of the surgeries assigned to the ORs, total amount of
OR overtime, and cancellations for that day are deter-
mined. In the case of a surgery that is rescheduled
to a future day, its duration will be updated at the
beginning of that new surgery day.

Total expected OR overtime and waiting and can-
cellation costs are the performance measures consid-
ered. The amount of patient waiting for a surgery is
equal to the number of days between the day surgery
is performed and the day it is requested. Thus, our
model favors scheduling surgeries earlier rather than
later. To reduce overtime on a particular day, surg-
eries might be cancelled and rescheduled. However, it
is preferable to limit cancellations because of surgery
cancellation and waiting costs and the hardship on
patients. To reflect this, the model includes a penalty
per cancellation that represents the “cost” of cancel-
lation. Once a surgery is cancelled, it is scheduled
either to another day within the planning horizon, or
the end of the planning horizon, implying it will be
scheduled for beyond the planning horizon. Note that
a surgery can be cancelled more than once over the
planning horizon; however, we assume there exists
a time window within which each surgery must be
completed.

Following is a detailed description of the MSSMIP
model.

Indices2
i: Surgery index

l1 t1u: Day index
j : OR index

�t : Scenario realization at day t (i.e., surgeries
requested at day t, and duration of surgeries
scheduled on day t)

�6t7 2= 4�11 0 0 0 1�t5: History of scenario realization
up to day t
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t

t 

Figure 1 Decision-Making Process Throughout the Planning Period

Deterministic Parameters2

�ij =















1 if there is no equipment constraint
restricting the assignment of
surgery i to OR j ,

0 otherwise

piu =

{

1 if surgery i can be assigned to day u,
0 otherwise

gi = Lead time (number of days between the earliest
day the surgery can be assigned and the day
the request arises) for scheduling surgery i

hi = Length of time window (number of days
between the earliest day and the latest day that
the surgery can be assigned) for scheduling
surgery i

aijt =















1 if surgery i was already assigned to
day t and OR j before the planning
horizon starts,

0 otherwise
P t
j = Capacity (in terms of minutes) of OR j at day t

ci = Cost per cancellation of surgery i

li = Waiting cost per day for surgery i

co = OR overtime cost per minute
O = Number of ORs
H = Length of planning horizon for scheduling

surgeries

Random Parameters and Sets2
s4�t5= Set of surgeries requested at day t

according to realization �t

s4�6t75= Set of surgeries requested before and at day
t under scenario �6t7

dt
i 4�

6t75= Random duration of surgery i at day t
under scenario �6t7

D4�6t75= Set of random durations of all surgeries
requested before and at day t under
scenario �6t7

�6t7 = 4s4�6t751D4�6t755: Set of realization history of
random parameters up to day t

tth Stage Decision Variables2

xt
iju4�

6t75=











1 if surgery i is assigned to OR j and
day u at day t under scenario �6t7,

0 otherwise

� t
ij4�

6t75=











1 if surgery i from OR j is cancelled
at day t under scenario �6t7,

0 otherwise

otj 4�
6t75= Overtime for OR j observed at day t

under scenario �6t7

yt4�6t75= Vector of values for all decision variables
defined for and before day t under
scenario �6t7

The constraint set in the formulation of our problem
has a block diagonal structure. There are H blocks
of constraints as well as nonnegativity and binary
restrictions on the decision variables. Each of the first
H − 1 blocks contains seven types of constraints; the
last block has only four types. At day H , there are
no new surgery requests since this is the last day of
the planning horizon. For the last day, we have the
following formulation for the recourse function:

QH 4yH−14�6H−1751�6H74�6H755

=min
O
∑

j=1

(

∑

i∈s4�6H−175

ci�H
ij 4�

6H75+cooHj 4�
6H75

+lixH
ijH+14�

6H75

)

(1)
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s.t. �H
ij 4�

6H75−aijH −

H−1
∑

l=1

xl
ijH 4�

6H75≤0

∀ i∈s4�6H−1751j (2)
O
∑

j=1

�H
ij 4�

6H75−piH+1 ≤0 ∀ i∈s4�6H−175 (3)

∑

i∈s4�6H−175

dH
i 4�

6H75

(

aijH +

H−1
∑

l=1

xl
ijH 4�

6H75−�H
ij 4�

6H75

)

−oHj 4�
6H75≤PH

j ∀ j (4)

xH
ijH+14�

6H751�H
ij 4�

6H75∈80119 ∀ i1j (5)

oHj 4�
6H75≥0 ∀ j0 (6)

The objective function minimizes the waiting, cancel-
lation, and overtime costs at stage H . Constraints (2)
and (3) require that a surgery in an OR can only be
cancelled on day H if it was previously assigned to
this day and OR, and if it is possible to reschedule
the surgery to a day beyond the planning horizon.
Constraint (4) determines the overtime for each OR.
Constraints (5) and (6) define the nonnegativity and
integrality restrictions.

Assuming interstage independence (i.e., �6t+17 is
independent of the past outcomes) and letting

Qt+14yt4�6t755= E�6t+17 6Qt+14yt4�6t751 �6t+174�6t+175571

we obtain the following recursion for Qt4yt−14�6t−175,
�6t74�6t755 defined for t = 21 0 0 0 1H − 1:

min
O
∑

j=1

(

∑

i∈s4�6t−175

ci� t
ij4�

6t75+cootj 4�
6t75

+
∑

i∈s4�6t75

H+1
∑

u=t+1

li4u−t5xt
iju4�

6t75

)

+Qt+14yt4�6t755 (7)

s.t.
H+1
∑

u=t+1

O
∑

j=1

xt
iju4�

6t75=1 ∀ i∈s4�6t75 (8)

H+1
∑

u=t+1

O
∑

j=1

xt
iju4�

6t75=
O
∑

j=1

� t
ij4�

6t75 ∀ i∈s4�6t−175 (9)

xt
iju4�

6t75≤�ijpiu

∀ i∈s4�6t751 j1 u= t+110001H+1 (10)

� t
ij4�

6t75−aijt−
t−1
∑

l=1

xl
ijt4�

6t75≤0

∀ i∈s4�6t−1751j (11)

∑

i∈s4�6t−175

dt
i 4�

6t75

(

aijt+
t−1
∑

l=1

xl
ijt4�

6t75−� t
ij4�

6t75

)

−otj 4�
6t75≤P t

j ∀ j (12)

xt
iju4�

6t751� t
ij4�

6t75∈80119

∀ i3∀ j3t=110001H3 u=210001H+1 (13)

otj 4�
6t75≥0 ∀ j3t=110001H0 (14)

Constraint (8) ensures that requests for surgery on
day t must be assigned to an OR in one of the days
after day t. Constraint (9) enforces the assignment of
a cancelled surgery to a future day and OR. Con-
straint (10) imposes restrictions on the particular day
and OR to which a surgery may be assigned. When
a request arises for a surgery, it must be scheduled
within the allowable time window (hi) for performing
the surgery and at least gi stages into the future. Note
that parameters gi and hi are used implicitly to calcu-
late parameters piu in constraint (10). A restriction on
the assignment of a surgery to an OR might also exist,
defined by the same constraint (e.g., if a particular
type of OR is required for the surgery). Constraint (11)
(which is equivalent to (2)) ensures that only surg-
eries that are scheduled for day t can be cancelled on
day t. Constraint (12) determines the amount of OR
overtime on day t. Constraints (13) and (14) define
the nonnegativity and integrality restrictions on the
variables.

