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Intense market competition in recent years has made it increasingly important for integrated
steel mills (ISMs) to differentiate themselves from competitors based on customer service, two
key attributes of which are the duration and the reliability of order-fulfillment time. To im-
prove responsiveness, some ISMs are shifting from a pure make-to-order system toward a
hybrid make-to-stock, make-to-order system. They can then match certain customer orders to
existing semifinished inventory, thereby reducing the time it takes to fill those orders. How-
ever, choosing which semifinished products to make to stock and how to manage their inven-
tory are difficult problems. We developed an optimization model that one ISM implemented
as a decision-support tool for choosing the designs of made-for-stock (MFS) slabs. Use of the
model has reduced the number of MFS slab designs and increased the proportion of orders

covered by those designs.

(Industries: mining, metals. Inventory production: applications.)

I n North America, more than 100 million tons of
steel are produced annually with an estimated
value of over 50 billion dollars. Steel is an essential raw
material for buildings, automobiles, household appli-
ances, and many other consumer products. For many
countries, the steel industry is vital to their global eco-
nomic competitiveness. It is also a mature industry,
often the quintessential example of the old economy.
Yet changes in production technology in recent years
have lowered the barrier to market entry and intensi-
fied competition. For example, minimills use newer
electric arc furnace (EAF) technology to process scrap
steel. A typical minimill consists of a scrap storage
area, an EAF, and a continuous casting machine. Mini-
mills produce between 300,000 and one million tons of
steel annually and have capital investments measured
in tens of millions of dollars. Integrated steel manufac-
turers (ISMs), on the other hand, carry out all of the
processes necessary to convert iron ore into finished
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products. They have dozens of semifabrication pro-
cesses, typically produce three to four million tons of
steel annually, and have several billion dollars in cap-
ital investment.

Minimills are cost-efficient but restricted in the va-
riety of steel grades they can produce. Nevertheless,
they have generated unprecedented competition in the
market for plain carbon steels. In response to this com-
petitive pressure, some ISMs that have the technology
to produce exotic grades and to customize finishing
operations have positioned themselves in the high-end
markets for exotic or custom-finished steel products.
However, customers in these markets demand unique
products and deliveries synchronized with their own
production processes. Thus, ISMs are under pressure
to increase the variety of products they produce and
to improve their responsiveness to market demand.
Even when their product portfolios have not grown in
size, the composition of the portfolios is turning over
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much more rapidly than in the past. For example, more
than 50 percent of the items in one steel manufacturer’s
portfolio, which contains thousands of unique end
products, were introduced in the last 10 years. While
in certain industries (for example, semiconductor
manufacturing) this turnover would not be considered
high, for steel manufacturing it is a sharp increase over
historical trends. We also have anecdotal evidence that
products requiring more finishing operations or exotic
grades deliver greater contribution margins due to the
lack of significant competition in these markets.
Managing variety has become the key to profitability
for many ISMs. Whereas product proliferation is a
common problem facing many industries, it poses a
particularly difficult challenge for ISMs that have long
operated in the make-to-order (MTO) production
mode. Their production processes are designed to
make steel in high volumes to minimize setup costs.

Managing variety has become the key
to profitability for many ISMs.

Thus, invariably, order fulfillment times are long and
range from 10 to 15 weeks. However, markets in which
ISMs have greater price latitude demand custom prod-
ucts with shorter and reliable delivery lead times, in
the range of five to six weeks. These requirements are
not consistent with the assumptions of high-volume
production with infrequent changeovers, upon which
ISM production processes were built. As a result,
where management intervention has been slow, the re-
sult of increased product variety has been capacity
shortages as well as exploding inventory of semi-
finished and finished goods.

ISM managers see strategic inventory management
as a challenge as well as an opportunity to improve
operations. Strategically placed inventories of the right
semifinished products in the right quantities can be
used to achieve shorter, reliable deliveries while at the
same time preserving production efficiencies. In effect,
this changes the pure MTO architecture into a hybrid
make-to-stock (MTS)-MTO architecture in which a
portion of the finished products are made from exist-
ing stock of semifinished products. However, deciding
which products to keep in stock and how to manage
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their inventories is not easy. These decisions are com-
plicated by capacity, yield, demand uncertainty,
process- and efficiency-related constraints, and the fact
that the production process allows for an infinite range
of semifinished products.

