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Prostate cancer is the most common solid tumor in American men and is screened for using prostate-specific
antigen (PSA) tests. We report on a nonstationary partially observable Markov decision process (POMDP) for

prostate biopsy referral decisions. The core states are the patients’ prostate cancer related health states, and PSA
test results are the observations. Transition probabilities and rewards are inferred from the Mayo Clinic Radical
Prostatectomy Registry and the medical literature. The objective of our model is to maximize expected quality-
adjusted life years. We solve the POMDP model to obtain an age and belief (probability of having prostate
cancer) dependent optimal biopsy referral policy. We also prove a number of structural properties including
the existence of a control-limit type policy for the biopsy referral decision. Our empirical results demonstrate a
nondecreasing belief threshold in age, and we provide sufficient conditions under which PSA screening should
be discontinued for older patients. Finally, the benefits of screening under the optimal biopsy referral policy are
estimated, and sensitivity analysis is used to prioritize the model parameters that would benefit from additional
data collection.
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1. Introduction
Prostate cancer is the most common solid tumor in
American men. The American Cancer Society (2010b)
estimated that 217,730 new cases of prostate can-
cer would be diagnosed, and 32,050 deaths would
occur in the United States in 2010. At its current level
of prevalence, it is estimated that 16% of men will
be diagnosed with prostate cancer during their life-
times (National Cancer Institute 2009). Whereas the
direct health impact is felt by men, the indirect social
effects (emotional impact on a patient’s family and
friends) are felt by all. Therefore, prostate cancer is an
important societal issue and preventive screening is
an important consideration as part of the health ser-
vice system.

Prostate cancer screening relies heavily on the
prostate-specific antigen (PSA) test, a simple blood
test that indicates the amount of PSA in the blood
serum. PSA is a protein produced by the cells of the

prostate gland that varies in a continuous range. Men
with a healthy prostate typically have a small amount
of PSA present in the serum. PSA is often elevated in
the presence of prostate cancer and in other prostate
disorders. Thus, high PSA is correlated with the pres-
ence of prostate cancer. Patients with higher than
normal PSA have a greater risk of prostate cancer;
however, higher than normal PSA levels may occur
for other reasons including natural variation over
time, prostatic infections, and benign enlargement of
the prostate gland. If a patient’s PSA test result is
classified as “suspicious,” he may be referred for
biopsy, which has a negligible false positive rate but
a nontrivial false negative rate (about 20% according
to Haas et al. 2007). In addition to providing imper-
fect information, biopsies are painful and carry the
possibility of side effects. Therefore, from the patient’s
perspective, it is necessary to decide how best to use
these tests to trade off the impact on quality of life
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from screening with the long-term potential benefits
of early detection and treatment of prostate cancer.

When should a patient be referred for a biopsy?
How should a patient’s age and PSA history (i.e., pre-
vious PSA test results) influence the referral decision?
Surprisingly, there has been very little research on
determining optimal decisions related to these ques-
tions. In this paper, we address these and other impor-
tant questions related to prostate cancer screening.
We focus on a population-based model and investi-
gate biopsy referral policies that maximize a patient’s
expected quality-adjusted life years (QALYs). We
chose QALYs as the criteria for our model because
it is the most common criteria used in the medi-
cal decision-making literature to measure benefits of
interventions to patients (for the examples of the use
of QALYs for medical decision making, see Packer
1968, Fanshel and Bush 1970). Our model trades off
the potential rewards from early detection and treat-
ment of prostate cancer (additional QALYs) with the
side effects of biopsy. To this end, we formulate a par-
tially observable Markov decision process (POMDP)
model for the biopsy referral decision process. The
health states in our model are not directly observable,
but can be probabilistically inferred from PSA test
results and biopsy results. We use several data sources
to calibrate our model including a large regional data
set from Olmsted County in Minnesota.

We begin by presenting some relevant background
on prostate cancer screening and a detailed math-
ematical formulation of our POMDP model. Next,
we present several theorems illustrating generaliz-
able insights into the structure of the optimal biopsy
referral policy. For instance, we demonstrate under
reasonable assumptions that the optimal biopsy refer-
ral decision follows a control-limit type policy with
respect to a belief (probability of having prostate can-
cer) threshold. We show that the expected QALYs
are nonincreasing with respect to belief, which is an
important factor in computing bounds on the optimal
policy. We provide conditions under which there is
a finite age at which screening should be discontin-
ued. Finally, we present empirical results for the opti-
mal age dependent biopsy referral policy based on a
data set for a large population from Olmsted County,
Minnesota. Sensitivity analysis is used to identify
which parameters most significantly affect the opti-
mal biopsy policy and to provide guidance about how
to prioritize further data collection through patient
surveys and randomized controlled trials (RCTs) to
develop more detailed future versions of our model.

