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We propose a multi-stage stochastic mixed integer programming formulation for the assignment of surgeries

to operating rooms (ORs) over a finite planning horizon. We consider the demand for surgery and the

duration of surgery to be random variables. The objective is to minimize three competing criteria: expected

cost of surgery cancellations, postponements, and OR overtime. We discuss properties of the model and an

implementation of the progressive hedging algorithm to find near optimal surgery schedules. We conduct

numerical experiments using data from a large hospital to identify managerial insights related to surgery

planning and the avoidance of surgery cancellations. Finally, we compare the progressive hedging algorithm

to an easy to implement heuristic for practical problem instances to estimate the value of the stochastic

solution.
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1. Introduction

Operating rooms (ORs) are responsible for a large portion of total hospital revenues

(HFMA 2005) and costs. Therefore, substantial cost reductions might be achieved through

better management of ORs. Typically, a two-phase process is followed to plan for a day of

surgery. In the first phase, surgeries are assigned to days. This is often done weeks prior to

the day of surgery. In the second phase, surgeries are sequenced and scheduled within ORs,

often days prior to the day of surgery. Surgery assignment, sequencing, and scheduling

decisions have the potential to influence the cost of overtime and cancellations.

Surgery cancellations result in prolonged hospital stays, delayed perioperative treat-

ments, and repeated preoperative tests and treatments. Cancellations have been found to

incur a cost of $1700 - $2000 per case (Argo et al. 2009). A recent study indicates that as
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many as 50% of cancellations can be prevented (Gillen et al. 2009). One way to prevent

cancellations is to create surgery plans that carefully consider the uncertainty related to

the future.

Designing surgery plans is a complicated task due to the uncertainty in demand for

surgery and duration of surgery. The occurrence of urgent and emergent cases is one of the

reasons that uncertainty in demand is a significant factor (Gerchak et al. 1996, Zonderland

et al. 2010). There also exists a considerable amount of uncertainty in demand for elective

surgeries. Thus, the mix of surgeries requested varies from day to day. Combining this

with uncertainty in the duration of individual surgeries (Gul et al. 2011) makes the task

of creating surgery plans challenging.

In this article, we study the problem of assignment of surgeries into future days and ORs

over a finite planning horizon. Decisions in our model include scheduling and rescheduling

of surgeries where the latter results from cancellations that may occur on the day of surgery.

Cancellations are an important consideration, because they are commonly observed and

they significantly influence efficiency and quality of patient care. For example, one study

found that the percentage of canceled surgeries ranges between 5% - 20% across institu-

tions in the US (Argo et al. 2009).

We formulate a multi-stage stochastic mixed integer program for surgery planning. We

consider three competing criteria in the objective function: expected cost of surgery can-

cellations, postponements (the number of days between when the surgery is requested and

the day it is performed), and OR overtime. We implement a customized version of the

progressive hedging algorithm (PHA) to find near optimal surgery plans. We also compare

the PHA with a deterministic heuristic which is similar to planning rules likely to be used

in practice. We use our model to solve practical instances of the problem based on data

from a large medical center. Our results provide insight regarding answers to the following

three questions:

1. Which factors have significant impact on the increased likelihood of surgery cancel-

lations?

2. What is the value of considering the randomness in demand and total daily surgery

durations when planning surgeries?

3. Which PHA parameters have significant impact on the performance and solution

quality of the PHA?



Gul, Denton, and Fowler: A Multi-Stage Stochastic Program for Surgery Planning
3

The remainder of this article is organized as follows. In the next section, a brief literature

review of surgery planning studies is presented. In Section 3, the decision making process

is described and a multi-stage stochastic mixed integer programming model is formulated.

In Section 4, our implementation of the PHA is discussed. In Section 5, the experimental

study is presented. Finally, concluding remarks are given in Section 6.

2. Literature Review

The literature review is divided into three categories of research. The first category is deter-

ministic models for OR planning. The second category includes articles which consider

uncertainties related to the surgery durations, but not demand uncertainty for elective

surgeries. Since the demand for elective surgeries over the planning period is assumed to be

known in these studies, the models are static, i.e., all decisions are given at the beginning

of the planning period. The third category of articles considers uncertain elective surgery

demands in the context of dynamic planning.

Among articles in the first category of research, Guinet and Chaabane (2003) used a two-

phase approach based on weekly OR planning. Their integer programming model assigns

surgeries to ORs and particular time blocks of each day over a finite planning horizon. The

objective is to minimize the patient’s indirect waiting time, i.e., the time between the pro-

cedure and hospitalization date, and OR overtime. Their model also considers equipment

constraints and availability of surgeons. Fei et al. (2008, 2009, 2010) proposed an integer

programming model for optimal assignment of surgeries to ORs and days to minimize OR

overtime and maximize OR utilization. They formulated the problem as a set partitioning

model and applied a column generation based heuristic to solve the model.

In the second category of articles, Min and Yih (2010) modeled the problem of allo-

cating surgeries to the blocks reserved for different surgery specialties. They formulated

the problem as a two-stage stochastic mixed integer program and used a sample average

approximation method to solve the problem. Their model also considers the availability

of intensive care unit (ICU) beds during the block assignment phase. The length of stay

in an ICU bed and surgery durations are the stochastic parameters in their model. The

objective function minimizes patient priority based waiting costs and OR overtime costs.

Lamiri et al. (2008a) solved the problem of assigning elective surgeries to periods over

a planning horizon while considering the impact of uncertainty related to emergency case
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arrivals. They first modeled the problem as a stochastic combinatorial optimization prob-

lem and then provided a reformulation in the form of a sample average approximation

problem. The authors considered expected overtime costs and patient related costs as the

performance measures. The surgery durations are assumed to be deterministic in the study.

Lamiri et al. (2008b) extended the model in Lamiri et al. (2008a) by considering the alloca-

tion of surgeries to ORs. Lamiri et al. (2009) proposed several heuristics to solve the same

problem in Lamiri et al. (2008a) and compared the heuristics’ performance with the perfor-

mance of a Monte Carlo optimization method. Hans et al. (2008) also solved a stochastic

OR-to-day allocation problem, where the stochasticity exists due to the uncertainty of the

surgery durations. Their objective is to minimize the planned slack time reserved in the

ORs each day which can be used by surgeries running longer than expected. The authors

consider the trade-off between the OR utilization and OR overtime. The authors found that

the surgeries having similar duration variability should be clustered together and assigned

to the same OR-day.

In the third category of articles, Gerchak et al. (1996) modeled a surgery planning prob-

lem as a stochastic dynamic program. The decision process in their study was defined as

follows: Each day new requests for elective and emergency surgeries arise. Surgeries are

scheduled to the current or future days and previously scheduled surgeries may be can-

celed. The objectives include maximizing the expected profit gained by scheduling elective

cases, and minimizing the expected overtime and surgery cancellation costs. Zonderland

et al. (2010) also considered a dynamic decision process where the days are assigned to

blocks of surgeries at the beginning of every week for a variety of urgency levels. The dif-

ferent urgency levels include elective surgeries as well as semi-urgent surgeries that must

be scheduled within one or two weeks. Based on a Markov decision process model, the

authors provided a planning guideline by taking the costs related to the OR idle time, OR

overtime, and cancellation of elective surgeries into consideration.

Our work differs from the studies in the first and second category due to the stochastic

dynamic setting for planning the surgeries. The articles most similar to ours are those by

Gerchak et al. (1996) and Zonderland et al. (2010), who also consider a dynamic decision-

making process. This article differs in the following ways. First, Gerchak et al. (1996)

allows same-day scheduling after a request arises for a surgery, however this is not a very

realistic representation of many surgery practices. Second, the surgery durations generated
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in their model are independent from each other and identically distributed. Third, they

do not consider OR allocation decisions and other scheduling complexities included in our

model.