The Steel-Making Process

Steel making is a few-to-many industry. It uses a few
raw materials to produce a variety of finished prod-
ucts. Product differentiation increases as raw material
proceeds on its journey toward finished product. ISMs
produce a variety of finished products, most com-
monly in the form of flat rolled steel coils, or band for
short. Production consists of two basic stages: primary
production in which raw materials (iron ore, coke, and
limestone) are converted into band and finishing
operations in which surface and structural modifica-
tions are made to the band to achieve customer spec-
ifications on an order (for example, tin planting,
chromium-coating, and painting).

A typical ISM has a plant with the following primary
production operations: coke ovens, a blast furnace,
melt shop, ladle metallurgy, a continuous caster, and
a hot strip mill (Figure 1). The first step in steel pro-
duction is iron making. This process involves the sep-
aration of iron from iron ore made possible by a series
of exothermic chemical reactions in a blast furnace.
Next, the liquid iron, together with additional scrap
steel, catalysts, and purifying fluxes are reduced in an
oxygen furnace and transferred to a ladle. The ladle is
then transferred to ladle metallurgy and vacuum de-
gasing. At this stage, various alloying elements may be
added to the ladle to modify the chemistry, purifica-
tion processes are carried out, and additional process-
ing is done to ensure a homogeneous chemistry
throughout the ladle.

A batch of liquid steel, called a heat, typically varies
in size between 100 and 300 tons and is transported
between operations in a refractory lined container
called a ladle. The grade of steel in a given batch is
based on its chemical composition and the grade de-
termines the physical properties of the eventual fin-
ished product. For example, grade often determines
the ductility, tensile strength, and surface quality of the

INTERFACES
Vol. 33, No. 2, March-April 2003



DENTON, GUPTA, AND JAWAHIR
Integrated Steel Mills

Blast Furnace

Melt Shop

f e |

Ladle Metallurgy

Finishing <= -« = <= [] | €
Operations (os -l—'-
Reheat
Hot band Coiler Finishing Stands / Furnace Slab
Inventory Hot Strip Mill Roughing Inventory
Stand

Figure 1: This diagram shows primary operations at a typical ISM for manufacturing steel coils from iron ore.
Iron is separated from impurities in the ore, further purified, mixed with alloying elements, and then cast into
slabs. Slab inventory is maintained at this stage. Next, slabs are reheated and hot-rolled into flat strips called
coils. Coils are also usually stored in inventory prior to finishing operations. Finishing operations (not shown)
consist of cold rolling and one of several different treatments, such as galvanizing, tinning, and painting.

product. Specifying the grade is the first step in cus-
tomizing the finished product. After the chemistry re-
quirements have been met, the next step is casting,
which is a continuous process that transforms the steel
from a liquid to solid form. The resulting slabs com-
monly have a fixed thickness but adjustable width. Af-
ter the slab leaves the caster, it is cut with torches to a
desired length, which is the parameter that controls the
weight of the slab. Planners choose the width and
weight of the slab to suit the dimensions of the finished
coil ordered by the customer.

Theoretically, slabs can be cast in any width and cut
to any length within the process capabilities. At one
ISM slab widths ranged from about 30 to 65 inches,
and slab lengths ranged from about 20 to 35 feet. How-
ever, large and rapid width changes to the mold dur-
ing casting are expensive because they result in ta-
pered slabs that have limited applicability to customer
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orders. Also, ISMs prefer to cast wide rather than nar-
row widths because wider slabs have higher through-
put at the caster. Within order specifications, ISMs cut
slabs as close to the specified weight as possible to
avoid excess cropping downstream, which lowers slab
weights and results in a revenue loss (because the price
of the finished product is determined by its weight).
Lower weights may also increase the number of pieces
to be handled and processed at the hot mill if several
smaller slabs are used to fill an order. The controllable
attributes of a slab up to this point are the grade, width,
weight, internal quality, and surface quality. It is typ-
ically not feasible to rework and correct deficiencies
if any of these attributes are out of range with respect
to the customer order or to the allowable hot-mill
tolerances.