The remainder of this paper is organized as follows.
Section 2 provides some background on prostate can-
cer. Section 3 reviews the related literature on prostate
cancer screening and relevant literature on medi-
cal decision making in other contexts. Our POMDP

model is described in §4, and in §5 a number of struc-
tural properties are presented. Section 6 provides a
detailed description of the data used to populate our
model and presents numerical results illustrating the
optimal policy and sensitivity analysis. In §7 we pro-
vide a brief synopsis of key findings, with particular
emphasis on how the findings add to the current body
of knowledge on prostate cancer screening. We also
discuss limitations of our study and opportunities for
future research.

2. Prostate Cancer Background
Prostate cancer is a disease in which malignant can-
cer cells form in the prostate gland. Because prostate
tumors progress slowly, and at early stages there are
usually no physical symptoms, screening with the
PSA blood test is common. This blood test quantifies
the amount of PSA that escapes into the blood from
the prostate, measured typically in ng/mL. Patients
with higher than normal PSA values have a greater
risk of prostate cancer. However, a patient’s PSA
varies in a continuous range, and higher than nor-
mal levels may occur for a variety of other reasons.
As a result, the definition of a “suspicious” test result
versus a likely benign PSA test result is an open ques-
tion. (Note that because PSA tests are imperfect, and
PSA is a continuous measure, the term “suspicious”
is used by clinicians rather than “positive” or “neg-
ative,” which is common for other types of tests.)
Figure 1 illustrates the imperfect nature of PSA test-
ing using a receiver operating characteristic (ROC)
curve based on our population data set described in
§6.1. The ROC curve is with respect to the discrete
0/1 occurrence of prostate cancer. The area under the
curve (AUC) of the ROC curve of PSA testing is 0.77.
The sensitivity of a PSA test decreases and the speci-
ficity increases as the PSA threshold increases.

Figure 1 An ROC Curve That Illustrates the Imperfect Nature of PSA
Tests for Diagnosing Prostate Cancer
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Notes. The different points on the curve correspond to different PSA thresh-
olds used to distinguish a suspicious and likely benign test. The curve was
generated using the data set described in §6.1.
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Figure 2 Illustration of the Typical Stages of Prostate Cancer Screening and Treatment Including PSA Screening, Biopsy, and Treatment
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A screening process is illustrated in Figure 2 where
the patient receives routine PSA tests at regular inter-
vals (typically annually). If the test result is suspi-
cious the patient is normally referred for biopsy, and
if the biopsy indicates cancer the patient is referred for
treatment. We use the dashed line in Figure 2 to rep-
resent the fact that patients with a previous negative
biopsy result are considered differently from those
without and may not go back to the primary screen-
ing process.

The biopsy procedure is ultrasound guided. Hol-
low needles are typically passed 12 times into the
peripheral zone of the prostate gland to extract tis-
sue. Each needle extricates a core of tissue to be ana-
lyzed by a pathologist. Biopsy is a fairly accurate
detection method in the sense that the false posi-
tive rate is nearly zero. However, there is a non-
trivial probability of a false negative biopsy, because
biopsy involves sampling only a small portion of the
prostate. More specifically, the sensitivity and speci-
ficity of biopsy are 0.8 and 1, respectively (Haas et al.
2007), compared to the sensitivity and specificity of
0.63 and 0.81 when, for example, the PSA threshold
is 2.5 ng/mL and 0.44 and 0.91 when PSA threshold
is 4 ng/mL (Inman et al. 2012). Although minimally
invasive, biopsy is painful and carries nonnegligible
short- and long-term risks for the patient.

The imperfect nature of the PSA test and biopsy,
as well as the QALY decrements of biopsy and sub-
sequent treatment, have raised questions about the
most effective and efficient policies for prostate can-
cer screening. In some cases it is clearly not logical to
perform such tests (e.g., screening a 90-year-old male,
because his probability of dying from prostate can-
cer is generally much smaller than his risk of death
from other competing causes such as heart disease).
Furthermore, the imperfect sensitivity and specificity
of the test illustrated in Figure 1 has led to criticism
of the use of the PSA test for population screening

(Holmström et al. 2009) and the concern of over-
diagnosis (Etzioni et al. 2002, Welch and Black 2010).
The definition of a suspicious PSA test result, and the
decision to refer a patient for biopsy must trade off
the potential benefits from early detection with the
side effects of biopsy and subsequent treatment.