This article also differs from Zonderland et al. (2010) in a number of ways. First, the

authors do not consider the assignment of individual surgeries to days, but rather reserve

time slots for elective or semi-urgent surgeries each day. Thus, for example, they do not

make a distinction between different types of elective surgeries. Furthermore, they make

strict assumptions about the nature of uncertainty including that surgery requests arise

according to a Poisson process, and surgery durations are assumed to be exponentially

distributed. In contrast, our study makes no special assumptions about the random model

parameters and our numerical results are based on real data from a large medical center.

3. Problem Description

The model formulated and discussed in the remainder of this article considers the

decisions for the dynamic allocation of surgeries to ORs over a finite planning horizon

under uncertainty (see Figure 1). The problem is formulated as a multi-stage stochastic

mixed integer program (MSSMIP). At each stage, i.e. day, newly requested surgeries

are scheduled to future days; furthermore, some previously scheduled surgeries may be

cancelled and subsequently rescheduled to a future stage. In addition to assigning each

surgery a day, an available OR is also assigned.

At the beginning of each day, it is assumed that random durations for surgeries are

observed for the current day. Thus, after the final schedule is determined for each day, the

cumulative duration of the surgeries assigned to the ORs, total amount of OR overtime,

and cancellations are determined.

Total expected OR overtime, postponement and cancellation costs are the performance

measures considered. To reduce overtime, surgeries might be cancelled and rescheduled

into future. However, the number of cancellations must be limited, because it results in

surgery cancellation and postponement costs. To reflect this, the model includes a per day

cancellation and postponement cost associated with each surgery. Furthermore, we assume

there exists a time window within which each surgery must be completed. Decisions are

made at each day during the planning horizon. Surgeries may also be scheduled to an

additional dummy day at the end of the planning horizon. In case there are surgeries

already scheduled into the current planning horizon, the capacities of the corresponding

ORs are reduced.

The objective of our model is to minimize the daily cost of overtime, postponement

and cancellations at a given day, and the expected daily costs of overtime, postponement
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Figure 1 The pattern followed while taking surgery scheduling decisions during a 3-day length of planning

period

and cancellations over the future days in the planning horizon. Following is a detailed

description of the MSSMIP model.

Indices:

i : surgery index

l,t,u: day index

j : OR index

ωt: scenario realization at day t

ω[t] := (ω1, ..., ωt) : history of scenario realization up to day t

Deterministic Parameters:

λij =


1 if there is no equipment constraint restricting the assignment

of surgery i to OR j ;

0 otherwise.

piu =

1 if surgery i can be assigned to day u

0 otherwise.
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gi = lead time (number of days between the earliest day the surgery can be assigned to

and the day the request arises) for scheduling surgery i.

hi = length of time window (number of days between the earliest day and the latest day

that the surgery can be assigned to) for scheduling surgery i.

aijt =


1 if surgery i was already assigned to day t and OR j before the planning

horizon starts;

0 otherwise.

P t
j = capacity (in terms of minutes) of OR j at day t

ci = cost per cancellation of surgery i

li = postponement cost per day for surgery i

co = OR overtime cost per minute

O= number of ORs

H = length of planning horizon for scheduling surgeries

Random Parameters and Sets:

di(ω
[t]) = random duration of surgery i under scenario ω[t]

s(ωt) = set of surgeries requested at day t according to realization ωt

s(ω[t]) = set of surgeries requested before and at day t under scenario ω[t]

ξt = (s(ω[t]), di(ω
[t])) : set of realization history of random parameters at day t

tth Stage Decision Variables:

xt
iju(ω

[t]) =

1 if surgery i is assigned to OR j and day u at day t under scenario ω[t];

0 otherwise,

σt
ij(ω

[t]) =

1 if surgery i from OR j is canceled at day t under scenario ω[t];

0 otherwise,

otj(ω
[t]) = overtime for OR j observed at day t under scenario ω[t]

xt(ω[t]) = vector of values for all decision variables defined for and before day t under

scenario ω[t]

The constraint set in the formulation of our problem has a block diagonal structure.

There are H blocks of constraints as well as nonnegativity and binary restrictions on the

decision variables. Each of the first H -1 blocks contain seven types of constraints, while

the last block has only four types. At day H, there does not exist any surgery request

since this is the last day of the planning horizon and same-day scheduling decisions are

not allowed in the model. Therefore, the model may only give a cancellation decision on

this day. Hence, the constraint set is more compact than the previous stages.
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For the last day, we have the following formulation for the recourse function,

QH(xH−1(ω[H−1]), ξH−1(ω[H−1])).

min
O∑

j=1

(
∑

i∈s(ω[H−1])

ciσH
ij (ω

[H])+ cooHj (ω
[H])+ lix

H
ijH+1(ω

[H])) (3.1)

s.t.

σH
ij (ω

[H])− aijH −
H−1∑
l=1

xl
ijH(ω

[H])≤ 0 ∀ ω[H], i∈ s(ω[H−1]), j (3.2)

O∑
j=1

σH
ij (ω

[H])− piH+1 ≤ 0 ∀ ω[H], i∈ s(ω[H−1]) (3.3)

∑
i∈s(ω[H−1])

di(ω
[H])(a0ijH +

H−1∑
l=1

xl
ijH(ω

H)−σH
ij (ω

[H]))− oHj (ω
H)≤ PH

j ∀ j,ω[H] (3.4)

xH
ijH+1(ω

[H]), σH
ij (ω

[H])∈ {0,1} ∀i; j;ω[H] (3.5)

oHj (ω
[H])≥ 0 ∀j;ω[H] (3.6)

The objective function minimizes the postponement, cancellation, and overtime costs at

stage H. Constraint (3.2) and (3.3) require that a surgery in an OR can only be cancelled

on day H if it was previously assigned to this day and OR; and if it is possible to reschedule

the surgery to another day. Note that the cancellation decision for a surgery can be given

more than once over the planning horizon. Constraint (3.4) calculates the overtime for an

OR by considering the surgeries scheduled to day H but not cancelled. Constraint (3.5)

and (3.6) define the nonnegativity and integrality restrictions.

The constraint block for stage t can be regarded as a generic block repre-

senting each of the blocks for the previous H-1 stages. Letting Qt+1(xt(ω[t])) =

Eξt+1[Qt+1(xt(ω[t]), ξt+1(ω[t+1]))] for all t, we obtain the following recursion for

Qt(xt−1(ω[t−1]), ξt(ω[t])) defined for t= 2, ...,H − 1.

min
O∑

j=1

(
∑

i∈s(ω[t−1])

ciσt
ij(ω

[t])+ cootj(ω
[t])+

∑
i∈s(ω[t])

t+gi+hi∑
u=t+1

li(u− t)xt
iju(ω

[t]))+Qt+1(xt(ω[t])) (3.7)

s.t.
t+gi+hi∑
u=t+1

O∑
j=1

xt
iju(ω

[t]) = 1 ∀ ω[t], i∈ s(ω[t]) (3.8)

t+gi+hi∑
u=t+1

O∑
j=1

xt
iju(ω

[t]) =
O∑

j=1

σt
ij(ω

[t]) ∀ ω[t], i∈ s(ω[t−1]) (3.9)

xt
iju(ω

[t])≤ λijpiu ∀ ω[t], i∈ s(ω[t]), j, u= t+1, ..,H (3.10)

σt
ij(ω

[t])− aijt −
t−1∑
l=1

xl
ijt(ω

[t])≤ 0 ∀ ω[t], i∈ s(ω[t−1]), j (3.11)

O∑
j=1

σt
ij(ω

[t])− pit+1 ≤ 0 ∀ ω[t], i∈ s(ω[t−1]) (3.12)