After casting, the slabs may either be labeled and
sent to a slab-storage area or taken directly to the hot
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mill for processing. The hot mill is a flow line in which
a slab is heated in a furnace to the desired temperature,
moved on a conveyor through a system of rollers that
are used to draw it out into a sheet, and sometimes
reduced in width by roughing (applying pressure to
its edges as it is rolled). The amount of width reduction
that is possible depends on the metallurgical and pro-
cess factors, and the internal and external quality spec-
ifications of the finished product. The steel sheet is sub-
sequently spun into a coil (also referred to as hot band).
It is then labeled, and sent to a coil-storage area where
it cools and waits in inventory for further processing.

The three broad categories of inventory are slabs, hot
band, and finished items. The slab stage is between the
continuous caster and the hot mill, and the hot-band
stage is just after the hot mill (Figure 1). Finished-
goods inventory is further differentiated from hot
band via one or more finishing operations. Slabs are
the least differentiated and finished goods are fully dif-
ferentiated products. In fact, the increase in the num-
ber of different types of items is an order of magnitude
greater at the finishing stages than at the slab and hot-
band stages. A typical ISM supplies thousands of
unique finished products in response to tens of thou-
sands of unique customer orders each year. However,
within the slab and hot-band categories, ranges of po-
tential specifications, called designs, may be used to fill
each order. Planners must decide which of these are
suitable candidates for MTS production.

Slab Inventory and Storage

A typical ISM may carry semifinished inventory at the
slab and hot-band stages. Throughout the remainder
of the article, we concentrate specifically on issues sur-
rounding the slab stage. It is important to understand
that slab inventory is naturally present in ISMs. Slabs
act as a buffer between two major production units,
the continuous caster and the hot mill. Under current
practice, some amount of slab inventory is unavoid-
able and some amount is planned. For example, un-
avoidable inventory is created by order cancelations.
ISMs produce slabs after they receive initial orders but
they confirm the orders later (typically five weeks prior
to the delivery date) by contacting the customers to
determine that their requirements have not changed.
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It is not uncommon for customers to cancel orders, or
to change order sizes or specifications at the time of
confirming the order. Usually, the ISM has produced
the slabs for the original order specifications and must
consign them to surplus inventory. The ISM’s market-
ing department tries to find customers for such slabs,
and its planners try to use such slabs for other orders
as soon as possible.

Making some slab designs to stock provides some
important strategic benefits. The production of slabs
accounts for roughly half the time required to process
an order. Thus, having slabs available for an order can
potentially cut delivery lead times in half. Carrying the
appropriate coil or finished goods inventory cuts lead

Steel making is a few-to-many
industry.

times even more. However, slab inventory is much
cheaper to carry because less value has been added at
that stage, and because slabs have a lower rate of spoil-
age from surface corrosion. Also, ISMs have greater
flexibility in matching slabs to orders than at later
stages, which gives rise to significant risk-pooling
benefits.

There are two common ways of storing slabs. In the
random-access area, slabs of different designs (grades,
widths, weights, internal, and external qualities) are
stacked in the same pile in random order. The piles are
adjoining, and their heights are restricted to ensure
structural stability. Slabs with identical dimensions
may be stored at different locations. ISMs use random-
access storage for low-volume slabs. They produce
these slabs in small quantities but carry literally thou-
sands of designs. Tracking and retrieval can be difficult
in the random access area. In the clone-bank storage
area, slabs of identical dimensions are stacked in piles
in the slab-storage yard. The ISM stacks several piles
next to each other and keeps the piles of identical slabs
uniform in height by rotating the picking of slabs. It
thus maintains stability in piles that may be five times
the height of piles in random-access storage. Clone
banks permit higher-density storage, simpler control
and tracking, and shorter retrieval time than random-
access storage. However, due to the large number of
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low-volume custom slabs that require random-access
storage, ISMs have limited space for clone banks.

Order Matching Flexibility and
Cold-Application Rules

As the ISM books orders, a planner determines
whether an existing (cold) slab in inventory can be
used to fill the order. This is done by checking if any
of the slabs in inventory satisfy a set of rules, called
the cold-application rules, for the order. If there is such
a slab, it is assigned to the order; otherwise a custom-
fitted slab design is included in the future production
schedule.