Once detected with nonmetastatic prostate cancer,
there are multiple options for treating prostate cancer.
One option is radical prostatectomy (surgical removal
of the prostate gland), which is one of the most com-
mon forms of treatment in the United States (Welch
and Albertsen 2009). Other treatment options include
active surveillance (monitoring prostate cancer pro-
gression through regular biopsies), brachytherapy
(implantation of radioactive seeds in the prostate),
external beam radiation therapy, and their combina-
tions. All of these treatment options can have serious
side effects (e.g., urinary, sexual, and gastrointestinal
dysfunction), which impact the patient’s future long-
term quality of life. In the case of active surveillance,
which has become more common in recent years, the
patient may be subjected to hormone therapy and
multiple future biopsies. In general, the disutility of a
biopsy implies that it is optimal for the patients to get
treated in some way if the biopsy result is positive.

In summary, there are many decisions involved in
the design of screening and treatment policies for
prostate cancer. These are complicated by the proba-
bilistic progression of prostate cancer and the imper-
fect nature of the tests used to detect it. There have
been recent advances in data collection and analysis
for the progression of prostate cancer and its relation-
ship to the biomarker PSA (see §3). There is also a
growing literature on the study of treatment effects
using RCTs. However, as we point out in the next sec-
tion, the optimal policies for whether and when to
biopsy, the topic of this paper, are not yet well under-
stood. To our knowledge, ours is the first optimiza-
tion study of prostate cancer screening that explicitly
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treats the imperfect nature of PSA tests and prostate
biopsies.

3. Literature Review
The medical community has recently focused consid-
erable attention on the use of PSA tests for prostate
cancer screening. The majority of family physicians
and urologists in the United States use PSA tests
to screen their patients, commonly initiating annual
screening at age 50 (Woolf and Rothemich 1999).
However, recently some have suggested that PSA
screening should not be done routinely because it
can result in unnecessary biopsies, potential harm to
the patient, and increased treatment costs. The U.S.
Preventive Services Task Force (2008), for instance,
recommended a guideline for prostate cancer screen-
ing, stating that people older than 75 years should
not be screened. The guideline made no specific rec-
ommendation for people younger than 75 years, cit-
ing insufficient evidence. Another guideline, from
the American Urological Association (2009), recom-
mended PSA screening starting at age 40, followed
by future screening intervals based on previous
results. A summary of current guidelines is provided
in Table 1.

There have been a number of recent studies of the
value of PSA screening for detecting prostate can-
cer (often with conflicting conclusions). Fall et al.
(2007) evaluated the accuracy of changes in PSA as
predictors of lethal prostate cancer outcomes. They
analyzed a cohort of men with localized prostate can-
cer and found that PSA is a poor predictor of the
number that will develop lethal cancer. The use of
PSA kinetics (velocity or doubling time) instead of or
combined with PSA in predicting the presence of
prostate cancer is controversial. Some recent papers
(Vickers et al. 2011, Inman et al. 2012) found that
the PSA level is better than PSA velocity or dou-
bling time in terms of predicting the presence of
cancer. The controversy over PSA screening contin-
ued when the results of two large clinical trials were

Table 1 Comparisons of Published PSA Screening Guidelines

Guidelines PSA cutpoint for biopsy

American Urological Association (2009) >4 ng/mL
—Age adjusted

American Urological Association (2009) 40–50 >205 ng/mL
—Age specific 50–60 >305 ng/mL

60–70 >405 ng/mL
70+ >605 ng/mL

U.S. Preventive Services Task Force (2008) <75: No recommendation;
≥75: Do not screen

American Cancer Society (2010a) No routine screening
recommended

European Association of Urology Guidelines >3 ng/mL
(Aus et al. 2005b)

reported in 2009. The U.S. Prostate, Lung, Colorectal,
and Ovarian Cancer Screening Trial (Andriole et al.
2009) concluded that screening does not reduce mor-
tality. On the other hand, the European Randomized
Study of Screening for Prostate Cancer (ERSPC) Trial
(Schröder et al. 2009) provided evidence of benefits
from PSA screening, concluding that PSA screening
reduced prostate cancer mortality by approximately
20%. Each of these studies reported serious problems
in terms of bias calling into question the results of the
trials (Barry 2009).

Uncertainty also exists about the optimal frequency
of screening over the course of a patient’s lifetime.
van der Cruijsen-Koeter et al. (2003) performed an
RCT comparing screened and unscreened patients as
part of the ERSPC. They concluded that sensitivity of
the PSA test is high, and PSA testing detects the major-
ity of cancer cases. Roobol et al. (2007) compared the
incidence of prostate cancer between a Swedish and
Dutch population that were screened at two-year and
four-year intervals, respectively. They found no sta-
tistically significant difference in the incidence rate,
suggesting that both screening intervals were of equal
merit from a health outcomes perspective.