This MSSMIP model is NP-hard. This follows from
the fact that an instance of this problem, where the
model has only one scenario, corresponds to the well-
known bin packing problem.

4. Solution Methodology
The above model can be approximately solved using
the progressive hedging algorithm (PHA) proposed
by Rockafellar and Wets (1991). The PHA proceeds
by applying scenario decomposition iteratively, solv-
ing the resulting individual scenario subproblems,
and finally aggregating individual scenario solutions.
Although the PHA is guaranteed to converge to a
global optimal solution asymptotically in the convex
case (Rockafellar and Wets 1991), it may converge to
only a local optimal solution in this case, because the
problem is nonconvex, because of the binary decision
variables.

Many authors of PHA-based studies have analyzed
the algorithm and proposed ways to improve its per-
formance by taking advantage of the special struc-
ture of the problem of interest (Mulvey and Vladi-
mirou 1991a, b; Wallace and Helgason 1991; Hvattum
and Lokketangen 2009; Watson and Woodruff 2011;
Crainic et al. 2011). The PHA has also been applied
in several application areas (i.e., see Mulvey and
Vladimirou 1992 for a financial planning application;
Helgason and Wallace 1991 for fisheries management
application; Santos et al. 2009 for hydrothermal sys-
tems operation planning application). The reader is
referred to Wallace and Helgason (1991) and Watson
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and Woodruff (2011) for detailed discussions about
the algorithm implementation. Background on our
implementation of the PHA is given in §4.2.

4.1. Problem Reformulation
To apply PHA, we begin by reformulating the model
to put it in the standard form appropriate for scenario
decomposition. In the new formulation, which we
refer to as the PHA deterministic equivalent model
(PHA-DEM), a new parameter � that represents a
sequence of consecutive scenarios aggregated over
all days (i.e., �6171�6271 0 0 0 1�6H7) is defined and intro-
duced. Figure 2 illustrates how the reformulation
impacts the scenario tree. Figures 2(a) and 2(b) com-
pare scenario trees for the MSSMIP and PHA-DEM,
respectively. Each oval node in the scenario tree rep-
resents a particular scenario realization, �t , at a par-
ticular stage t. The accumulation of oval nodes until
stage t (i.e., �11�21 0 0 0 1�t) defines a particular sce-
nario at day t (i.e., �6t7). The circle nodes within the
oval nodes indicate the surgeries requested on a par-
ticular day under the realization that the oval node
represents. Note that, for simplicity, the example in
Figure 2 assumes that the uncertainty is based only

1 � = 1

� = 2

� = 3

2

1 2

�1 = 1

�2 = 2 �3 = 4

�3 = 5

�3 = 6

�4 = 7

�4 = 8

�4 = 9

�2 = 3

3 4 5 6 7

3 4 5 6 7

1 2 3

1 2 3

4 5 6 7

4 56 7

3

4 5 6 7

4 56

(a)

(b)

7

Figure 2 Reformulation Impact on the Scenario Tree
Note. (a) A scenario tree example illustrating the surgeries requested each day over a four-day planning period. (b) The example from (a) shown in terms of
individual scenario sequences.

on the surgery requests (i.e., the surgery durations are
deterministic).

Figure 2(a) illustrates that �647 varies based on the
scenario represented by �637. The same relation exists
also for (�617, �627) and (�627, �637). In contrast, Fig-
ure 2(b) illustrates an alternative representation of the
scenario tree given in Figure 2(a), where the indi-
vidual scenarios observed in the particular stages
are aggregated over all days to form three scenario
sequences, � = 11213. However, the above redefini-
tion of the scenario tree is not permissible since the
solutions found might not be feasible for the over-
all problem, because they imply decisions that antic-
ipate future uncertain events. Therefore, nonanticipa-
tivity constraints are required in the PHA-DEM. These
constraints enforce the following property: If two sce-
nario sequences (i.e., � = a1 b) share the same history
up to day t, the surgery schedules created progres-
sively over the planning period should always have
the same content until day t. In other words, if a deci-
sion is given for a surgery at some day l, where l ≤ t
under scenario sequence a, the same decision holds
under scenario sequence b.
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Following is the additional notation used to formu-
late the PHA-DEM.

Additional Indices2
�: Scenario sequence index

B4�1 t5: Scenario bundle index of the surgeries
considered for scheduling at stage t under
scenario sequence �

Additional Parameters2
Z: Number of scenario sequences
N : Number of surgeries requested in a sample of

scenario tree

sti� =











1 if surgery i is requested at day t under
scenario sequence �,

0 otherwise

dt
i� = Duration of surgery i at day t under scenario

sequence �
Pr� = Probability of the occurrence of scenario

sequence �

Revised Decision Variables2

xt
i�ju =















1 if surgery i is assigned to OR j and
day u at day t under scenario
sequence �,

0 otherwise

� t
i�j =











1 if surgery i from OR j is cancelled at
day t under scenario sequence �,

0 otherwise

ot�j = Resulting overtime amount for OR j on day t
under scenario sequence �

Additional Decision Variables2

x
B4�1 t5
iju =























1 if surgery i is assigned to day u and
OR j at all day-scenario sequence
combinations in the bundle, B4�1 t5,
that day t-scenario � belongs to,

0 otherwise.

1

B (1, 1) = 1

B (2, 1) = 1 B (2, 2) = 2

� = 1

� = 2

� = 3

B (3, 2) = 2B (3, 1) = 1

2 3 4 5 6 7

1 2 3

1 2 3

4 5 6 7

4 56 7

Figure 3 Representation of Scenario Bundles by Rectangles Covering the Scenario Realizations at a Particular Day

The nonanticipativity constraints are also referred
to as bundle constraints. If the scenario sequences a
and b share the same history up to day t, then this
indicates that they also share the same scenario bundle
on day t2 B4a1 t5 = B4b1 t5. Thus, the scheduling deci-
sions given on this day are the same among all sce-
nario sequences placed in the same scenario bundle.

Figure 3 illustrates the scenario bundle concept
using the example given in Figure 2. The rectangles
covering the oval nodes represent the particular sce-
nario bundles that exist in the example. Because all
three scenario sequences have the same realization
(e.g., �1 = 1) at day 1, � = 11213 share the same bun-
dle on this day and B41115 = B42115 = B43115 = 1.
The second day also contains one scenario bundle,
because � = 2 and � = 3 share the same history by
day 2.