Planners translate orders into finished hot band of
the required dimensions and then into slabs of ranges
of width and weight that can be applied to each order.
They have some order-matching flexibility because
ISMs can reduce slab width at the hot mill via roughing
and thus use slabs slightly wider than the width spec-
ified for an order and because customers accept coils
that fall within a range of weights around the aim
weight they desire. Many customers permit weights
somewhat lower than the aim weight but not higher
because of constraints at their loading docks. Also, the
reduction in width possible via roughing depends on
such factors as the grade, width, cast duration, and
gauge of the coil required for the order.

Our Approach and Related
Literature

We developed and implemented a model for one ISM
that it uses to choose which semifinished products to
manufacture to stock. We first held discussions with
senior planners in several different functional areas at
a particular ISM. Participants have included, for ex-
ample, inventory managers, purchasers, production
planners, caster schedulers, and capacity managers.
These meetings helped to underscore the key criteria
behind the design of semifinished products as well as
the business process used by the ISM for making such
decisions. Motivated by our understanding of the
problem, we proposed an optimization model suitable
for making such decisions. The model was eventually
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implemented as a decision-support system (DSS), de-
veloped in C/C++, that runs on a PC and includes a
user-friendly graphical interface. The DSS allows in-
ventory planners to analyze various scenarios using
heuristics to solve a mathematical optimization
problem.

We proposed a two-step approach for managing
product variety at the ISM. For the first step, we iden-
tified which slabs to produce for MTS. For the second
step, we expect to develop methods for scheduling reg-
ular production or purchase of slabs chosen for each
planning period. Overall, we expect our approach to
reduce total inventory, improve delivery performance,
and improve capacity utilization. So far, we have com-
pleted and implemented only the first of these two
steps, which we describe in this article.

Several bodies of literature in manufacturing and
operations management concern the problem we stud-
ied. Some researchers have focused on the steel indus-
try and similar process industries (reviewed by Dutta
and Fourer 1995). Recent such work falls into the fol-
lowing categories: strategic operations management
and case studies (Bielefeld et al. 1986, Sinha et al. 1995),
supply chain issues (Hafeez et al. 1996, Kisperska-
Moron 1990), production planning and control issues
(Boukas et al. 1990, Chen and Wang 1997, Lin and
Moodie 1989, Sasidhar and Achary 1991, Vasko et al.
1991) caster and production scheduling decisions (Box
and Herbe 1988, Diaz et al. 1991, Jacobs et al. 1988,
Vonderembse and Haessler 1982), matching surplus
inventory to orders (Kalagnanam et al. 2000), and cut-
ting stock and ingot design (set-covering) problems
(Vasko et al. 1992, Vasko et al. 1989, Vonderembse
1984).

Balakrishnan and Brown (1996) formulated the
problem of choosing sizes of semifinished aluminum
tubes (the bloom-sizing problem) from which tubes of
different sizes can be drawn and finished to meet cus-
tomer orders. For projected product mixes and vol-
umes, they propose heuristics to find the best n tube
sizes that minimize the overall drawing effort subject
to an upper bound on the extrusion effort. This and the
studies that deal with ingot design (Vasko et al. 1992,
Vasko et al. 1989, Vonderembse 1984) are closely re-
lated to our problem. Unlike other researchers, we con-
sider an infinite range of choices with respect to the
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width and weight of slabs, not a finite set of feasible
designs. Our approach can approximate the best k —
x designs given that x designs are fixed (possibly by
an earlier decision). This facilitates improved manage-
ment of clone-bank inventories that are expected to
change gradually over time as product portfolios
change. Our model uses metallurgical and process con-
straints to determine which incoming orders match
which designs. Its central focus is not on allocating ex-
isting surplus inventory to orders (a complicated prob-
lem in its own right). Thus, our work is distinct from
work dealing with inventory-matching problems
(Kalagnanam et al. 2000).

From a modeling perspective, the problem of choos-
ing the optimal intermediate product design is related
to the problem of determining the optimal point of dif-
ferentiation, subject to a service level constraint (Lee
1996, Lee and Billington 1994, Lee and Tang 1997, Garg

The ISM has improved its utilization
of inventory space.

and Tang 1997, Swaminathan and Tayur 1998, Graman
and Magazine 1998, Gupta and Benjaafar 2001). The
key difference is that these models deal with assem-
bled products. Finally, an extensive literature deals
with inventory-placement issues in series production-
inventory systems (Gallego and Zipkin 1999, Axsater
2000, Chapter 5).