Some authors have developed simulation models
to evaluate alternative prostate cancer screening poli-
cies. Ross et al. (2000) report on a simulation model
to compare simple strategies (e.g., no screening, and
screening intervals of one, two, and five years) based
on performance measures including the number of
PSA tests per 1,000 men and prostate cancer deaths
prevented. Their model is based on a Markov pro-
cess for progression of the disease. They consider
two competing criteria, prostate cancer deaths pre-
vented per 1,000 men and number of PSA tests per
1,000 men. Etzioni et al. (2008) used a simulation
model to attempt to determine if declines in advanced
stage prostate cancer can be attributed to PSA screen-
ing. They concluded that PSA screening has con-
tributed in part to declines in incidence and resulting
mortality.

The prostate biopsy process has received some
attention in the operations research literature. For
instance, the physical placement of needles based on
imaging information is an important and complex
decision that is part of the overall screening process.
Haas et al. (2007) estimated the diagnostic accuracy of
needle biopsy, to be approximately 80%. Sofer et al.
(2003) studied the optimal number of samples, and
placement of the individual needles. They formulated
and solved a nonlinear integer programming problem
to determine optimal placement of needles assuming
the objective was to maximize the probability of can-
cer detection.

A wide range of operations research methodolo-
gies have been applied to modeling of disease screen-
ing decisions. For example, Lee and Pierskalla (1988)
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proposed a mathematical programming model for
contagious diseases with little or no latent periods.
The objective was to minimize the average num-
ber of infected people in the population. The model
was converted to a knapsack problem. The authors
showed that the optimal screening policy has equally
spaced screening intervals when the tests have perfect
reliability. Schwartz et al. (1990) improved the perfor-
mance of testing strategies for screening blood for the
HIV antibody, and making decisions affecting blood
donor acceptance. A decision tree, with the decisions
probabilistically based on which screening test to use,
and in what sequence, was used to minimize the
number of HIV infected units of blood and blood
products entering the nation’s blood supply subject to
a budget constraint. Brandeau et al. (1993) provided
a cost benefit analysis of HIV screening for women
of childbearing age based on a dynamic compart-
mental model incorporating disease transmission and
progression over time. The model is formulated as a
set of simultaneous nonlinear differential equations.
Wein and Zenios (1996) proposed models for pooled
testing of blood products for HIV screening. Opti-
mization of pooled testing involves decisions such as
transfusion, discarding of samples in the pool, and
division of the pool into subpools. A dynamic pro-
gramming model with a discretized state space and a
heuristic solution algorithm are introduced to obtain
near optimal solutions. Rubin et al. (2004) utilized a
Bayesian network to assist mammography interpreta-
tion for breast cancer screening. The authors showed
that their Bayesian network model may help to reduce
variability and improve overall interpretive perfor-
mance in mammography.

Markov decision processes (MDP) have been
applied to several types of medical decisions. For
instance, Alagoz et al. (2004) used an MDP model to
study the structure of optimal policies for the tim-
ing of living-donor liver transplantation; Denton et al.
(2009) used an MDP model to study optimal poli-
cies for initiating cholesterol lowering medication for
patients with diabetes; and Shechter et al. (2005) used
an MDP model to study the optimal time to initi-
ate HIV therapy. Chhatwal et al. (2010) used a MDP
to study the optimal policy for breast cancer biopsy
based on mammography observations. In their model,
states are defined by the probability of breast can-
cer at each epoch. A Bayesian network is used to
estimate the probabilities. In all of these cases, the
authors defined a discrete set of health states for
a Markov process, and they computed the optimal
policy to maximize expected future QALYs. QALYs
are commonly employed in the health policy litera-
ture and are based on a decrement (from a nominal
life year of 1.0) to represent the patient’s perceived
value of a year of life in a particular health state.

Gold et al. (2002) provide a review of QALYs, and
Packer (1968) and Fanshel and Bush (1970) are early
references on the use of QALYs in the operations
research literature. We used QALYs as the criteria
for our study because they are the standard used in
the medical decision-making literature. Nevertheless,
they have some limitations for evaluating screening
decisions. For example, they are used to capture the
impact of medical decisions on health years for a
patient but they fail to capture other criteria related
to the burden of screening and treatment, such as the
impact of treatment on family members. Furthermore,
estimates are challenging to obtain and may be sub-
ject to bias resulting from the survey methods used to
estimate disutilities. We have used sensitivity analy-
sis to mitigate this limitation; however, future studies
that estimate QALYs related to biopsy and treatment
will lead to more accurate models.