We now show how decisions are synchronized
using the bundle constraints. First, recall that the
model includes decisions for two different cases: (i) a
request arises for a new surgery; (ii) one of the surg-
eries is cancelled. At day 1, for all �, surgeries 1
and 2 are scheduled into the future, corresponding to
case (i). One can enforce nonanticipativity at the first
stage using the following constraints:

x1
i1ju = x1

i2ju = x1
i3ju ∀ j1u= 2131415 and i = 1120

Similarly, nonanticipativity related to surgery 3 at the
second stage can be generated using:

x2
32ju = x2

33ju ∀ j1u= 314150

For case (ii), the decisions to reschedule cancelled
surgeries under scenario sequences � = 213 are bun-
dled as follows:

x2
i2ju = x2

i3ju ∀ j1u= 31415 and i = 1120

To facilitate the generation of a separable stochastic
program, a new decision variable, called the consensus
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variable, x
B4�1 t5
iju , is defined. The PHA-DEM is formu-

lated as follows:

min
Z
∑

�=1

Pr�

( H
∑

t=1

O
∑

j=1

(

coot�j +
N
∑

i=1

ci� t
i�j

+

N
∑

i=1

H+1
∑

u=t+1

li4u−t5xt
i�ju

))

(15)

s.t. xt
i�ju=x

B4�1t5
iju ∀ i1�1j1t1u>t (16)

H+1
∑

u=t+1

O
∑

j=1

xt
i�ju=sti�+

O
∑

j=1

� t
i�j ∀ i1�1t (17)

xt
i�ju≤�ijpiu ∀ i1�1j1t1u>t (18)

� t
i�j −aijt−

t−1
∑

l=1

xl
i�jt ≤0 ∀ i1�1j1t (19)

N
∑

i=1

dt
i�

(

aijt+
t−1
∑

l=1

xl
i�jt−� t

i�j

)

−ot�j ≤P t
j

∀ j1�1t (20)

xt
i�ju1x

B4�1t5
i�ju 1� t

i�j ∈80119 ot�j ≥0

∀ i1�1j1t1u>t0 (21)

The objective function (15) is the expectation of the
total scenario costs over all scenarios. The total sce-
nario cost is weighted by the probability associ-
ated with scenario Pr�. The total cost for a scenario
includes the total OR overtime cost and surgery can-
cellation and waiting costs over all days.

Constraint (16) is the bundle constraint. Con-
straints (17)–(21) have the same meaning as (8)–(14)
in MSSMIP but use one less constraint. The number
of constraints is one less because we are now able
to define the parameter, sti�, that indicates whether
a surgery is requested on a particular day. This pa-
rameter allows formulating both scheduling and re-
scheduling decisions in one constraint instead of two.
Constraint (17) sets the conditions to be satisfied to
give a scheduling decision at a particular day. Con-
straint (18) defines the allowable days and ORs for
the assignment of a particular surgery. Constraint (19)
ensures that the cancellation decision for a surgery
on a particular day can be made if the surgery was
assigned to that day in the past. Constraint (20)
measures overtime values for each OR, each day.
Constraint (21) defines the nonnegativity and binary
restrictions on the decision variables.

Using the PHA-DEM formulation, an augmented
Lagrangian relaxation technique is applied by dual-
izing the bundle constraint. The relaxed formulation
still includes the constraints (17)−(21) in the con-
straint set. However, the objective function (15) is now

min
Z
∑

�=1

Pr�

( H
∑

t=1

O
∑

j=1

(

coot�j +
N
∑

i=1

ci� t
i�j +

N
∑

i=1

H+1
∑

u=t+1

li4u−t5xt
i�ju

)

+

N
∑

i=1

H
∑

t=1

O
∑

j=1

H+1
∑

u=t+1

�t
i�ju4x

t
i�ju−x

B4�1t5
iju 5

+
�

2

N
∑

i=1

H
∑

t=1

O
∑

j=1

H+1
∑

u=t+1

�xt
i�ju−x

B4�1t5
iju �

2

)

1 (22)

where �t
i�ju, ∀ i1�1 t1 j1u denote the Lagrangian mul-

tipliers; � is the penalty parameter; and � · � is the
ordinary Euclidean norm. The additional components
in the function (22) penalize the violation of the bun-
dle constraint. Since xt

i�ju1x
B4�1 t5
iju ∈ 80119, the penalty

component in (22) is rewritten as follows:

�xt
i�ju − x

B4�1 t5
iju �

2
= xt

i�ju − 2xt
i�jux

B4�1 t5
iju + x

B4�1 t5
iju 0 (23)

To make the deterministic equivalent formulation sce-
nario separable requires fixing the consensus vari-
able x

B4�1 t5
iju . Using a proximal point method (Rockafellar

1976), this value can be estimated using the following
weighted sum calculation:

x̂
B4�1 t5
iju =

Z
∑

�∈B4�1 t5

Pr�
∑

�∈B4�1 t5 Pr�
xt
i�ju ∀ i1�1 t1 j1u0 (24)

Note that (23) no longer contains a quadratic term
after replacing x

B4�1 t5
iju with x̂

B4�1 t5
iju , which facilitates the

solution of the subproblems following the scenario
decomposition.

Equation (24) determines the weighted sum of
the individual scheduling decision variables within a
decision bundle. The weights are set by normalizing
the probability of the scenario associated with a deci-
sion variable. The objective function of the resulting
separable formulation, which we refer to as the sepa-
rable deterministic equivalent model (PHA-SDEM), is

min
Z
∑

�=1

Pr�

( H
∑

t=1

O
∑

j=1

(

coot�j +
N
∑

i=1

ci� t
i�j

+

N
∑

i=1

H+1
∑

u=t+1

li4u−t5xt
i�ju

)

+

N
∑

i=1

H
∑

t=1

O
∑

j=1

H+1
∑

u=t+1

�t
i�ju4x

t
i�ju− x̂

B4�1t5
iju 5

+
�

2

N
∑

i=1

H
∑

t=1

O
∑

j=1

H+1
∑

u=t+1

4xt
i�ju−2xt

i�jux̂
B4�1t5
iju 5

)

s.t. (17)–(21)0

(25)

Note that the last term of (23) is ignored in (25), be-
cause it is fixed.

The estimate of x̂
B4�1 t5
iju is referred to as the consen-

sus parameter. The consensus parameter is an estima-
tion of the implementable solution at a given iteration
of the PHA. If this solution is also feasible in PHA-
SDEM, then it is called an admissible solution. The goal
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of the PHA is to identify a good solution (ideally the
optimal solution) among all admissible solutions.

The mixed-integer programming formulation for a
particular scenario subproblem model (PHA-SSM) is
obtained by decomposing PHA-SDEM into scenario
subproblems. Hence, the constraint set for PHA-SSM
is a subset of that of PHA-SDEM, which should be
satisfied for all scenarios rather than only for one
scenario.