Model Formulation

Two key pieces of data are needed for formulating the
slab-design-optimization problem: cold-application
rules to determine what slab designs are feasible for
each order and historical order-book data on the types
and mix of orders the ISM typically produces. The time
frame for the data set used in the model depends on
the frequency with which the ISM selects slabs. We
used six months because the ISM reevaluates its slab
design decisions every six months.

We formulated the model with the objective of max-
imizing realized revenue when the maximum number
of allowable designs is k. The ISM’s inventory planners
specify the number k. It cannot exceed the maximum
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number of cells dedicated to clone banks under exist-
ing constraints on space in the slab-storage yard. For
each feasible application of a slab design to an order,
we assume that the ISM earns a nonnegative reward.
The reward represents a numerical measure of the
benefits of satisfying the order with the particular slab.
For applications of slabs to orders that are not feasible,
this reward is zero. In the implementation of our
model, we assumed the reward for each feasible ap-
plication was equal to the size of the order in tons.
However, in general the rewards could capture addi-
tional factors, such as variable production cost, order
size (in tons), importance of the customer, and the
width and weight discrepancy between the slab and
the ideal width-weight combination for the order. We
provide a mathematical description of the model in the
Appendix.

A complication of the model is the continuous range
of slab designs that are feasible for each order. This
means that the set of potential slab designs is infinite.
We tackle this problem by observing that for any sub-
set of orders that can be satisfied by a range of slab
widths and weights, it is possible to identify a unique
optimal design. This holds as long as the reward as-
sociated with the application of a particular slab to a
particular order is linear in the following factors: the
amount of discrepancy between the ideal and actual
slab dimensions applied to that order, the size of the
order, and the importance of the customer. This im-
plies that we can preprocess demand data to identify
a finite set of slab designs and then search within that
set to find the best k designs. The number of possible
designs does not exceed ¢, the number of subsets of an
order set of size c. Although this is potentially a very
large number, in practice, cold application rules sub-
stantially limit the number of feasible designs.

The property described above parallels the node-
optimality property of certain location problems (Mir-
chandani and Francis 1990, pp. 75-78). We demon-
strate this property with the example in Figure 2 in
which there are five orders. For a single order, we can
assume there is a unique optimal design (width-weight
combination in this example). Determining the optimal
slab width for a given order depends largely on which
production process is currently the bottleneck. For ex-
ample, when caster capacity is a bottleneck, ISMs try
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Potential Solutions

Width

Weight

Figure 2: This figure illustrates the finiteness of the set of potential so-
lutions. The open circles denote the aim width and weight for each order,
the rectangles represent feasible width and weight ranges for each order,
and the dark circles are the potential solutions. The subset of two orders
on the left has two potential solutions, whereas the subset of three orders
on the right has three potential solutions. No slab design can satisfy all
five orders.

to cast slabs with the greatest possible width to maxi-
mize the total tonnage they can process. Thus, the ISM
assumes the ordered weight is the maximum possible
weight and uses this weight as the goal to simulta-
neously maximize revenues (because revenues are pro-
portional to slab weight) and minimize the number of
pieces handled and processed downstream. For illus-
tration purposes, this example assumes that the caster
is indeed the bottleneck and therefore maximum width
and weight slab designs (top right corners) are pre-
ferred. In our example, no single slab design satisfies
all five orders. If we consider the two subsets consist-
ing of two and three orders shown in Figure 2, we
notice that each of these subsets can be satisfied via
common slab designs. Then, the set of designs that con-
tains the complete set of optimal designs is the set of
top right corners of all slab design sets that are feasible
for at least one member of the original subset.
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After obtaining the set S of candidate slab designs,
we formulated a mathematical model of the slab-
design-optimization problem (Appendix). This is a
well-known mathematical model and arises in many
different contexts. For example, the same mathemati-
cal formulation is obtained when a firm needs to
choose at most k locations to maintain bank accounts
for customer payments given fixed costs for opening
facilities. In that context, the problem is called the lock-
box problem (Cornuejols et al. 1977). A special case of
the problem in which facilities are located at demand
nodes and the fixed costs for opening facilities are zero
is called the k-median problem in location theory
(Mirchandani and Francis 1990, Chapter 2). Many
operations researchers have developed heuristics that
provide reasonably accurate solutions for this class of
problems (Nemhauser and Wolsey 1999, pp. 495-512).
For large problem instances, a combination of the
greedy heuristic to obtain a good initial solution, and
an interchange heuristic (Teitz and Bart 1968) to im-
prove this solution yields good solutions (Cornuejols
et al. 1977 give details). We chose this solution ap-
proach because it is fast (the model size for this appli-
cation is computationally prohibitive) and because it
requires no commercial software (for example, LP
solver).