POMDPs have been used to study medical deci-
sions in other contexts. Hu et al. (1993) considered
the problem of choosing an appropriate drug infusion
plan for the administration of anesthesia. Hauskrecht
and Fraser (2000) applied a POMDP formulation to
the problem of treating patients with ischemic heart
disease. Maillart et al. (2008) used a partially observ-
able Markov process to study breast cancer screening
policies using mammography; they evaluated age-
dependent screening policies and studied the trade-
off between lifetime mortality risk of breast cancer
and the expected number of mammograms. Ivy (2008)
further studied a POMDP model of breast cancer
screening; they considered the patient and third-party
payer perspective by computing cost optimal screen-
ing policies subject to a patient-based utility con-
straint at each decision epoch.

Our study differs from the above referenced work
in several respects. First, in contrast to the medical
literature, which uses simulation to evaluate a small
number of alternative screening policies, we study an
optimization model that seeks to find the policy that
maximizes expected QALYs for the patient. Second,
we are unaware of any existing work addressing par-
tial observability resulting from two stages of imper-
fect medical tests with a continuous serum biomarker
such as PSA. For instance, for the breast cancer screen-
ing papers referenced above, mammogram results are
discrete (normal or abnormal) and biopsy is perfect
resulting in significantly different models. Third, we
identify a number of interesting structural properties
of our model that provide insight into the optimal
screening policy. These properties are not obvious
based on well-known sufficient conditions (see, for
example, Albright 1979, White 1980, Lovejoy 1987)
because of the nonstationary core state process, effects
of competing cause mortality, and lack of a stochas-
tic ordering of the core states. Finally, we calibrate
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our model with a data set based on a large regional
population that includes all screening and treatment
events. Other studies using standard statistical meth-
ods or simulation have used data sets for high-risk
patients or patients under study in RCTs, which can
result in selection bias.

4. Partially Observable Markov
Decision Process

In this section we describe our POMDP model for
prostate biopsy referral decisions. The objective in
our model is to maximize expected QALYs for the
patient. QALYs are estimated by decrementing a nor-
mal life year as a result of various events including
(a) occurrence of biopsy, (b) treatment upon detection
of cancer, (c) long-term complications resulting from
treatment, and (d) symptoms from metastasis and its
treatment. Note that there is no disutility associated
with undetected prostate cancer because it is typically
nonsymptomatic. The benefit of early detection is in
preventing patients’ health state from metastasis and
further prostate cancer related death. The optimal pol-
icy for biopsy therefore trades off the long-term ben-
efits from early detection of prostate cancer with the
short-term negative impact of biopsy and long-term
side effects of treatment.

In our model patients progress through (unobserv-
able) health states and (observable) PSA intervals.
PSA intervals are defined by clinically relevant ranges
(e.g., 60115, 6112055, 6205145, 64175, 671105, and ≥10).
The PSA intervals determine a conditional probability
that the patient has prostate cancer. At each decision
epoch the patient’s PSA is measured, and a decision
is made to refer the patient for biopsy, or to defer
the referral decision until the next decision epoch.
If a patient receives a positive biopsy result he is
assumed to be treated. Radical prostatectomy, active
surveillance, external beam radiation therapy, and
brachytherapy (Lee et al. 1999) are all common forms
of treatment that can be considered in our model. Fol-
lowing is a description of our model.

Time Horizon. PSA screening is performed annu-
ally, t = 8401411421 0 0 0 1�9. In this infinite horizon
problem, biopsy decisions are made until N̂ , which
corresponds to an upper bound on the age that
screening is discontinued because of the risk of treat-
ment being greater than the benefits. In our compu-
tational experiments in this paper, N̂ = 95. An infinite
horizon Markov process is used beyond age N̂ to esti-
mate remaining expected QALYs in the absense of
screening. Although no further decisions are made
after N̂ , the Markov process is used to evaluate the
remaining lifetime QALYs, which is standard prac-
tice in medical decision-making models for evaluating
long-term costs and benefits. (Note that we provide a
way to estimate N̂ in §5.)

Table 2 Detailed Explanations of Cancer States OC, EP , LN, and M

Abbreviation Description Meaning

OC Organ confined Cancer is confined to the prostate
gland and has not spread to any
other site.

EP Extra prostatic Cancer has grown and is no longer
confined to the prostate but has
invaded outside of the prostate into
structures immediately adjacent to
the prostate.

LN Lymph node positive Cancer has spread to the regional
lymph nodes. This is early
metastatic disease.

M Metastasis Cancer has spread to distant organ
sites. This is late metastatic
disease.

Actions. Action, at ∈ 8B1W9, denotes the decision to
perform a biopsy (B) or defer the biopsy decision (W)
until the next decision epoch, t + 1.