4.2. Progressive Hedging Algorithm
In this section we describe our implementation of
PHA. Let �0 denote the initial value of the penalty
parameter, k the index for the iteration number of
the PHA, �t4k5

i�ju ∀ i1�1 t1 j1u the Lagrangian multipli-
ers, and �4k5 the penalty parameter at iteration k. Then
the general steps of the PHA are stated as follows:

PHA
1 Set algorithm terminates = false, k = 11�4k5 = �0,

�
t4k5
i�ju = 0 ∀ i1�1 t1 j1u

2 while algorithm terminates = false
3 for � = 1 to Z
4 Solve the PHA-SSM to obtain

x
t4k5
i�ju ∀ i1�1 t1 j1u

5 end for
6 Calculate the consensus parameter:

x̂
B4�1 t5
iju ∀ i1�1 t1 j1u

7 if k > 1
8 Update the penalty parameter according to

the following scheme: �4k+15 = ��4k5,
where �> 0

9 end if
10 Update the Lagrangian multipliers according

to the following scheme:
�

t4k+15
i�ju =�

t4k5
i�ju +�4k54x

t4k5
i�ju − x̂

B4�1 t5
iju 5

11 if x
t4k5
i�ju = x̂

B4�1 t5
iju ∀ i1�1 t1 j1u

12 Set algorithm terminates = true
13 end if
14 else
15 Set k = k+ 1
16 end else
17 end while

4.3. Enhanced Progressive Hedging Algorithm
In our implementation, we took advantage of the spe-
cial structure of the model formulation to acceler-
ate the computational performance of the PHA and
improve the quality of the PHA solutions. We refer
to this algorithm as the enhanced progressive hedg-
ing algorithm (EPHA). The degree of violation of
the bundle constraints and decisions taken by the
majority of the variables in the decision bundles
motivates the Lagrangian multiplier update method.
We also analyze if a penalty update method utiliz-
ing the information about the convergence pattern

of the primal and dual variables may enhance the
solutions.

In the PHA literature, many other studies propose
enhancements on the PHA based on the special struc-
tures of the models. We first present a brief review of
enhancements proposed for various problems. Then
we discuss the methods of our EPHA.

4.3.1. PHA Enhancements. Mulvey and Vladi-
mirou (1991a, b) discussed the trade-off between the
selection of high and low values for the penalty
parameters and the impact of the problem structure
into this selection. They also discussed the benefits
of the dynamic penalty adjustment methods. Hel-
gason and Wallace (1991) and Listes and Dekker
(2005) discussed the sensitivity of the convergence of
the PHA to the choice of penalty parameter. Hvat-
tum and Lokketangen (2009) proposed a method to
set a direction of improvement while updating the
penalty parameters. They tested the case where there
exist parameters for individual nonanticipativity con-
straints in the model. Watson and Woodruff (2011)
also proposed methods to set the penalty parameters
for individual nonanticipativity constraints for a class
of resource-allocation problems.

In our experiments, we observe that updating
penalty parameters based on the information on the
convergence pattern in the primal and dual space did
not achieve significantly better results than keeping
the penalty parameter constant. Our experiments sug-
gest that the initial values of the Lagrangian multipli-
ers have significant impact on the quality of the final
solution. We selected the initial values after assess-
ing the trade-off between the marginal improvement
in solution quality and additional computational time
needed as a result of a variation in the values. Mul-
vey and Vladimirou (1991a) and Santos et al. (2009)
also discussed the importance of the initial estimates
for the Lagrangian multipliers and tested warm start
methods, including simple heuristics to find reason-
able initial values.

It is well known that in the nonconvex case, the
PHA is not guaranteed to converge (Takriti and Birge
2000). Watson and Woodruff (2011) defined some
techniques to detect nonconvergence in the form of
cyclic behaviors. Whenever they detect a cycle for
a variable, they fix the variable value using a sim-
ple rule (the largest value of the variable across sce-
narios is selected). In our case, the Lagrangian mul-
tiplier update method prevents cycling. Since the
Lagrangian multipliers are defined only for binary
variables, the method aims to favor one feasible value
over the other primarily based on the selection in the
majority of the subproblems. When the majority is not
achieved, the waiting and cancellation costs are also
considered.
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Because of the typically large number of subprob-
lems to be solved following the scenario decom-
position at each PHA iteration, computational effi-
ciency in subproblems is important. Furthermore, it
has been shown that the PHA is often a reason-
able heuristic to use if there exists an efficient algo-
rithm to solve the subproblems of a very large-
scale stochastic mixed-integer problem (Watson and
Woodruff 2011). Takriti et al. (1996) developed meth-
ods to solve the subproblems of their multistage
stochastic production planning problem. Barro and
Canestrelli (2005) further decomposed the subprob-
lems of a dynamic portfolio management problem
into stages to solve those efficiently. An important rea-
son necessitating the implementation of an efficient
solution method on the subproblems is that each sub-
problem has a quadratic objective function because of
the penalty component. Haugen et al. (2001) relaxed
the quadratic term in the subproblem objective func-
tion and applied a dynamic programming approach
to find an optimal solution for the relaxed subprob-
lems. Listes and Dekker (2005) solved the linear relax-
ation of the subproblems of a robust airline fleet com-
position problem, which contained integer variables,
and used a simple rounding procedure to find a fea-
sible solution for the overall problem. In our problem
formulation, the quadratic component is linearized
since the corresponding component includes binary
variables.

4.3.2. Enhanced Progressive Hedging Algorithm
Implementation. In this section, we present our pen-
alty update and Lagrangian multiplier update meth-
ods and EPHA termination criterion.

We set a constant value for the penalty parameter
after conducting some experimental analysis. The ex-
perimental analysis was based on the observation of
the trade-off between fast convergence to a subopti-
mal solution (when � is too large) and slow conver-
gence to a near optimal solution in the primal feasible
space (when � is too low).

Next, the method proposed in Hvattum and Lokke-
tangen (2009) was used to compare the convergence
rate at iterations k and k−1, increasing � if it appears
that the convergence rate is decreasing. The param-
eter � is decreased if the current status is closer to
consensus among variables at iteration k − 1 than
at iteration k. Let ã

4k5
D and ã

4k5
P be indicators of the

convergence rates in the dual space and in the pri-
mal space, respectively. Let b index a unique bundle
among the ones represented by all B4�1 t5s, and B
represent the total number of unique bundles. Then
Equations (26)–(28) define the penalty update method
as follows:

ã
4k5
P =

N
∑

i=1

B
∑

b=1

O
∑

j=1

H+1
∑

u=t+1

4x̂
b4k5
iju − x̂

b4k−15
iju 52 (26)

ã
4k5
D =

N
∑

i=1

Z
∑

�=1

H
∑

t=1

O
∑

j=1

H+1
∑

u=t+1

4x
t4k5
i�ju − x̂

B4�1 t54k5
iju 52 (27)

�4k+15
=











�D�
4k5 if ã4k5

D −ã
4k−15
D > 0

1
�P

�4k5 else if ã4k5
P −ã

4k−15
P > 01

(28)

where �P > 1 and �D > 1 in (28) are fixed multipliers.
We use a Lagrangian multiplier update method that

ensures convergence of the algorithm. The method
aims to achieve convergence of the consensus param-
eter value to one of the two feasible values: 0 or 1
(see Crainic et al. 2011 for a similar approach). The
selection between these two values as the convergence
point is made according to the majority of the vari-
able values in a bundle. We define a threshold param-
eter called � to help define the majority condition.
Once the value of the consensus parameter is greater
than �, the majority is assumed to be achieved. In
the case that no value is favored by the majority (i.e.,
consensus parameter value is equal to �), the value
to which the consensus parameter should converge is
determined according to the cancellation and waiting
costs.