∑
i∈s(ω[t−1])

di(ω
[t])(aijt +

t−1∑
l=1

xl
ijt(ω

[t])−σt
ij(ω

[t]))− otj(ω
[t])≤ P t

j ∀ j,ω[t] (3.13)
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xt
iju(ω

[t]), σt
ij(ω

[t])∈ {0,1} ∀i; j; t= 1, ...,H;u= 2, ..., t+ gi +hi;ω
[t] (3.14)

otj(ω
[t])≥ 0 ∀j; t= 1, ...,H;ω[t] (3.15)

Constraint (3.8) ensures that a surgery must be assigned to an OR in one of the subsequent

days after day t if a request arises for this surgery on day t. Constraint (3.9) enforces

the assignment of a cancelled surgery to a future day and OR. Constraint (3.10) imposes

restrictions on the particular day and OR a surgery may be assigned. When a request arises

for a surgery, it must be scheduled within the allowable time window (hi) for performing

the surgery and at least gi stages into the future. A restriction on the assignment of a

surgery to an OR might also exist, defined by constraint (3.10), if the OR does not have all

equipment necessary for the surgery. Constraints (3.11) and (3.12) (which are equivalent

to (3.2) and (3.3), respectively) define the limits on the decision variables related to the

cancellation decisions given on day t. Constraints (3.13) is placed to calculate amount of OR

overtime on day t. Constraints (3.14) and (3.15) define the nonnegativity and integrality

restrictions on the variables.

The above MSSMIP model is NP-hard. This follows from the fact that an instance of

this problem, where the model has only one scenario corresponds to the well known bin

packing problem.

4. Solution Methodology

The problem is solved using the progressive hedging algorithm (PHA) proposed by Rock-

afellar andWets (1991). The PHA proceeds by applying scenario decomposition to the over-

all problem iteratively, solving the resulting individual scenario subproblems, and finally

aggregating individual scenario solutions. Although the PHA is guaranteed to converge to

a global optimal solution asymptotically in the convex case (Rockafellar and Wets 1991),

it may converge to only a local optimal solution in this case, because the problem is non-

convex, due to the binary decision variables.

The PHA has been applied in several application areas since the time it was proposed by

Rockafellar and Wets (1991) (for example, see Mulvey and Vladimirou (1992) for a financial

planning application; Helgason and Wallace (1991) for fisheries management application;

Santos et al. (2009) for hydrothermal systems operation planning application). The reader

is referred to Wallace and Helgason (1991), Watson and Woodruff (2011) for a detailed

discussion about the algorithm implementation.
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Many authors of PHA based studies have analyzed the algorithm and proposed ways to

improve the overall performance of the PHA based on the special structure of the problem

of interest (Mulvey and Vladimirou 1991b,a, Wallace and Helgason 1991, Hvattum and

Lokketangen 2009, Watson and Woodruff 2011, Crainic et al. 2011). Background informa-

tion on our own implementation of the PHA is given in Section 4.2.

4.1. Problem Reformulation

To apply PHA, we begin by reformulating the model to put it in the standard form

appropriate for scenario decomposition. Scenario decomposition can be applied when

constraints can be separated based on scenarios. In the new formulation, which we

refer to as the PHA deterministic equivalent model (PHA-DEM), a new parameter,

η, that represents a sequence of consecutive scenarios aggregated over all days (i.e.

ω[1], ω[2], ..., ω[H]) is defined and introduced. Figure 2 illustrates how the reformulation

impacts the scenario tree. Figure 2-(a) and Figure 2-(b) compare scenario trees for the

MSMIP and PHA-DEM, respectively. Each oval node in the scenario tree represents a

particular scenario realization, ωt, at a particular stage t. The accumulation of oval nodes

until stage t (i.e. ω1, ω2, ..., ωt) defines a particular scenario at day t (i.e. ω[t]). The circle

nodes within the oval nodes indicate the surgeries requested at a particular day under

the realization that the oval node represents. Note that, for simplicity, the example in

Figure 2 assumes that the uncertainty is based only on the surgery requests (i.e. the

surgery durations are deterministic).

Figure 2-(a) illustrates that ω[4] varies based on the scenario represented by ω[3]. The

same relation exists also for (ω[1], ω[2]) and (ω[2], ω[3]). On the other hand, Figure 2-(b)

illustrates an alternative representation of the scenario tree given in Figure 2-(a) where

the individual scenarios observed in the particular stages are aggregated over all days to

form three scenario sequences, η = 1,2,3. However, the above redefinition of the scenario

tree is not permissible since the solutions found might not be feasible for the overall

problem, because they imply decisions that anticipate future uncertain events. Therefore,

nonanticipativity constraints are required in the PHA-DEM. These constraints enforce the

following property: If two scenario sequences, (i.e. η = a, b), share the same history up to

day t, the surgery schedules created progressively over the planning period should always

have the same content until day t under the two scenario sequences. In other words, if a

decision is given for a surgery at some day l, where l ≤ t under scenario sequence a, the
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Figure 2 (a) A scenario tree example illustrating the surgeries that are requested at each day over a four-day

planning period (b) The example in (a) is shown in terms of individual scenario sequences

same decision holds under scenario sequence b.

Following is the additional notation used to formulate the PHA-DEM.

Additional Indices:

Z : number of scenario sequences

N : number of surgeries requested in a sample of scenario tree

η: scenario sequence index

B(η,t): scenario bundle index of the surgeries considered for scheduling at stage t under

scenario sequence η

Additional Parameters:

stiη =

1 if surgery i is requested at day t under scenario sequence η;

0 otherwise.

piηu =

1 if surgery i can be assigned to day u under scenario sequence η;

0 otherwise.

diη = duration of surgery i under scenario sequence η
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Prη = probability of the occurrence of scenario sequence η

Revised Decision Variables:

xt
iηju =


1 if surgery i is assigned to OR j and day u at day t under

scenario sequence η;

0 otherwise,

σt
iηj =

1 if surgery i from OR j is canceled at day t under scenario sequence η;

0 otherwise,

otηj = resulting overtime amount for OR j on day t under scenario sequence η

Additional Decision Variables:

x
B(η,t)
iju =


1 if surgery i is assigned to day u and OR j at all day-scenario sequence

combinations in the bundle, B(η,t), that day t-scenario η belongs to;

0 otherwise,

The nonanticipativity constraints are also referred to as bundle constraints. If the

scenario sequences a and b share the same history up to day t, then this indicates they

also share the same scenario bundle on day t : B(a, t) = B(b, t). Thus, the scheduling

decisions given on this day are the same among all scenario sequences placed in the same

scenario bundle.

Figure 3 illustrates the scenario bundle concept using the example given in Figure 2.

The rectangles covering the oval nodes represent the particular scenario bundles that exist

in the example. Since all three scenario sequences have the same realization (e.g. ω1 = 1) at

day 1, η= 1,2,3 share the same bundle at this day, thus this yields the following equation:

B(1,1) =B(2,1) =B(3,1) = 1. The second day also contains one scenario bundle, because

η= 2 and η= 3 share the same history by day 2.

We now show how decisions are synchronized using the bundle constraints. First, recall

that the model includes decisions for two different cases: (i) a request arises for a new

surgery; (ii) one of the surgeries is canceled. In day 1, for all η, surgeries 1 and 2 are
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Figure 3 Representation of scenario bundles by rectangles covering the scenario realizations at a particular

day.

scheduled into the future, corresponding to case (i). One can enforce nonanticipativity

using the following constraints:

x1
i1ju = x1

i2ju = x1
i3ju ∀j, u= 2,3,4,5 and i= 1,2.