Implementation and Numerical
Examples

An ISM applied our model and uses it as a decision-
support tool for choosing which slab designs to store
as clone-bank inventory and which slabs to purchase
externally. We carried out the initial implementation
and testing of the greedy-interchange heuristic on a
Sun Ultra 10 Workstation. The algorithms were coded
using C++ and tested using real data from current
and previous years.

Figure 3 shows the different types of data required
by the model. The model uses various sources of data
at the ISM to formulate the optimization problem. We
define an instance of the model using the set of re-
wards for applying orders to slabs. For each customer
order, we obtained data on the ideal slab design and
ranges of slab width and weight that constitute feasible
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Figure 3: This overview shows the data inputs for the slab-design-optimization model and the outputs obtained

from the model.

designs for that order. We then combined customer
orders that had the same ideal slab design to obtain
the demand volume for an order type. The set of all
order types is denoted as C. To generate instances of
the model corresponding to the needs of the decision
makers, we made the following assumptions. First, we
assumed that for each distinct subset of order types
that could be covered by at least one common slab de-
sign, the optimal design was the maximum slab width
and weight in the set of potential slab designs S. This
is consistent with the assumption that the continuous
caster is the bottleneck in the production process. We
assumed that all of the distinct order types over a spec-
ified planning horizon (for example, three to six
months) were rolled into a single time period. Also, we
assumed rewards were equal to the estimates of the
mean demand over the specified planning horizon for
each order type.

To estimate the mean demand for each distinct order
type, we could use historical order data, quantitative
or subjective forecast of demand, or a mixture of the
two. The advantage of setting rewards equal to mean
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demands is that mean demands are readily available
data and we did not have to tune cost parameters to
trade off the impact on different functional areas of the
ISM. Furthermore, we based the objective function on
a widely accepted measure of performance—the total
tonnage of orders that can be covered with the chosen
designs.

The objective is thus to maximize total demand cov-
ered by the k designs, given the secondary objective to
maximize caster throughput. The basic structure of the
algorithm used is as follows:

(1) Model generation: We compute a set of potential
slab design choices based on cold-application rules in
place at the ISM and numerical rewards, rjj, are gen-
erated and stored using a sparse matrix storage
scheme.

(2) Solution: We apply a fast greedy-interchange
heuristic to generate a user-specified number of clone-
bank designs.

(3) Reporting: We perform supplemental data anal-
ysis, producing a variety of output reports describing
various properties of the proposed bank (for example,

INTERFACES
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factors affecting hot-mill scheduling, lists of final prod-
ucts, and customers that can be served by each clone
bank).

An important step in implementing the model was
validating it for the decision makers at the ISM. We
did this by comparing decisions made using the model
with those made in the previous year. Historically, de-
cisions about which designs to keep in clone banks
were assessed periodically. Approximately every
quarter, about six inventory planners met to decide
whether to add, remove, or switch existing designs. To
validate the model, the planners used the model out-
put to help them choose designs in a simulated deci-
sion process. Using several iterations they chose de-
signs based on the model, reviewed the choices, and
subsequently requested perturbations of the dimen-
sions and analyzed the results. The perturbation anal-
ysis took the form of what-if type questions aimed at
analyzing and capturing desirable attributes of designs
not incorporated in the optimization. For example, in
some cases, planners provided customer-specific in-
formation that resulted in changes to designs. Al-
though such changes ultimately reduce total order cov-
erage, they are able to better satisfy the preferred set
of customers.