The approach is based on the following observa-
tion. If x̂

B4�1 t54k5
iju is greater than �, then this indicates

that the majority of the scenario subproblem solu-
tions within the associated bundle dictate the assign-
ment of surgery i to OR j on day u. Our method
decreases the values of the Lagrangian multipliers in
the subproblems where the relevant variable value
is 0. The expectation here is that the surgery is
assigned to the same day and OR in the follow-
ing iterations. On the other hand, if x̂

B4�1 t54k5
iju is less

than �, this shows that surgery i is not assigned to
OR j on day u in the majority of the subproblems.
Then the Lagrangian multiplier values are increased
in the subproblems where the relevant variable is
equal to 1. If x̂

B4�1 t54k5
iju is equal to �, this means no

particular day-OR couple is favored for the assign-
ment of surgery i among subproblems. If the same
day is selected in all subproblems, then any OR is
favored for the assignment. Otherwise, the day to be
favored is selected according to the cancellation and
waiting costs. If the cancellation cost is greater than
the waiting cost, then the latest feasible day is pre-
ferred. Therefore, the values of the Lagrangian mul-
tipliers are increased for the relevant variables that
assign surgery i to the earlier days. If the waiting
cost is greater than the cancellation cost, then the ear-
liest feasible day is favored to reduce waiting. This
requires an increase in the values of the Lagrangian
multipliers for the relevant variables that assign
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surgery i to the later days. Updates are computed as
follows:

�
t4k+15
i�ju

=







































































































































�
t4k5
i�ju+�4k54x

t4k5
i�ju− x̂

B4�1t54k5
iju 5

if x̂B4�1t54k5
iju <�3x

t4k5
i�ju=1

�
t4k5
i�ju−�4k5�4x

t4k5
i�ju− x̂

B4�1t54k5
iju 5�

if x̂B4�1t54k5
iju >�3x

t4k5
i�ju=0

�
t4k5
i�ju+�4k54x

t4k5
i�ju− x̂

B4�1t54k5
iju 5

if x̂B4�1t54k5
iju =�3x

t4k5
i�ju=1 and ci ≥ li3

u 6=max8u2 xt4k5
i�ju=114�1t5∈B4�1t59

�
t4k5
i�ju+�4k54x

t4k5
i�ju− x̂

B4�1t54k5
iju 5

if x̂B4�1t54k5
iju =�3x

t4k5
i�ju=1 and ci<li3

u 6=min8u2 xt4k5
i�ju=114�1t5∈B4�1t59

�
t4k5
i�ju otherwise.

(29)

4030201. Termination Criteria. The EPHA terminates
when the following condition is satisfied:

Z
∑

�=1

Pr�
N
∑

i=1

H
∑

t=1

O
∑

j=1

H+1
∑

u=t+1

�x
t4k5
i�ju − x̂

B4�1 t54k5
iju � ≤ �0 (30)

This can be interpreted as a measure of the bundle
constraint violation being sufficiently small.

It is possible that the objective function coefficients
of a subproblem may not change from one iteration to
the next because of the method we propose for updat-
ing Lagrangian multipliers. The Lagrangian multi-
plier for a decision variable is not updated at an iter-
ation in case the value of the variable is equal to the
value taken by the sufficient majority of the variables
in the bundle. Therefore, the objective function coeffi-
cients of a subproblem may remain the same if none
of its variables require an update for the Lagrangian
multipliers. We detect those subproblems at each iter-
ation to minimize the number of times that the sub-
problem solution routine is called.

5. Experimental Study
We tested our methods using data from an outpatient
procedure center at Mayo Clinic from the year 2006
for 4,034 patients (Gul et al. 2011). We generated sce-
nario trees representing arrivals of surgery requests
over a planning period. Each problem instance is
based on a particular service including urology, oph-
thalmology, pain medicine, and oral maxillofacial.

Surgeries of a service are grouped into acuity lev-
els. Urology and pain medicine have five acuity lev-
els, and ophthalmology and oral maxillofacial have
two. The probability distribution for the duration of a
surgery is based on its acuity level.

We conducted experiments with moderate-size test
cases that can be solved to optimality and com-
pared the optimal solutions to those of the EPHA.
We also conducted experiments to estimate the value
of the stochastic solution (VSS) by comparing solu-
tions obtained with the EPHA and a deterministic
heuristic for a set of large-size test cases. We also
used large-size test cases for our evaluation of the
EPHA within a rolling horizon framework. In our
test cases, two ORs are open every day for each
surgical service. Each OR operates for eight hours
daily. The moderate-size cases included, on aver-
age, 27 surgeries to be scheduled during a six-day
planning period. These cases represent the surgery
scheduling process during a typical week (i.e., five
days). The surgeries that cannot be scheduled for the
current week are assigned to a dummy day at the end
of the planning period. The large-size test cases con-
sidered 50 surgeries, on average, to be scheduled dur-
ing an 11-day planning period. These cases represent
a biweekly surgery scheduling process (i.e., 10 days)
with a dummy period included for the surgeries that
cannot be performed within the two-week period.

Each experiment was performed on an instance
set that consisted of 20 different scenario trees of
the same size. Each tree consisted of 1,024 scenarios.
We used 56 different moderate-size instance sets of
20 instances for performing sensitivity analysis. We
used a single large-size instance set to estimate the
value of the stochastic solution, and a second one to
test the EPHA within a rolling horizon framework.
We report the average and worst case performance
for each experiment. The EPHA algorithm was imple-
mented in Microsoft Visual C++ 2008 using CPLEX
12 Concert Technology. The experiments were con-
ducted on an Intel Core i5 PC with processors running
at 2.27 GHz and 4GB memory under Windows XP.

5.1. Generating Problem Instances
We generated a scenario tree for each problem in-
stance. There are two parameters that determine the
size of the tree: (1) ns , number of stages and (2) no,
number of different outcomes observed at each stage except
the first stage. The realization at stage 1 is assumed
to be known, thus there is only one outcome at this
stage. There exist n

ns−1
o scenario sequences in total in

a scenario tree. The generated scenario outcome at
stage t does not depend on the past outcomes (i.e.,
interstage independence is assumed). The interstage
independence allows us to use the common samples
approach (Chiralaksanakul and Morton 2004). The
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common samples approach indicates that the gener-
ated outcomes may exist more than once and the
same number of times at a particular stage of a sce-
nario tree. In particular, among the nt−1

o outcomes at
stage t, where t > 1, in our scenario tree, only no of
them are unique.