Similarly, nonanticipativity related to surgery 3 can be generated using:

x2
32ju = x2

33ju ∀j, u= 3,4,5.

For case (ii), the decisions to reschedule cancelled surgeries under scenario sequences η =

2,3 are bundled as follows:

x2
i2ju = x2

i3ju ∀j, u= 3,4,5 and i= 1,2.

To facilitate the generation of a separable stochastic program, a new decision variable,

called the consensus variable, x
B(r,t)
iju , is defined. The PHA-DEM is formulated as follows:

min
Z∑

η=1

Prη(
H∑
t=1

O∑
j=1

(cootηj +
N∑
i=1

ciσt
iηj +

N∑
i=1

t+gi+hi∑
u=t+1

li(u− t)xt
iηju)) (4.1)

s.t.

xt
iηju = x

B(η,t)
iju ∀i, η, j, t, u > t (4.2)

t+gi+hi∑
u=t+1

O∑
j=1

xt
iηju = stiη +

O∑
j=1

σt
iηj ∀i, η, t (4.3)
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xt
iηju ≤ λijpiηu ∀ i, η, j, t, u > t (4.4)

σt
iηj − aijt −

t−1∑
l=1

xl
iηjt ≤ 0 ∀ i, r, j, t (4.5)

O∑
j=1

σt
irj − pirt+1 ≤ 0 ∀ i, r, t (4.6)

N∑
i=1

diη(a
0
ijt+

t−1∑
l=1

xl
iηjt −σt

iηj)− otηj ≤ P t
j ∀ j, η (4.7)

xt
iηju, x

B(η,t)
iηju , σt

iηj ∈ {0,1} otηj ≥ 0 ∀i, η, j, t, u > t (4.8)

The objective function (4.1) is the weighted sum of the total scenario costs over all

scenarios. The total scenario cost is weighted by the probability associated with the

scenario, Prη. The total cost for a scenario includes the total OR overtime cost and

surgery cancellation and postponement cost over all days.

Constraint (4.2) is the bundle constraint. Constraints ((4.3)-(4.7)) have the same mean-

ing as ((3.8)-(3.13)) in MSSMIP but using one less constraint. The number of constraints

is one less because we are now able to define the parameter, stiη, that indicates whether

a surgery is requested or not on a particular day. This parameter helps us formulate

both scheduling and rescheduling decisions in one constraint instead of two. Constraint

(4.3) sets the conditions to be satisfied to give a scheduling decision at a particular day.

Constraint (4.4) defines the allowable days and ORs for the assignment of a particular

surgery. Constraints (4.5) and (4.6) together ensure that the cancellation decision for a

surgery in an OR can only be made if the surgery was assigned to the OR and day, and if

the surgery is allowed to be postponed, respectively. Constraint (4.7) measures overtime

values for each OR, each day. Constraint (4.8) defines the nonnegativity and binary

restrictions on the decision variables.

Using the PHA-DEM formulation, an augmented Lagrangian relaxation technique is

applied by dualizing the bundle constraint. The relaxed formulation still includes the

constraints ((4.3)- (4.8)) in the constraint set. However, the objective function (4.1) is

now:

min
Z∑

η=1

Prη(
H∑
t=1

O∑
j=1

(cootηj +
N∑
i=1

ciσt
iηj +

N∑
i=1

t+gi+hi∑
u=t+1

li(u− t)xt
iηju)
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+
N∑
i=1

H∑
t=1

O∑
j=1

t+gi+hi∑
u=t+1

µt
iηju(x

t
iηju−x

B(η,t)
iju )+

ρ

2

N∑
i=1

H∑
t=1

O∑
j=1

t+gi+hi∑
u=t+1

∥xt
iηju −x

B(η,t)
iju ∥2) (4.9)

where µt
iηju,∀i, η, t, j, u denote the Lagrangian multipliers; ρ is the penalty parameter;

and ∥.∥ is the ordinary Euclidean norm. The additional components in the function (4.9)

penalizes the violation of the bundle constraint. Since xt
iηju, x

B(η,t)
iju ∈ {0,1}, the penalty

component in (4.9) is rewritten as follows:

∥xt
iηju −x

B(η,t)
iju ∥2 = xt

iηju − 2xt
iηjux

B(η,t)
iju +x

B(η,t)
iju (4.10)

To make the deterministic equivalent formulation scenario separable requires fixing the

consensus variable, x
B(η,t)
iju . Using a proximal point method (Rockafellar 1976), this value

can be estimated using the weighted sum calculation:

x̂
B(η,t)
iju =

Z∑
η∈B(η,t)

Prη∑
η∈B(η,t)Prη

xt
iηju ∀i, η, t, j, u. (4.11)

Note that (4.10) does not contain a quadratic term anymore after replacing x
B(η,t)
iju with its

estimation, x̂
B(η,t)
iju , which facilitates the solution of the subproblems following the scenario

decomposition.

Equation (4.11) calculates the weighted sum of the individual scheduling decision

variables within a decision bundle. The weights are set by normalizing the probability of

the scenario associated with a decision variable. The complete formulation, which we refer

to as the separable deterministic equivalent model (PHA-SDEM) is:

min
Z∑

η=1

Prη(
H∑
t=1

O∑
j=1

(cootηj +
N∑
i=1

ciσt
iηj +

N∑
i=1

t+gi+hi∑
u=t+1

li(u− t)xt
iηju)

+

N∑
i=1

H∑
t=1

O∑
j=1

t+gi+hi∑
u=t+1

µt
iηju(x

t
iηju − x̂

B(η,t)
iju )+

ρ

2

N∑
i=1

H∑
t=1

O∑
j=1

t+gi+hi∑
u=t+1

(xt
iηju− 2xt

iηjux̂
B(η,t)
iju ))

(4.12)

s.t.

t+gi+hi∑
u=t+1

O∑
j=1

xt
iηju = stiη +

O∑
j=1

σt
iηj ∀i, η, t (4.13)
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xt
iηju ≤ λijpiηu ∀ i, η, j, t, u > t (4.14)

σt
iηj − aijt −

t−1∑
l=1

xl
iηjt ≤ 0 ∀ i, r, j, t (4.15)

O∑
j=1

σt
irj − pirt+1 ≤ 0 ∀ i, r, t (4.16)

N∑
i=1

diη(a
0
ijt +

t−1∑
l=1

xl
iηjt −σt

iηj)− otηj ≤ P t
j ∀ j, η (4.17)

xt
iηju, σ

t
iηj ∈ {0,1} otηj ≥ 0 ∀i, η, j, t, u > t. (4.18)

Note that the last term of (4.10) is ignored in the PHA-SDEM objective function, (4.12),

because it is fixed. Constraints ((4.13)-(4.17)) define the same feasible space as the con-

straints ((4.3)-(4.7)).

Note that the consensus variable in PHA-DEM is represented by its estimation in PHA-

SDEM, x̂
B(η,t)
iju , which is called a consensus parameter. The consensus parameter is also an

estimation of the implementable solution at a given iteration of the PHA. However, there

is no guarantee that the estimated implementable solution would be a feasible solution for

PHA-DEM. If this solution is also feasible in PHA-SDEM, then it is called an admissible

solution. The goal of the PHA is to identify a good solution (ideally the optimal solution)

among all admissible and implementable solutions.