States. At each decision epoch a patient is in one of
several health states including no cancer (NC), non-
metastatic prostate cancer present but not detected
(C), organ confined cancer detected (OC), extrapro-
static cancer detected (EP ), lymph node-positive can-
cer detected (LN ), metastasis (M), and death from
prostate cancer and all other causes (D). Cancer states
OC, EP , LN , and M are explained in more detail
in Table 2. The states NC and C are not directly
observable, but the other health states are assumed
to be completely observable. The possible transitions
among states are illustrated in Figure 3(a). Figure 3
illustrates how the model can be simplified by aggre-
gating the three observable cancer stages (OC, EP ,
and LN ) into a single state in which nonmetastatic
prostate cancer has been detected and treated (T ).
Note that the state aggregation does not cause a loss
of accuracy in our model, because the reward for state
T is the expected discounted future rewards, which
are independent of the actions. Once patients enter
state T , they will discontinue screening and have no
further biopsies; therefore, state T is an absorbing
state. In our POMDP model, we use the set of core
states S = 8NC1C1T 1M1D9 illustrated in Figure 3(c).

Observations. At each decision epoch, the patient is
observed in one of a set of observable states includ-
ing PSA intervals, T , M , or D, indexed by lt ∈ O =

8112131 0 0 0 1m1T 1M1D9, where m is the number of
discretized PSA intervals. Note that state M is observ-
able because patients with metastases are treated pal-
liatively, almost never receiving surgery or radiation
for their prostate. Upon entering state M patients
are identified within a very short time because of
symptoms.

Information Matrix. Conditional probabilities relate
the underlying core states to the observations. We let
qt4lt � st5 denote the probability of observing lt ∈ O
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Figure 3 Illustration of the POMDP Model Simplification That Involves Aggregating the Three Nonmetastatic Prostate Cancer States After Detection
Into a Single Core State T

(a) Prostate cancer developing flows (b) State aggregation (c) Core state transition

NC NC NC

OC

EP

LN

OC

EP

LN

C C C T

M M M

D D Dpt (D |NC )

pt (D | C )

pt (T | C )

Notes. The box surrounding states OC, EP , and LN in (b) denotes the aggregation of the states into a single treatment state. Solid lines denote the transitions
related to prostate cancer; dotted lines denote the action of biopsy and subsequent treatment; dashed lines in (c) denote death from other causes (for simplicity
these are omitted from (a) and (b)).

given he is in health state st ∈ S and let Qt4lt � st5 be
its matrix form. Note that Qt4lt � st5 is independent of
the actions, B and W , because actions are only taken
for patients in state C or NC, and these actions do not
influence the PSA test results.

Belief States. The belief state (or belief vector),
�t = 4�t4NC51�t4C51�t4T 51�t4M51�t4D55, defines the
probability the patient is in one of the five health
states at epoch t. Note that, if a patient has a posi-
tive biopsy result, his belief state is �t4T 5= 1, and if
a patient has an observation of M , his belief state is
�t4M5= 1. We point out that the five-state POMDP
model includes two partially observable states (C and
NC) and three absorbing states (T 1M1D). Thus, the
complexity of the model is similar to that of a
two-dimensional POMDP. We present the complete
five-state model to allow a detailed description of
the model inputs and computational results in §6.
For a patient without a positive biopsy result, his
belief state can be represented as �t = 41 − �t4C51
�t4C51010105. Therefore, we use �t4C5, the first com-
ponent of vector �t as a concise representation of
belief in the remainder of this paper.

Transition Probabilities. The core state transition
probabilities pt4st+1 � st1 at5 denote the core state tran-
sition probability from health state st to st+1 at epoch
t given action at .

Rewards. The reward r̄t4st1 at5 is the immediate
reward (measured in QALYs) given the patient is in
core state st and action at is taken at decision epoch t.
Thus, the belief state immediate reward is rt4�t1 at5=
∑

st∈S
r̄t4st1 at5�t4st5.

The goal of our model is to determine the biopsy
referral policy that maximizes expected discounted
QALYs over the patient’s lifetime. It is well known
that POMDPs can be converted into an equivalent
completely observable Markov decision process on

the continuous belief states �t (Astrom 1965, Sondik
1971, Monahan 1982). The optimal value function and
the corresponding optimal action for our model can
be written as

vt4�t5 = max
at∈8W1B9

{

rt4�t1 at5+�
∑

lt+1∈O

vt+14�t+15

· pt4lt+1 ��t1 at5

}

1 ∀�t ∈ç1 (1)

and

a∗

t 4�t5 = arg max
at∈8W1B9

{

rt4�t1 at5+�
∑

lt+1∈O

vt+14�t+15

· pt4lt+1 ��t1 at5

}

1 ∀�t ∈ç1

where

pt4lt+1 ��t1 at5

=
∑

st+1∈S

qt+14lt+1 � st+15
∑

st∈S

pt4st+1 � st1 at5�t4st51

and � ∈ 60117 is the discount factor. Bayesian updating
is used to revise the patient’s belief state over time as
PSA observations are obtained. Bayesian updates are
defined by the following transformation of the belief
state:

�t+14st+15

=
qt+14lt+1 � st+15

∑

st∈S
pt4st+1 � st1 at5�t4st5

∑

st+1∈S
qt+14lt+1 � st+15

∑

st∈S
pt4st+1 � st1 at5�t4st5

1 (2)

where �t+14st+15 is the component of the belief vec-
tor, and �t+1 is a function of lt+1, at , and �t . Thus, (2)
updates the belief state of a patient based on their prior
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Table 3 Detailed Description of Model Parameters Defining Transition
Probabilities and Rewards for the Core State Process

Description

wt Annual probability of prostate cancer incidence
dt Annual probability of death from other causes
b Annual probability of developing metastasis for patients in state T

e Annual probability of developing metastasis for patients in state C

zt Annual probability of prostate cancer death excluding death from
other causes for patients in state M

f Biopsy detection rate for patients with prostate cancer (sensitivity)
� One-time utility decrement associated with biopsy
� Annual utility decrement of living in state T

� Annual utility decrement of living in state M

belief state and their most recent observed PSA inter-
val. The sequence of probabilities 8�t1 t = 11 0 0 0 1�9
has been shown to follow a Markov process (Monahan
1982), and therefore (1) defines a continuous state
MDP. Note that when using the model, it is not neces-
sary to have annual PSA test results. Belief at any age
can be estimated based on available information.

Transition probability matrices and reward vec-
tors are shown in Appendix A in the online supple-
ment (available at http://dx.doi.org/10.1287/msom
.1120.0388). Table 3 defines the parameters used to
construct the core state transition probability matri-
ces and the rewards in our model. All the parameters
in Table 3 are nonnegative and not greater than 1 by
definition.

5. Structural Properties
In this section we discuss the structure of our model
and prove several structural properties that give
insights into the optimal policy for biopsy referral.
For example, insights include that the optimal biopsy
referral policy is of control-limit type and that biopsy
referral and even PSA screening should be discon-
tinued for older patients. In our model we focus on
primary screening, assuming that patients have at
most one biopsy. In reality, about 7%–12% of men
undergoing biopsy have had a previous negative
biopsy (Nguyen et al. 2010, Thompson et al. 2006).
This is likely because the 10–12 cores obtained in a
standard office prostate biopsy miss cancer in some
men (Haas et al. 2007). Importantly, however, a prior
negative prostate biopsy is an indicator of the absence
of prostate cancer and therefore decreases the prob-
ability that the patient will have cancer detected at
rebiopsy (Thompson et al. 2006, Ashley et al. 2008).
In rebiopsy situations, the technique of biopsy also
changes, with more cores being sampled to ensure
that a “hidden” cancer is not missed again (Rabets
et al. 2004, Chon et al. 2002). Fortunately, when a
cancer is found at rebiopsy, it is often a low-risk
tumor and frequently clinically insignificant (Epstein
et al. 2005, Bastian et al. 2004, Master et al. 2005).
It can be surmised from these data that the deci-

sion to rebiopsy a man is inherently different than
the decision to biopsy him for the first time, and for
this reason we have opted to focus on the first biopsy
decision because it informs about 90% of biopsy deci-
sions. From the perspective of our model, this can be
interpreted to mean that once patients are biopsied
they leave the system. This assumption has also been
made in previous cancer screening studies (Maillart
et al. 2008, Chhatwal et al. 2010).

Assuming a single biopsy, the optimality Equa-
tion (1) can be rewritten as

vt4�t5 = max
{

rt4�t1W5+�
∑

lt+1∈O

vt+14�t+15

· pt4lt+1 ��t1W51Rt4�t5

}

1 ∀ t1 ∀�t ∈ç1 (3)

where Rt4�t5 is the expected discounted future
reward given at = B at decision epoch t, which can be
written as

Rt4�t5 = −�+ 41 −�t4C55R̄t4NC5

+�t4C5441 − f 5R̄t4C5+ f R̄t4T 551 (4)

where � is the QALY decrement of biopsy; f is the
biopsy detection rate; and �t4C5, a component of vec-
tor �t , is the probability the patient is in state C. We let
R̄t4NC5, R̄t4C5, R̄t4T 5, and R̄t4M5 denote the expected
discounted future rewards under the policy of never
referring the patient for biopsy after age t for states
NC, C, T , and M , respectively, which can be writ-
ten as

R̄t4NC5 = r̄t4NC1W5+�
(

pt4NC �NC1W5R̄t+14NC5

+ pt4C �NC1W5R̄t+14C5
)

1

R̄t4C5 = r̄t4C1W5+�pt4C �C1W5R̄t+14C5

+�pt4M �C5R̄t+14M51 (5)