A scenario outcome is characterized by the num-
ber of surgeries requested from each acuity level. For
example, assume that we generate a scenario tree for
the case where ns = 4 and no = 2 for the surgical
service of pain medicine. Let the number of surgery
requests for acuity level i, where i = 112131415, be
represented by acu4i5. The value of each acu4i5 is
independently sampled according to the probability
distribution fit for the surgery request frequency in
the data. A sample tree with its acu4i5 set is illus-
trated in Figure 4. Each rectangle in the tree denotes
a scenario outcome at the corresponding stage. The
numbers in the rectangles represent a vector of acu4i5
values for i = 112131415.

We sampled individual surgery durations from in-
dependent distributions to obtain a sample for the
sum of surgery durations. We generated these sam-
ples so the average sum of surgery durations over
the samples and the standard deviation of the sum
of durations are consistent with the range of val-
ues observed in practice (e.g., mean is nearly nine

0, 4, 0, 0, 0

0, 3, 0, 0, 2

2, 3, 0, 1, 3

0, 4, 0, 0, 0

2, 3, 0, 1, 3

0, 4, 0, 0, 0

0, 6, 0, 0, 0

3, 4, 0, 2, 2

0, 6, 0, 0, 0

0, 6, 0, 0, 0

3, 4, 0, 2, 2

3, 4, 0, 2, 2

0, 6, 0, 0, 0

3, 4, 0, 2, 2

0, 3, 0, 0, 5

Figure 4 Sample Scenario Tree with ns = 4 and no = 2 Represents
the Requests for Urology Surgeries over a Four-Day
Planning Period

Note. Each index, separated by comma, denotes the number of surgeries
requested from a particular acuity level.

hours, and the standard deviation is either 78 or
234 minutes).

5.2. Analysis of the Enhanced Progressive
Hedging Algorithm Solutions

We tested the EPHA to identify the factors that most
affect the solution quality and algorithm performance.
We investigated whether having the penalty update
method achieves improvements over the solutions
found by keeping � constant (i.e., �P = 1, �D = 1)
through the iterations. We varied the values of �P

and �D, keeping everything else constant, and then
observed the changes in the average objective func-
tion value and computational time. Table 1 reports the
resulting average objective function value and com-
putational time for cases where varying values of
�P and �D are used. Note that the penalty update
method improves the computation time by 8% (i.e.,
when 4�P 1�D5 = 44115) while deteriorating the objec-
tive value only by 0.4%. However, in our experiments,
since we used large-size test cases to estimate the VSS,
we set 4�P 1�D5= 41115.

The Lagrangian multiplier update method pre-
sented in Equation (29) also provides significant
improvements to computation time, as it prevents
cycling and ensures that the algorithm converges.

For the purpose of assessing the optimality gap,
we tested the EPHA on four different instance sets
(see Table 2). As indicated, each instance set com-
prises 20 different instances. Each set is character-
ized by the values of two different attributes: can-
cellation cost and expected standard deviation of the
cumulative duration of the surgeries to be performed
each day. The overtime cost was $13/minute based on
the average cost for Mayo Clinic reported by Batun
et al. (2011). Note that the overtime cost includes more

Table 1 Sensitivity of the Objective Function Value and CPU Time
to the Variations in the Penalty Update Multipliers

Expected cost CPU time
(�P 1 �D) (in dollars) (in seconds)

(1, 1) 1161708 443073
(2, 2) 1171173 443051
(2, 1.5) 1171334 467025
(2, 1) 1171339 450095
(4, 1) 1171185 408081
(16, 1) 1171268 422030

Table 2 Characterization of the Instance Sets

Cancellation cost Standard deviation of
Instance set # (in dollars) cumulative durations

1 11700 78
2 21000 78
3 11700 234
4 21000 234
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Table 3 Comparison of the PHA Solutions with the CPLEX Solutions of the PHA Deterministic Equivalent Model (PHA-DEM) for Moderate-Size Test
Cases in Terms of Objective Function Values

Expected cost (in dollars) Worst-case cost (in dollars) Standard deviation (in dollars)

Instance set # CPLEX PHA Difference (%) CPLEX PHA Difference (%) CPLEX PHA

1 231988 241039 0021 301270 301270 0000 11789 11817
2 231988 241032 0018 301270 301270 0000 11789 11814
3 261828 271012 0068 421388 421388 0000 31643 31696
4 261828 271004 0065 421388 421388 0000 31643 31692

than the direct exact financial cost of overtime for
staff. In the context of ambulatory surgery, overtime is
associated with an additional goodwill cost from staff
who prefer not to have substantial overtime, even in
light of the additional pay. It is also worth noting
that reported cost of overtime varies significantly in
the literature, and for this reason we present results
of sensitivity analysis on overtime costs. It may be
impossible to know the true costs of cancellation and
waiting, since they are highly dependent on individ-
ual patients; therefore, we treat these “costs” as penal-
ties in our experiments. The waiting cost was fixed at
$600 based on studies by Stepaniak et al. (2009) and
Tessler et al. (1997). The cancellation cost was set to
either low ($1,700/surgery) or high ($2,000/surgery),
based on the lower and upper bounds on the estima-
tion of the average cost reported by Argo et al. (2009)
(in §5.3, we present sensitivity analysis for waiting
and cancellation costs). The mean sum of surgery
durations was set to 540 minutes (nine hours) for the
surgeries to be scheduled to an OR that is open for
eight hours during regular time. The standard devi-
ation of cumulative surgery durations for each ser-
vice having two ORs was set to either a low of 78
or a high of 234. These values are consistent with
the Mayo Clinic data and represent services observing
lower and higher variability in surgery requests.

In Table 3, we compare the objective function val-
ues for the PHA solutions with the solutions found
after directly solving the PHA-DEM using CPLEX 12
for the moderate-size test cases. Note that the gap
between the EPHA and CPLEX solutions is 0.43% on
average. CPLEX found the optimal solutions for all
instances (taking about 1 second on average). EPHA
also did not consume a substantial amount of time
(about five minutes on average). Note that we com-
pared the EPHA and CPLEX solutions only for the
moderate-size test cases, because the use of CPLEX
for large instances is not feasible because of mem-
ory and space limitations. The model initialization on
CPLEX alone took three hours for the large-size test
cases, whereas our EPHA obtained very good solu-
tions within this time frame.

5.3. Model Sensitivity Analysis

5.3.1. Sensitivity to Cost Coefficients. We ana-
lyzed the sensitivity of optimal solutions to the
changes in the cost coefficients for cancellation, wait-
ing, and OR overtime costs. We emphasize the impact
of the changes on the number of surgery cancella-
tions over a planning period. The average number
of cancellations for different choices of cancellation
and waiting costs are given in Table 4. The compari-
son was conducted on instance set #2 in Table 2 and
29 new instance sets that were generated by varying
the cancellation and waiting costs while keeping the
overtime cost constant. Together these comprise the
30 instance sets used to generate Table 4.