The mixed integer programming formulation for a particular scenario subproblem model

(PHA-SSM) is given as:

min
H∑
t=1

O∑
j=1

(cootηj +
N∑
i=1

ciσt
iηj +

N∑
i=1

t+gi+hi∑
u=t+1

li(u− t)xt
iηju)+

N∑
i=1

H∑
t=1

O∑
j=1

t+gi+hi∑
u=t+1

µt
iηju(x

t
iηju− x̂

B(η,t)
iju )

+
ρ

2

N∑
i=1

H∑
t=1

O∑
j=1

t+gi+hi∑
u=t+1

(xt
iηju− 2xt

iηjux̂
B(η,t)
iju ) (4.19)

s.t.

t+gi+hi∑
u=t+1

O∑
j=1

xt
iηju = stiη +

O∑
j=1

σt
iηj ∀i, t (4.20)

xt
iηju ≤ λijpiηu ∀ i, j, t, u > t (4.21)

σt
iηj − aijt −

t−1∑
l=1

xl
iηjt ≤ 0 ∀ i, η, j, t (4.22)



Gul, Denton, and Fowler: A Multi-Stage Stochastic Program for Surgery Planning
17

O∑
j=1

σt
iηj − piηt+1 ≤ 0 ∀ i, η, t (4.23)

N∑
i=1

diη(aijt +
t−1∑
l=1

xl
iηjt −σt

iηj)− otηj ≤ P t
j ∀ j (4.24)

xt
iηju, σ

t
iηj ∈ {0,1} otηj ≥ 0 ∀i, j, t, u > t (4.25)

The objective function (4.19) corresponds to one of the scenario costs which are aggre-

gated in the objective function (4.12) of the PHA-SDEM. Constraint set ((4.20)-(4.25)) is

also a subset of the constraint set ((4.13)-(4.18)) which should be satisfied for all scenarios

rather than only for one scenario.

4.2. Progressive Hedging Algorithm

In this section, we describe our implementation of PHA. Let k denote the index for the

iteration number of the PHA, µ
t(k)
iηju ∀i, η, t, j, u the Lagrangian multipliers and ρk the penalty

parameters at iteration k. Then, the general steps of the PHA are stated as follows:

PHA

1 Set algorithm terminates = false, k= 1, ρ(k) = 0, µ
t(k)
iηju = 0 ∀i, η, t, j, u

2 while algorithm terminates = false

3 for η= 1 to Z

4 Solve the PHA-SSM to obtain x
t(k)
iηju ∀i, η, t, j, u

5 end for

6 Calculate the consensus parameter: x̂
B(η,t)
iju ∀i, η, t, j, u

7 if k > 1

8 Update the penalty parameter according to the following scheme:

ρ(k+1) = αρ(k), where α> 0

9 end if

10 Update the Lagrangian multipliers according to the following scheme:

µ
t(k+1)
iηju = µ

t(k)
iηju+ ρ(k)(x

t(k)
iηju − x̂

B(η,t)
iju )

11 if x
t(k)
iηju = x̂

B(η,t)
iju ∀i, η, t, j, u

12 Set algorithm terminates = true
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13 end if

14 else

15 Set k= k+1

16 end else

17 end while

4.3. Enhanced Progressive Hedging Algorithm

In our implementation, we took advantage of the special structure of the model formulation

to accelerate the computational performance of the PHA and improve the quality of the

PHA solutions. We refer to this algorithm as the enhanced progressive hedging algorithm

(EPHA). The degree of violation of the bundle constraints and decisions taken by the

majority of the variables in the decision bundles motivate the Lagrangian multiplier update

method. We also analyze if a penalty update method utilizing the information about the

convergence pattern of the primal and dual variables may enhance the solutions.

In the PHA literature, there are many other studies that propose enhancements on the

PHA based on the special structures of the models. We first present a brief review of

enhancements proposed for various problems. Then, we discuss the methods of our EPHA.

4.3.1. PHA enhancements. Mulvey and Vladimirou (1991b,a) discussed the trade-off

between the selection of high and low values for the penalty parameters and the impact

of the problem structure into this selection. They also discussed the benefits of the

dynamic penalty adjustment methods. Helgason and Wallace (1991), Listes and Dekker

(2005) discussed the sensitivity of the convergence of the PHA to the choice of penalty

parameter. Hvattum and Lokketangen (2009) proposed a method to set a direction of

improvement while updating the penalty parameters. They tested the case where there

exists parameters for individual nonanticipativity constraints in the model. Watson and

Woodruff (2011) also proposed methods to set the penalty parameters for individual

nonanticipativity constraints for a class of resource allocation problems.

In our experiments, we observe that updating penalty parameters based on the

information on the convergence pattern in the primal and dual space did not achieve

significantly better results than keeping the penalty parameter constant. Our experiments
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suggest that the initial values of the Lagrangian multipliers have significant impact on

the quality of the final solution. We selected the initial values after assessing the trade-off

between the marginal improvement in solution quality and additional computational time

needed as a result of a variation in the values. Mulvey and Vladimirou (1991a), Santos

et al. (2009) also discussed the importance of the initial estimates for the Lagrangian

multipliers and tested warm start methods including simple heuristics to find reasonable

initial values.

It is well known that in the non-convex case, the PHA is not guaranteed to converge

(Takriti and Birge 2000). Watson and Woodruff (2011) defined some techniques to detect

non-convergence in the form of cyclic behaviors. Whenever they detect a cycle for a

variable, they fix the variable value using a simple rule (the largest value of the variable

across scenarios is selected). In our case, the Lagrangian multiplier update method

prevents cycling. Since the Lagrangian multipliers are defined only for binary variables,

the method aims to favor one feasible value over the other primarily based on the selection

in the majority of the subproblems. When the majority is not achieved, the postponement

and cancellation costs are also considered.

Due to the typically large number of subproblems to be solved following the scenario

decomposition at each PHA iteration, computational efficiency in subproblems is impor-

tant. Furthermore, it has been shown that the PHA is often a reasonable heuristic to use if

there exists an efficient algorithm to solve the subproblems of a very large scale stochastic

mixed integer problem (Watson and Woodruff 2011). Takriti et al. (1996) developed

methods to solve the subproblems of their multi-stage stochastic production planning

problem. Barro and Canestrelli (2005) further decomposed the subproblems of a dynamic

portfolio management problem into stages to solve those efficiently. An important reason

which necessitates the implementation of an efficient solution method on the subproblems

is that each subproblem has a quadratic objective function due to the penalty component.

Haugen et al. (2001) relaxed the quadratic term in the subproblem objective function

and applied a dynamic programming approach to find an optimal solution for the relaxed

subproblems. Listes and Dekker (2005) solved the linear relaxation of the subproblems

of a robust airline fleet composition problem, which contained integer variables, and

used a simple rounding procedure to find a feasible solution for the overall problem. In

our problem formulation, the quadratic component is linearized since the corresponding
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component includes binary variables.

4.3.2. EPHA Implementation. In this subsection, we present our penalty update and

Lagrangian multiplier update methods, and EPHA termination criterion.

4.3.2.1. Penalty parameter setting and update. We set a constant value for the penalty

parameter after conducting some experimental analysis. The experimental analysis was

based on the observation of the trade-off between fast convergence to a suboptimal

solution (when ρ is too large) and slow convergence to a near optimal solution in the

primal feasible space (when ρ is too low).

Next, the method proposed in Hvattum and Lokketangen (2009) was used to compare

the convergence rate at iterations k and k − 1, increasing ρ if it appears that the

convergence rate is decreasing. ρ is decreased if the current status is closer to consensus

among variables at iteration k− 1 than at iteration k. Let ∆
(k)
D and ∆

(k)
P be indicators of

the convergence rates in the dual space and in the primal space, respectively. Let b index

a unique bundle among the ones represented by all B(η, t)’s, and B represent the total

number of unique bundles. Then, equations ((4.26) − (4.27)) define the penalty update

method as follows:

∆
(k)
P =

N∑
i=1

B∑
b=1

O∑
j=1

H+1∑
u=t+1

(x̂
b(k)
iju − x̂

b(k−1)
iju )2 (4.26)

∆
(k)
D =

N∑
i=1

Z∑
η=1

H∑
t=1

O∑
j=1

H+1∑
u=t+1

(x
t(k)
iηju − x̂

B(η,t)(k)
iju )2 (4.27)

ρ(k+1) =

δDρ
(k) if∆

(k)
D −∆

(k−1)
D > 0

1
δP
ρ(k) else if∆

(k)
P −∆

(k−1)
P > 0

(4.28)

where δP > 1 and δD > 1 in (4.28) are fixed multipliers.