After being validated, the model was ready for use
in planning future design choices. The model and
greedy-interchange heuristic solution method were
subsequently transferred to a Windows NT platform.
Although the existing C ++ program was easily trans-
ferred, we added a graphical user interface to make
the decision-support system easy to use. Together with
managers and inventory planners at the ISM, we de-
veloped an interface that allowed planners to conve-
niently make adjustments to the model’s input (for ex-
ample, perturbations for what-if type analysis) and to
produce reports in formats consistent with other sys-
tems’ reports.

Numerical Examples

We carried out a numerical analysis using the ISM’s
historical data. For reasons of confidentiality, we can
give no specific data regarding order trends or chosen
slab dimensions.
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Initially, we analyzed the accuracy of a greedy-
interchange heuristic using a computed Lagrangian
dual upper bound (Nemhauser and Wolsey (1999) give
details of the subgradient approach to solving a La-
grangian dual relaxation of the problem). Numerical
experiments showed that the greedy-interchange heu-
ristic typically finds a solution that is within two per-
cent of optimality for the problems we considered. (We
found that the interchange heuristic yielded small im-
provements to the greedy solution (less than three per-
cent).) Typical running time was less that 10 minutes
on a PC (366 MHz, 128 MB Ram). Thus, it provides a
satisfactory solution method for the structure and size
of the ISM’s problems.

After applying the algorithm to one instance of the
problem, that is, one set of six-month order data, we
tested the robustness of the solution by calculating the
percentage of orders (in tons) that could be covered by
the same 50 designs (that are chosen optimally for the
first data set) in different planning periods. We found
that the percentage of orders covered by the chosen
designs is quite robust with respect to short-term
changes in order sets. We expect this not to hold for
longer periods of time, because of portfolio turnover.
Therefore, the software application of the slab-design-
optimization problem has the functionality to start
with some initial designs and add the best k — x de-
signs to the already existing x designs. Such flexibility
accommodates the need for incremental changes to the
portfolio over time.

Increasing the number of clone-bank positions pro-
vides diminishing returns (Figure 4). Using the model,
we found that more than 50 percent of orders in 1999
could have been filled using 60 different designs, and
thus these designs accounted for roughly half of the
ISM’s revenues. However, as the number of available
clone-bank cells is increased, a long tail develops. Man-
aging this tail is a problem all ISMs confront. The prob-
lem is that typically many orders require custom slab
designs. This is consistent with the 80-20 rule or Pareto
distribution of many naturally observable phenomena,
including, for example, the ABC classification of in-
ventory (Silver et al. 1998).

We contrasted the demand schedules for two slabs
with similar geometries, weights, and quality attri-
butes: a slab identified by the optimization model (Fig-
ure 5) and a slab that was kept in the clone bank prior
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Figure 4: This figure shows the cumulative percent coverage of total de-
mand for slab designs as a function of the number of allowable designs
(obtained from using the greedy heuristic). A small number of designs
account for a large percentage of total demand in tons.

to the implementation of the optimization model (Fig-
ure 6). To generate the schedules, we adjusted the due
dates for orders applicable to each slab design accord-
ing to production-routing-dependent processing times
to determine the approximate week in which slabs for
each order would have been required for processing at
the hot mill. The weekly demand for the original slab
design has a mean and standard deviation of 1,538 and
1,012 respectively. On the other hand, the mean and
standard deviation of the weekly demand for the op-
timized slab design are 3,851 and 1,251 respectively. In
general, the optimization model results in a significant
increase in mean demand but only a small relative in-
crease in standard deviation, giving the slab design a
much smaller coefficient of variation (cv). From the
point of view of inventory policy, a smaller cv implies
lower safety-stock requirements per unit of demand.
Thus, although demand variation is unavoidable, the
applicability of a greater number of orders to an opti-
mized slab design results in inventory pooling
benefits.

Results

Since the DSS was implemented, it has led to the fol-
lowing significant improvements:
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Figure 5: This example illustrates the demand pattern for a 21-week period
in 1999 for a typical slab design generated after using the greedy heuris-
tic.

—Total cycle time averaged across all product
groups is 30 percent lower for orders sourced from slab
stock versus those made from scratch during the year
after we implemented the DSS.

—The ISM has dramatically improved its utilization
of inventory space and its coverage of orders. Previ-
ously, 57 designs covered about 17 percent of total an-
nual order volume. After implementation of the DSS,
50 designs cover about 50 percent of the total annual
order volume. Increased coverage implies that the ISM
has a better chance of satisfying orders by pulling slabs
out of storage, which has lowered cycle times and im-
proved on-time-delivery performance.