Table 4 reveals that the main factor affecting the
number of cancellations is the ratio of waiting cost
to cancellation cost. This factor is important, because
if the waiting cost is low, then the optimal solu-
tion assigns surgery to later days in the time win-
dow to prevent future cancellations from occurring.
Since the low waiting cost leads to a lower number
of cancellations, the services performing surgeries of
lower urgency are likely to observe fewer cancella-
tions. Figure 5 illustrates the trade-off between total
expected number of cancellations and total expected
number of waiting days. The trade-off for a given
solution depends on the ratio of waiting cost to can-
cellation cost.

In Figure 5, the ratio was varied by keeping the
waiting cost fixed at $600 and changing the cancella-
tion cost from $200 to $2,000. We note that the num-
ber of cancellations is more sensitive to the ratio than
the total expected waiting time is. We also note from

Table 4 Sensitivity of the Expected Number of Cancellations to the
Variations in the Cancellation and Waiting Costs

Waiting cost (in dollars)

Cancellation cost (in dollars) 200 400 600 800 1,000

200 13060 16035 17000 18003 18032
400 0055 5075 12098 14006 16007
600 0020 0040 6080 12051 11096
800 0000 0033 0033 7013 10066
1,000 0000 0000 0033 0033 2072
2,000 0000 0000 0000 0000 0000
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Figure 5 (Color online) Trade-Off Between Total Expected Number of
Cancellations and Waiting Days Based on Different Waiting
to Cancellation Cost Ratio

Note. Cancellation cost used (in dollars) for a test case is shown next to the
corresponding data point.

Table 5 Expected Number of Cancellations as a Function of the
Cancellation and Overtime Costs (Under Constant
Waiting Cost)

Overtime cost ($)
Waiting cost= $600
Cancellation cost ($) 6 9 13 17

200 10035 17035 17 21016
400 8080 12021 12098 15091
600 0000 3068 608 7053
800 0000 0000 0033 0033
1,000 0000 0000 0033 0033
2,000 0000 0000 0000 0000

Figure 5 that there is a cancellation cost threshold at
which the average number of cancellations becomes
approximately zero. Table 5 illustrates the sensitivity
of the average number of cancellations to the changes
in the cancellation cost and overtime cost (waiting
cost is constant in these cases). For Table 5, in addi-
tion to the six instance sets used for Table 4 (where
overtime was set to $13), 18 new sets were generated.
Together these comprise the 24 instance sets used to
create Table 5. The table also suggests that the ratio of
waiting to cancellation cost has a significant influence
on the number of cancellations. In the case that this
ratio is less than or equal to one, the number of can-
cellations increases because of an increase in overtime
cost.

5.3.2. Sensitivity to Variability in Demand. We
evaluated the impact of uncertainty on the expected
total cost and the number of surgery cancellations.
Table 6 shows a comparison among six different mod-
erate size instance sets. Besides the instance set used
for Table 4 (where the standard deviation was set
to 78), five new instance sets were included to gener-
ate Table 6. Note that the expected cumulative dura-
tion of the requested surgeries is held nearly constant
(i.e., nine hours), whereas the standard deviation of

Table 6 Variation in Expected Number of Cancellations and Total Cost
(in Dollars) Due to Change in the Standard Deviation 4� ins5 of
Daily Cumulative Surgery Durations in Minutes

Standard deviation (� ins)

0 39 78 117 156 234

Expected 0 0 3.44 4.31 8.03 23.21
cancellations

Expected 19,081 17,810 18,235 18,107 19,487 21,510
total cost

Note. Mean = 540 minutes for all instance sets.

the surgery durations is varied over different sets. The
increase in standard deviation of cumulative durations
is achieved by generating requests from various acuity
levels (i.e., by increasing variability in requests). The
values for the cost parameters are fixed for all instance
sets (co = 131 ci = 2001 li = 400). Table 6 shows that
the expected number of cancellations increases with
respect to variance. The table also shows that when
there is no uncertainty in demand, cancellations are
not observed, and when the coefficient of variation is
low, cancellations are still not observed. The results
suggest that removing the variation in requests over
a planning period will reduce the number of cancel-
lations. It also suggests that in the surgical services
whose surgery mixes may change significantly from
day to day, cancellations are more likely to occur.
Therefore, grouping similar types of surgeries and
assigning them to the same day and OR may reduce
cancellations.

5.4. Value of the Stochastic Solution
We compared the solutions for the stochastic model
with the solutions of a deterministic heuristic to esti-
mate the VSS. We used this estimate of VSS because
it is not practical to find the exact VSS based on
the mean value problem solution in our case. This
is because the uncertainty in demand corresponds to
discrete surgery requests, which lose their meaning if
we take the mean and obtain a noninteger number of
requests. The heuristic we used is an extension of the
first fit decreasing heuristic, which is a well-known
heuristic for bin-packing problems and representative
of how scheduling is done in practice. The heuristic
is myopic in the sense that it does not consider future
outcomes when deciding on the assignment of surg-
eries into the future.

At each stage, the surgeries requested at that stage
are ordered from longest to shortest expected dura-
tion. Next, the surgeries are assigned to a future day
and OR, consecutively, according to their order on the
surgery list. The heuristic attempts to assign a surgery
to the earliest day available within the allowable time
window. The availability of the day depends on the
remaining capacities of the ORs that are appropriate
for assignment in terms of equipment restrictions.
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A capacity threshold is set for the ORs to pre-
vent having high overtime. The thresholds are defined
such that at most one surgery can be performed
in an OR during the overtime period. The heuristic
attempts to assign a surgery to the earliest available
OR. If a surgery cannot be assigned to any open OR
on a particular day, then a new OR is opened to assign
the surgery. If there is no additional OR available on
the same day, then the next day is considered. If the
next day is outside of the allowable time window, the
surgery is performed during the overtime hours in
one of the day and OR combinations. The steps of the
heuristic are summarized as follows:

Bin-Packing Heuristic
1 for t = 1 to H
2 Sort the surgeries requested at stage t from

longest to shortest duration to form the
sorted list, L. Let Li be the surgery in the ith
order, and nL be the size of the ordered list

3 for i = 1 to nL

4 while surgery assigned = false
5 for u= 4t + gLi

5 to 4t + gLi
+hLi

5
6 for j = 1 to O
7 if Equipment constraint is not violated
8 if Capacity constraint is not violated
9 surgery assigned = true

10 end if
11 end if
12 if surgery assigned = false
13 if There is no more additional

OR to open
14 surgery assigned = true
15 end if
16 end if
17 end for
18 end for
19 end while
20 end for
21 end for

Table 7 compares the EPHA and the heuristic
according to the solution quality and computation
time based on 20 instances of a large-size instance
set. We set the upper limit for an EPHA run as three
hours. From Table 7, we conclude that the EPHA
significantly improves the quality of solutions found
by the heuristic. Note that the average and maxi-
mum gap between the objective values for the EPHA
and heuristic solutions are 10.43% and 17.20%, respec-
tively. The heuristic was very fast with a CPU time
of less than one second. In contrast, on average, 2,304
CPU seconds were needed to obtain a solution using
the EPHA.