4.3.2.2. Lagrangian multiplier update. We use a Lagrangian multiplier update method

that ensures convergence of the algorithm. The method aims to achieve convergence of

the consensus parameter value to one of the two feasible values: 0 or 1 (see Crainic et al.

(2011) for a similar approach). The selection among these two values as the convergence
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point is made according to the majority of the variable values in a bundle. We define a

threshold parameter called θ to help define the majority condition. Once the value of the

consensus parameter is greater than θ, the majority is assumed to be achieved. In the case

that no value is favored by the majority (i.e consensus parameter value is equal to θ), the

value to which the consensus parameter should converge is determined according to the

cancellation and postponement costs.

The approach is based on the following observation. If x̂
B(η,t)(k)
iju is greater than θ, then

this indicates that the majority of the scenario subproblem solutions within the associated

bundle dictate the assignment of surgery i to OR j on day u. Our method decreases

the values of the Lagrangian multipliers in the subproblems where the relevant variable

value is 0. The expectation here is that the surgery is assigned to the same day and OR

in the following iterations. On the other hand, if x̂
B(η,t)(k)
iju is less than θ, this shows that

surgery i is not assigned to OR j on day u in the majority of the subproblems. Then,

the Lagrangian multiplier values are increased in the subproblems where the relevant

variable is equal to 1. In case x̂
B(η,t)(k)
iju is equal to θ, this means no particular day-OR

couple is favored for the assignment of surgery i among subproblems. If the same day

is selected in all subproblems, then any OR is favored for the assignment. Otherwise,

the day to be favored is selected according to the cancellation and postponement costs.

If the cancellation cost is greater than the postponement cost, then the latest feasible

day is preferred. Therefore, the values of the Lagrangian multipliers are increased for

the relevant variables that assign surgery i to the earlier days. If the postponement cost

is greater than the cancellation cost, then the earliest feasible day is favored to reduce

postponements. This requires an increase in the values of the Lagrangian multipliers for

the relevant variables that assign surgery i to the later days. Updates are computed as

follows:
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µ
t(k+1)
iηju =



µ
t(k)
iηju+ ρ(k)(x

t(k)
iηju − x̂

B(η,t)(k)
iju ) if x̂

B(η,t)(k)
iju < θ;x

t(k)
iηju = 1

µ
t(k)
iηju− ρ(k)|(xt(k)

iηju − x̂
B(η,t)(k)
iju )| if x̂

B(η,t)(k)
iju > θ;x

t(k)
iηju = 0

µ
t(k)
iηju+ ρ(k)(x

t(k)
iηju − x̂

B(η,t)(k)
iju ) if x̂

B(η,t)(k)
iju = θ;x

t(k)
iηju = 1and

ci ≥ li;u ̸=max{u : x
t(k)
iηju = 1, (η, t)∈B(η, t)}

µ
t(k)
iηju+ ρ(k)(x

t(k)
iηju − x̂

B(η,t)(k)
iju ) if x̂

B(η,t)(k)
iju = θ;x

t(k)
iηju = 1and

ci < li;u ̸=min{u : x
t(k)
iηju = 1, (η, t)∈B(η, t)}

µ
t(k)
iηju otherwise,

(4.29)

4.3.2.3. Termination criteria. The EPHA terminates when the following condition is sat-

isfied:
Z∑

η=1

Prη

N∑
i=1

H∑
t=1

O∑
j=1

H+1∑
u=t+1

|xt(k)
iηju − x̂

B(η,t)(k)
iju | ≤ ϵ (4.30)

This can be interpreted as a measure of the bundle constraint violation being sufficiently

small.

4.3.2.4. Other considerations. It is possible that the objective function coefficients of a

subproblem may not change from one iteration to another due to the method we propose

for updating Lagrangian multipliers. The Lagrangian multiplier for a decision variable is

not updated at an iteration in case the value of the variable is equal to the value taken

by the sufficient majority of the variables in the bundle. Therefore, the objective function

coefficients of a subproblem may remain the same if none of its variables require an update

for the Lagrangian multipliers. We detect those subproblems at each iteration to minimize

the number of times that the subproblem solution routine is called.

5. Experimental Study

In our experiments, we address the three research questions discussed in Section 1. We

address the questions, separately, in the following subsections. We tested our methods

using the data from an Outpatient Procedure Center at Mayo Clinic from the year 2006 for

4034 patients (Gul et al. 2011). We generated scenario trees representing arrivals of surgery

requests over a planning period. Each problem instance is based on a particular service

including: Urology, Ophthalmology, Pain Medicine, and Oral Maxillofacial. Surgeries of
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a service are grouped into acuity levels. Urology and Pain Medicine have 5 acuity levels,

while Ophthalmology and Oral Maxillofacial have 2. The probability distribution for the

duration of a surgery is based on its acuity level.

We conducted experiments with moderate-size test cases that can be solved to optimal-

ity. We compared generated solutions with the optimal solutions to evaluate the EPHA.

We also conducted experiments to estimate the value of the stochastic solution (VSS)

by comparing the EPHA with a deterministic heuristic for a set of large test cases. The

moderate-size case included, on average, 27 surgeries to be scheduled during a 6-day

planning period. These cases represent the surgery scheduling process during a typical

week (i.e. 5 days). The surgeries that can not be scheduled for the current week are

assigned to a dummy day at the end of the planning period. The large test cases consider

50 surgeries, on average, to be scheduled during an 11-day planning period. These cases

represent a bi-weekly surgery scheduling process (i.e. 10 days). A dummy day is also

included for the surgeries that can not be performed within the two weeks considered.

In our test cases, two ORs are open every day for each surgical service. Each OR

operates for 8 hours, daily. Note that the planned overtime amount is determined to

provide realistic performance measure values for the scenario trees tested.

Each experiment is performed on a scenario set that consists of 20 different scenario

trees of the same size. We report the average and worst-case performance measure values.

The EPHA algorithm was implemented in Microsoft Visual C++ 2008 using CPLEX

12 Concert Technology. The experiments were conducted on an Intel Core i5 PC with

processors running at 2.27 GHz and 4 GB memory under Windows XP.

5.1. Generating Problem Instances

We generated a scenario tree for each problem instance. There are two parameters that

determine the size of the tree: (1) ns, number of stages and (2) no, number of different

outcomes observed at each stage except the first stage. The realization at stage 1 is assumed

to be known, thus there is only one outcome at this stage. There exists nns−1
o scenario

sequences in total in a scenario tree. The generated scenario outcome at stage t does

not depend on the past outcomes. The use of independently generated scenario outcomes

across stages allows us to use the common samples approach (Chiralaksanakul and Morton

2003). The common samples approach indicates that the generated outcomes may exist
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more than once and the same number of times at a particular stage of a scenario tree. In

particular, among the nt−1
o outcomes at stage t, where t > 1, in our scenario tree, only no

of them are unique.

A scenario outcome is characterized by the number of surgeries requested from each

acuity level. For example, assume that we generate a scenario tree for the case where ns = 4

and no = 2 for the surgical service of Pain Medicine. Let the number of surgery requests

for acuity level i, where i= 1,2,3,4,5, be represented by acu(i). Then, an outcome on a

particular day can be represented by an acu(i) set. The value of each acu(i) is independently

sampled according to the probability distribution fit for the surgery request frequency in

the data. A sample tree with its acu(i)’s set is illustrated in Figure 4. Each rectangle in the

tree denotes a scenario outcome at the corresponding stage. The numbers in the rectangles

represent a vector of acu(i) values for i= 1,2,3,4,5.