—By reducing the number of slab designs, the ISM

Slab Demand vs. Weeks
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Figure 6: This example illustrates the demand pattern for a 21-week period
in 1999 for a typical slab design stored in the clone bank prior to the
implementation of the optimization model.
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has effectively increased the capacity of the slab stor-
age area. It is using the additional space to achieve
greater efficiencies in the purchase of slabs.

—Using the DSS, the ISM has reduced risk (for ex-
ample, order cancelation risk) by taking advantage of
inventory pooling. In particular, it has increased the
average number of orders that could use a particular
design on average by a factor of five.

—Before we implemented the DSS a full-time senior
planner spent about 50 percent of her time deciding
what slab designs to carry in inventory. Now she
spends about 10 percent of her time on such decisions.

Conclusions

The model we developed is a first cut at modeling the
choice of clone-bank designs. It ignores capacity limi-
tations at individual storage locations, that is, how
many tons of slabs each location can hold, as well as
decisions and policies regarding how clone-bank in-
ventory is to be replenished over time. These factors
may eventually affect the choice of clone-bank designs.
Furthermore, the ISM could keep inventory at other
staging points (for example, hot band) to improve its
responsiveness to demand. We are currently working
on developing an inventory management system that
considers both multiple inventory staging points and
inventory management policies for MFS slabs.

Appendix: Model Formulation and
Solution Methodology

To express the problem mathematically, we let k de-
note the maximum number of designs that are to be
made to stock. S denotes the set of potential slab de-
signs, and | = {1,...,k} the index set of chosen slab
designs with widths w;, weights m;, grades g;, and qual-
ities gj- We define C = {1,...,c} to be the set of all
orders within a historical data set. For each slab j € ],
and order i, we assume there is a nonnegative reward
r;;, which represents a numerical measure of the benefit
of having a slab j to cover an order i. We assume the
reward is nonzero only if the cold-application rules are
satisfied for the slab-order pair and zero otherwise.
Given r,«j’s, our problem is to choose the index set | with
cardinality less than or equal to k that maximizes total
reward. This can be written mathematically as follows:
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c
max {2 max {ri}l ]I = k}. ¢))
jes li=1 jeg]

To formulate the problem as a mathematical pro-
gram we define decision variables x/s and y;/s. The
objective is to maximize the total reward. That is, if

X: =

{1 if j € S is chosen,
i

0 otherwise,

~_ |1 if order i is assigned to slab j,
Yi = 10 otherwise,

and assuming that each order should be assigned to at
most one chosen slab design, the problem can be for-
mulated as

max Z = E E TiiYij @)
i=1j=1
subject to

E yij =1 Vi= 1,..., ¢ ©)

j=1
E Xj = k, (4)

j=1

yi=x=1 ©)

Yijy Xj € 0,1, j=1,..5si=1..¢ (6

Whereas (2-6) is a well-known problem, it is also
known to be NP-hard (Cornuejols et al. 1977). The size
of the problem that is relevant for a typical ISM is in-
deed quite large. For example, a typical historical order
set may contain tens of thousands of distinct orders.
Similarly, the number of slab designs that we need to
evaluate, albeit finite, may easily run into hundreds of
thousands, and the clone banks may accommodate 50
different designs. Thus, there is little hope of solving a
realistic instance of this problem exactly.
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Bruce Gabel, Assistant Director of Order Fulfillment,
Dofasco Inc., P.O. Box 2460, Hamilton, Ontario, Can-
ada L8N 3]5, writes: “The outcome of the project de-
scribed in this manuscript has been of significant value
to Dofasco. The project involved the development and
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analysis of a model for choosing which designs of steel
slabs and hot band steel coils to carry in stock for the
purpose of reducing cycle times. The resulting model
has formed the basis of decision-support software that
is used on a regular basis to aid in advance planning
of inventory requirements.

“Use of a mathematical model as a basis for choosing
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designs has not only improved the quality of decisions,
but also the speed and consistency with which they are
made. To give a specific example of the improvements,
the model showed the number of different designs of
slabs could be reduced by nearly 50% without any neg-
ative effect on performance. This will lead to signifi-
cant reduction in inventory.”
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