5.5. Rolling Horizon Procedure
Our model can be used in practice for an extended
length of planning periods (i.e., P > H ) using a

Table 7 Comparison of the EPHA with the First Fit Decreasing
Heuristic

Expected cost (in dollars) CPU time (in seconds)

Instance # PHA Heuristic Difference (%) PHA Heuristic

1 221179 241322 8081 11246015 0000
2 211138 251397 16077 834098 0000
3 171941 181708 4009 11115056 0000
4 171332 191500 11011 580000 0000
5 191197 201888 8009 11803031 0000
6 161277 171234 5055 530056 0000
7 221681 251236 10012 101800000 0000
8 181055 211728 16090 781057 0000
9 151104 161010 5065 537083 0000
10 221898 251900 11059 785059 0000
11 151860 171119 7035 11051096 0000
12 171480 191066 8031 11493044 0000
13 211391 231425 8068 570020 0000
14 201399 221798 10052 101800000 0000
15 161783 181781 10063 340050 0000
16 191880 221514 11069 540095 0000
17 201548 241182 15002 728026 0000
18 201307 241527 17020 309018 0000
19 191911 211456 7020 101800000 0000
20 271241 311427 13031 421078 0000

rolling horizon procedure (RHP) (Chand et al. 2002).
This could be achieved as follows. Suppose that the
surgery planning model is solved on day i for a plan-
ning period of H days. Once the schedule for day i+1
is put into practice, the model is solved for the next H
days. The surgeries that are cancelled on day i+1 are
then reconsidered for scheduling. The urgency lev-
els of these surgeries are also increased by adjusting
their cancellation and waiting costs before solving the
new instance of the model. The schedule for day i+2
that the updated model yields is implemented next.
After making the necessary updates on cancellation
and waiting cost values, the model is again solved for
the following H days. This pattern is repeated for the
remaining periods of the extended horizon.

The RHP that we suggested represents an approx-
imate solution procedure for a theoretically infinite
horizon problem. Notably, Huang and Ahmed (2009)
showed that solving a longer horizon problem with a
shorter horizon stochastic programming model may
provide poor results. To investigate this, we sim-
ulated the implementation of our model within a
rolling horizon framework and compared the solu-
tions with the heuristic solutions. We conducted the
comparison based on 20 instances of a large-size
instance set. The MSSMIP model was solved for a
planning period of five days in each of the first
five periods of the 11-period horizon. The solutions
were averaged across periods and compared with the
heuristic solutions obtained for the same 20 instances.
Table 8 presents these results comparing RHP with
the heuristic. From Table 8, we conclude that the
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Table 8 Comparison of the RHP with the First Fit Decreasing
Heuristic

Expected cost (in dollars)

Instance # RHP Heuristic Difference (%)

1 381754 491577 21083
2 441434 491906 10096
3 331762 391496 14052
4 311219 361630 14077
5 241145 261080 7042
6 371585 421345 11024
7 321187 371149 13036
8 511367 651880 22003
9 371550 411254 8098
10 391222 461862 16030
11 371254 441619 16051
12 361390 401713 10062
13 371731 441741 15067
14 391192 461066 14092
15 341757 401487 14015
16 371971 461399 18016
17 321474 351516 8057
18 381814 431012 9076
19 441620 591631 25017
20 401517 481192 15093

EPHA still outperforms the heuristic solutions signifi-
cantly in the rolling horizon context. The average and
maximum gaps between the objective values for the
RHP and heuristic solutions are 14.54% and 25.17%,
respectively.

The following review of articles where RHP has
been used also justifies the RHP we suggested. Ovacik
and Uzsoy (1994) used RHP for scheduling dynamic
job arrivals on a single machine. They first solved
a finite horizon problem, where a finite job set is
considered. This set includes the jobs that arrive on
the current day and some of the expected future job
arrivals. This approach resembles ours, as we also
considered some of the future surgery arrivals in our
stochastic programming model. Among the future
arrivals, Ovacik and Uzsoy (1994) considered the ones
with earlier due dates. Next, they implemented the
resulting finite horizon model solutions within an
RHP. They showed that the RHP significantly out-
performs myopic dispatching rules and a local search
method. They also extended their results into the par-
allel machine problems in Ovacik and Uzsoy (1995),
which has some similarities to the context of multi-OR
surgery scheduling.

In another example, in which multistage stochas-
tic programming was used, RHP was recommended
for solving an infinite horizon problem to gener-
ate a master production schedule (MPS) (Korpeoglu
et al. 2011). The authors also considered uncertainty
in demand in their formulation for a finite plan-
ning horizon. They recommended that their stochas-
tic programming model for MPS could be solved

every day within an RHP. Finally, RHP was also sug-
gested for healthcare scheduling problems. For exam-
ple, Rohleder and Klassen (2002) tested appointment
scheduling policies in a rolling horizon environment.
They suggested that RHP-based rules would be an
appropriate approach for practical settings.

6. Conclusions
In this article, we propose a multistage stochastic
mixed-integer programming formulation for the allo-
cation of surgeries to ORs under uncertainty over
a finite planning horizon. We first implemented an
extension of PHA, called EPHA, and compared EPHA
solutions with the solutions found using CPLEX 12.
We then analyzed the trade-offs between cancella-
tion, waiting, and overtime costs with respect to their
impact on total expected costs and surgery cancella-
tions. We also assessed the impact of varying levels
of uncertainty. We compared an easy-to-implement
heuristic with the EPHA to estimate VSS to quantify
the benefit of considering uncertainty in the surgery
planning and scheduling process. We also discussed
an implementation of the PHA within a rolling hori-
zon framework for extended planning periods. The
most significant findings of our study are as follows.

• The ratio of waiting cost to cancellation cost is
one of the factors that most impacts the expected
number of cancellations. If the waiting cost is higher
than the cancellation cost, then cancellations are likely.
A relatively low waiting cost allows a wider time win-
dow for scheduling surgeries, thus helping to reduce
the cancellations. Cancellations also increase with an
increase in overtime cost for the cases where the ratio
of waiting to cancellation cost is less than or equal to
one. Another factor to which the expected number of
cancellations is highly sensitive is the level of uncer-
tainty in demand and total daily surgery duration.
Cancellations do not exist in the deterministic case
but increase as the variation in demand increases.

• The EPHA outperforms a deterministic heuristic
that may be representative of methods used in prac-
tice. The results suggest that a good heuristic must
carefully handle the uncertainty in surgery requests,
because the cancellations can be reduced when surg-
eries with similar durations are performed together.
Thus, there may be benefits to studying either heuris-
tics that minimize the maximum variance of total
surgery durations over ORs and days, or ways to
reduce variation in surgery requests.

• The initial values of Lagrangian multipliers and
the Lagrangian multiplier and penalty update meth-
ods are the factors that most affect the performance
and solution quality of the PHA. Our Lagrangian
multiplier update method achieved fast convergence
of the EPHA. Our penalty update method acceler-
ated convergence but had a small negative effect on
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the solution quality. The EPHA requires a short time
to yield near optimal solutions for difficult problem
instances that cannot be solved by CPLEX within a
reasonable amount of time.
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