Figure 4 A sample scenario tree with ns = 4 and no = 2 represents the requests for urology surgeries

over a 4-day planning period. Each index, separated by comma, denotes the number of surgeries

requested from a particular acuity level

5.2. Analysis of the EPHA solutions

In this section, we summarize some of the analysis that was performed for the EPHA.

5.2.1. Sensitivity to EPHA parameters. We first tested the EPHA to identify the

significant factors or methods affecting the solution quality and algorithm performance.

We investigated whether having the penalty update method achieves improvements over
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the solutions found by keeping ρ constant (i.e. δP = 1, δD = 1) through the iterations. We

varied the values of δP and δD keeping everything else constant, and then observed the

changes in the average objective function value and computational time. Table 1 shows

that the penalty update method improves the computational time (improvement of 8%),

while deteriorating the objective value only slightly by 0.5 %.

The Lagrangian multiplier update method presented in equation (4.29) also provides

Table 1 Sensitivity of the objective function value and CPU time to the variations in the penalty update

multipliers

(δP , δD) Expected cost CPU time

(1,1) 116708 443.73

(2,2) 117173 443.51

(2,1.5) 117334 467.25

(2,1) 117339 450.95

(4,1) 117185 408.81

(16,1) 117268 422.30

significant improvements to computation time as it prevents cycling and ensures that the

algorithm converges.

5.2.2. Comparison of the PHA with the optimal solution. In this section, we com-

pare the PHA solutions with the solutions found after directly solving the DEM using

CPLEX 12 for the moderate-size test cases. We report the solution times and objective

function values. We report the best solution found within a time limit of 3 hours for cases

in which the optimal solution is not achieved.

We compared the solutions on 8 different instance sets (see Table 2). Each set is char-

acterized by the values of three different attributes: Ratio of cancellation to postponement

cost, overtime cost, and expected standard deviation of the cumulative duration of the

surgeries to be performed each day. The ratio of cancellation to postponement cost can be

either greater than or less than 1. The cancellation costs were based on the average cost

($1700-$2000) reported in practice (Argo et al. 2009). The cancellation cost in our exper-

iments was set to either low ($1200/surgery) or high ($2400/surgery). The postponement

cost was fixed at $1800. The overtime cost was set to either low ($30/minute) or high
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($90/minute). These overtime values are selected to have only one surgery performed dur-

ing overtime, on average. The mean cumulative duration was set to 540 minutes (9 hours)

for the surgeries to be scheduled to an OR that is open for 8 hours during regular time.

To consider cases having low and high variability in the surgery requests, the standard

deviation of cumulative surgery durations was set to either a low of 78 or a high of 234.

Table 3 compares the EPHA solutions with the CPLEX solutions. Note that the gap

Table 2 Characterization of the instance sets

Instance Set # Cancellation to postponement Overtime cost Standard deviation of

cost ratio cumulative durations

1 > 1 30 78

2 > 1 30 234

3 > 1 90 78

4 > 1 90 234

5 < 1 30 78

6 < 1 30 234

7 < 1 90 78

8 < 1 90 234

between the EPHA and CPLEX solutions is 1% on average. CPLEX found the optimal

solution immediately for some instances, while it required a significant amount of time to

solve more difficult instances (failing to find the optimal solution in 17% of the cases). The

EPHA significantly outperformed CPLEX on the difficult instances.

5.3. Model Sensitivity Analysis

5.3.1. Sensitivity to Cost Parameters. In this section, we analyze the sensitivity of

optimal solutions to the changes in the cost coefficients: cancellation, postponement, and

OR overtime costs. We emphasize the impact of the changes on the number of surgery

cancellations over a planning period. The average number of cancellations and expected

total costs are compared in Tables 4 and 5. In the instances presented, the cancellation

and postponement costs were varied while keeping the overtime cost constant.
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Table 3 Comparison of the PHA solutions with the CPLEX solutions of the deterministic equivalent model

(DEM)

Expected Cost (in dollars) Worst-Case Cost (in dollars) CPU time (in seconds)

Instance Set # CPLEX PHA CPLEX PHA CPLEX PHA

1 83412 83475 93675 93930 0.54 71.59

2 88266 88599 96165 96465 0.50 296.47

3 109295 110529 126765 127605 6513.62 408.38

4 127366 128529 151164 151697 574.04 497.49

5 83427 83563 93765 93765 0.60 62.00

6 88462 89587 96765 97005 0.49 182.93

7 107856 111592 119337 122380 5903.05 574.61

8 122233 124754 145935 146531 1353.59 493.82

Table 4 shows that the expected total cost increases significantly when the postpone-

ment cost is increased while the cancellation cost is constant. However, there was only a

slight increase in total cost when the cancellation cost was increased while the postpone-

ment cost was fixed.

Table 5 reveals that there are two main factors affecting the number of cancellations:

(1) the ratio of postponement cost to cancellation cost, (2) the summation of cancellation

and postponement costs. Note that when the first factor, the ratio of postponement to

cancellation cost is less than 1, then the chance of observing a cancellation is low. If the

ratio is greater than or equal to 1 then we observe a significant number of cancellations.

The first factor is important, because if the postponement cost is low, then the optimal

Table 4 Sensitivity of the expected total cost to the variations in the cancellation and postponement costs

Cancellation Cost Postponement Cost

600 1200 1800 2400 3000

600 41063 65547 88579 110614 131229

1200 41135 66012 88464 110963 131908

1800 41141 66053 89340 111244 132185

2400 41143 66069 89375 111471 132453

3000 41142 66080 89382 111491 132661
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Table 5 Sensitivity of the expected number of cancellations to the variations in the cancellation and

postponement costs

Cancellation Cost Postponement Cost

600 1200 1800 2400 3000

600 15.90 26.90 24 21.75 21.75

1200 0.40 9.05 19.20 20.95 16.10

1800 0.20 0.50 8.55 18.10 15.25

2400 0.00 0.40 0.70 8.55 9.60

3000 0.00 0 0.40 0.40 3.90

solution postpones surgery to later days in the time window to prevent future cancella-

tions from occurring. In other words, low postponement cost provides greater flexibility in

scheduling. Since the low postponement cost leads to a lower number of cancellations, the

services performing surgeries of lower urgency are likely to observe fewer cancellations.

The second factor is important when both the costs of cancellation and postponement

are high. In such cases, the optimal solution schedules surgeries to a day as early as pos-

sible, so that a high postponement cost is avoided. However, the selected day should also

minimize the chance of cancellation because of the high cancellation cost. If the overtime

cost is not excessive, the number of cancellations can still be reduced even when the post-

ponement cost is high.

Tables 6 and 7 illustrate the sensitivity of the expected total cost and average num-

Table 6 Expected total cost as a function of the cost of cancellation and overtime costs (under constant

postponement cost)

Postponement cost=1800 Overtime Cost

Cancellation cost 30 60 90

600 76098 88579 98076

1200 76370 88664 98584

1800 76610 89340 99036

2400 76622 89375 99077

3000 76622 89382 99098

ber of cancellations to the changes in the cancellation and overtime costs (postponement
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Table 7 Expected number of cancellations as a function of the cost of cancellation and overtime costs

(under constant postponement cost)

Postponement cost=1800 Overtime Cost

Cancellation cost 30 60 90

600 15.74 24 31.6

1200 9.6 19.2 26.1

1800 4.5 8.55 9.35

2400 0 0.6 0.6

3000 0 0.4 0.4

cost is constant in these cases). The expected total cost increases significantly when only

the overtime cost increases, but it increases only slightly when only the cancellation cost

increases. It is also evident that the number of cancellations increases as the overtime cost

increases, especially when the postponement cost is not lower than the cancellation cost.

Table 7 also suggests that the first factor, ratio of postponement to cancellation cost, has

a significant influence on the number of cancellations.

5.3.2. Sensitivity to variability in demand. In this section, we evaluate the impact of

uncertainty on the expected total cost and the number of surgery cancellations. Table 8

shows a comparison among six different moderate size instance sets. Note that the expected

cumulative duration of the requested surgeries is held nearly constant (i.e. 9 hours), while

the standard deviation of the durations is varied over different sets. The values for the cost

parameters are fixed for all instance sets (co = 60, ci = 600, li = 1200).

Table 8 shows that the expected total cost increases as the variation in the system

increases. The table also indicates that when there is no variation, cancellations are not

observed. When the coefficient of variation is increased from 0 to 0.07 by increasing the

standard deviation from σ = 0 to σ = 39 cancellations are still not observed. However,

as the standard deviation further increases, the number of cancellations also increases

significantly. The results suggest that removing the variation in requests over a planning

period will reduce the number of cancellations. It also suggests that in the surgical services

whose surgery mixes may change significantly from day to day, cancellations are more

likely to occur. Therefore, grouping similar types of surgeries and assigning them to the

same day and OR may reduce cancellations.
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Table 8 Variation in the expected number of cancellations and total cost due to change in the standard

deviation (σins) of daily cumulative surgery durations (with a mean of 540 minutes for all instance sets) over

the planning period

Standard Deviation (σins)

0 39 78 117 156 234

Expected cancellations 0 0 3.5 8.79 15.7 26.9

Expected total cost 51080 54126 54357 54873 58043 65547

5.4. Value of the Stochastic Solution

We compared the solutions found for the stochastic model with the solutions of a deter-

ministic heuristic to estimate the value of the stochastic solution (VSS). The heuristic is

an extension of the first fit decreasing heuristic, which is a well known heuristic for bin

packing problems. The heuristic is myopic in the sense that it does not consider future

outcomes while giving decision on the assignment of surgeries into future.

At each stage, the surgeries requested at that stage are ordered from longest to shortest

expected duration. Next, the surgeries are assigned to a future day and OR, consecutively,

according to the order in the surgery list. The heuristic attempts to assign a surgery to

the earliest day available within the allowable time window. The availability of the day

depends on the remaining capacities of the ORs which are appropriate for assignment in

terms of equipment restrictions. A capacity threshold is set for the ORs to prevent having

high overtime. The thresholds are defined such that at most one surgery can be performed

in an OR during the overtime period. The heuristic attempts to assign a surgery to the

OR opened earliest. If a surgery can not be assigned to any open OR on a particular day,

then a new OR is opened to assign the surgery. If there is no additional OR available to

open on the same day, then the next day is considered. If the next day is outside of the

allowable time window, the surgery is performed during the overtime hours in one of the

day and OR combinations. The steps of the heuristic are summarized as follows:

Bin Packing Heuristic

1 for t= 1 to H

2 Sort the surgeries requested at stage t from longest to shortest duration

to form the sorted list, L. Let Li be the surgery in the ith order, and nL

be the size of the ordered list
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3 for i= 1 to nL

4 while surgery assigned = false

5 for u= (t+ gLi
) to (t+ gLi

+hLi
)

6 for j = 1 to O

7 if Equipment constraint is not violated

8 if Capacity constraint is not violated

9 surgery assigned=true

10 end if

11 end if

12 if surgery assigned = false

13 if There is no more additional OR to open

14 surgery assigned = true

15 end if

16 end if

17 end for

18 end for

19 end while

20 end for

21 end for

Table 9 compares the EPHA and the heuristic according to the solution quality and

computation time based on 20 instances of a large test case. From Table 9, we conclude that

the EPHA improves the quality of solutions found by the heuristic significantly. Note that

the average and maximum gap between the objective values for the EPHA and heuristic

solutions are 13% and 16%, respectively. Note that the heuristic is very fast with a CPU

time of less than 1 second. On the other hand, on average, 3641 CPU seconds are needed

to obtain a solution using the EPHA.
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Table 9 Comparison of the EPHA with the first fit decreasing heuristic

Expected Cost (in dollars) CPU time (in seconds)

Instance # PHA Heuristic PHA Heuristic

1 119640 139112 10800.00 0.00

2 134835 156825 455.20 0.00

3 100200 113034 215.52 0.00

4 104895 118103 1049.64 0.00

5 92608 110138 732.46 0.00

6 84840 94073 280.94 0.00

7 148298 171759 10800.00 0.00

8 131318 147066 833.50 0.00

9 77880 87323 383.44 0.00

10 139455 160043 10800.00 0.00

11 94883 108079 10800.00 0.00

12 116811 130449 1198.13 0.00

13 124733 148950 335.01 0.00

14 123953 142386 10800.00 0.00

15 94965 107764 248.73 0.00

16 105578 121044 598.52 0.00

17 129518 142661 10800.00 0.00

18 108795 127733 468.78 0.00

19 136365 154643 391.47 0.00

20 116096 132773 821.78 0.00

6. Conclusions

In this article, we proposed a multi-stage stochastic mixed integer programming formula-

tion for the allocation of surgeries to ORs under uncertainty over a finite planning horizon.

We first implemented an extension of PHA, called EPHA, and compared EPHA solutions

with the solutions found using CPLEX 12. We then analyzed the trade-offs between can-

cellation, postponement, and overtime costs with respect to their impact on total expected

costs and surgery cancellations. We also assessed the impact of varying levels of uncertainty.

Finally, we compared an easy to implement heuristic with the EPHA to estimate the ben-
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efit of considering uncertainty in the surgery planning and scheduling process. Following

are the most significant findings of our study:

• The ratio of postponement cost to cancellation cost is one of the factors that signif-

icantly impacts the expected number of cancellations. If the postponement cost is higher

than the cancellation cost, then it is likely to observe surgery cancellations. A relatively

low postponement cost allows a wider time window to consider for scheduling surgeries,

thus helping to reduce the cancellations. Cancellations are also higher for the cases where

overtime is favored due to high levels of postponement and cancellation costs. Another

factor to which the expected number of cancellations is highly sensitive is the level of

uncertainty in demand and total daily surgery duration. Cancellations do not exist under

a deterministic case, but increase as the variation in demand increases.

• Due to the significant effect of uncertainty, the EPHA outperforms a deterministic

heuristic that maybe used in practice. The results suggest that a good heuristic must

carefully handle the variation in surgery requests, because the cancellations can be reduced

when surgeries with similar durations are performed together. Thus, there may be benefits

to studying heuristics which minimize the maximum variance of total surgery durations

over ORs and days.

• The initial values of Lagrangian multipliers, Lagrangian multiplier and penalty update

methods are the factors that significantly affect the performance and solution quality of the

PHA. Our Lagrangian multiplier update method maintained the convergence of the EPHA.

Our penalty update method accelerated convergence, but had a slight negative effect into

the solution quality. The EPHA requires a short time to yield near optimal solutions for

difficult problem instances that can not be solved by CPLEX within a reasonable amount

of time.

Our model can be used in practice for an extended length of planning periods (i.e P

≥ H ) using a rolling horizon approach. One can solve the surgery planning model every

H days for a planning period of P days. The requested surgeries that are not performed

on any day in an H-day period may be reconsidered for scheduling along with the new

surgery requests of the next H-day period. The urgency level of the leftover surgeries can

be increased by changing the cancellation and postponement costs of them before solving

the model for the new period. This approach will be the next step of our future studies.
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