R̄t4T 5 = r̄t4T 5+�pt4T � T 5R̄t+14T 5

+�pt4M � T 5R̄t+14M51

R̄t4M5 = r̄t4M5+�pt4M �M5R̄t+14M50

We let R̄t4�t5 denote the expected discounted future
QALYs given the patient is never referred for biopsy,
and is in belief state �t , in decision epoch t. It can be
written as

R̄t4�t5= 41 −�t4C55R̄t4NC5+�t4C5R̄t4C50 (6)

To simplify the notation in later proofs related to (3),
we define

vt4�t1W5 = rt4�t1W5

+�
∑

lt+1∈O

vt+14�t+15pt4lt+1 ��t1W50 (7)
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Formulation (3) can be viewed as a partially observa-
ble optimal stopping time problem. At each decision
epoch, the decision maker selects between the expected
reward associated with biopsy,Rt4�t5, or deferral of the
decision to biopsy for one more decision epoch.

Because PSA involves only a simple blood test, and
because no QALY decrement associated with a PSA
test has been reported in the literature, we assume
there is no direct utility loss associated with the test
because PSA tests are normally ordered as part of
a larger panel of blood tests when patients have an
annual exam (thus, the PSA test itself does not typ-
ically result in an additional lab visit or blood test).
Furthermore, most medical decision-making studies
assume no disutility of blood tests. An estimate in the
literature based on blood tests for infants suggests a
conservative upper bound of 0.0002 QALYs (Madsen
et al. 2006), which is negligible compared to the
impact of biopsy and treatment in our model.

When there is no QALY decrement associated with
a PSA test, it can be shown that any additional PSA
test provides nonnegative benefit in total expected
QALYs. We formalize this concept with the following
proposition.

Proposition 1. The incremental benefit of an addi-
tional PSA test is nonnegative.

Proposition 1 is presented without a formal proof.
It follows trivially from the fact that a patient can-
not have a worse outcome given the availability of
additional information. An immediate corollary to the
above proposition is the following.

Corollary 1. Annual PSA screening is optimal when
decisions to perform PSA tests are made not more fre-
quently than annually.

Proposition 1 and Corollary 1 shed light on the con-
troversy of whether frequent PSA testing is the cause
of overdiagnosis (Etzioni et al. 2002). They imply that
PSA screening should be done as frequently as rea-
sonably possible to maximize the expected QALYs
from the patient perspective. Thus, in the context of
screening based on belief of prostate cancer, a high
frequency of PSA tests does not lead to an increase
in unnecessary biopsies and treatments, rather it pro-
vides greater ability to discriminate between patients
with and without prostate cancer. Therefore, because
annual screening is the highest frequency of screen-
ing generally supported in the medical literature (U.S.
Preventive Services Task Force 2008, American Uro-
logical Association 2009, American Cancer Society
2010b), in the results that follow in §6, we assume
that patients are screened at each of a set of annual
decision epochs.

Several structural properties can be proved about
the optimal biopsy referral policy under the assump-
tion of annual screening and reasonable assumptions

about the model parameters. Lemmas and detailed
proofs for the lemmas and theorems, can be found in
Appendix B in the online supplement. We begin by
stating several important assumptions before present-
ing our main theoretical results.

Assumption 1. The probability of prostate cancer inci-
dence satisfies the condition that wt ≤ Kb1 ∀ t, where K =

4R̄t+14NC5− R̄t+14M55/4R̄t+14NC5− R̄t+14C55.

Assumption 1 means that the annual probability of
prostate cancer incidence is not more than K times the
prostate cancer metastasis probability for patients in
state T . Lemmas 1 and 2 in Appendix B in the online
supplement together imply that the coefficient K is
greater than or equal to 1. Therefore, Assumption 1
is consistent with published mortality and incidence
data for prostate cancer, which we discuss in §6.

Assumption 2. The annual probability of death from
other causes, dt , is monotonically nondecreasing in t.

Assumption 2 means the annual probability of
death from other causes, dt , is nondecreasing in age.
This is consistent with the fact that age is recognized
as a risk factor for most diseases, including prostate
cancer as well as all-cause mortality. This assumption
is also empirically consistent with published U.S. life
tables (Arias 2010).

Assumption 3. The annual probability of death from
metastatic prostate cancer, zt , is monotonically nonincreas-
ing in t.

Assumption 3 means the annual probability of
death from metastatic prostate cancer excluding death
from other causes, zt , is nonincreasing in age. Note
that, zt is defined as the number of people who
die from metastatic prostate cancer divided by the
number of people who do not die from all other
causes at age t. This is consistent with the fact that
metastatic prostate cancer is more deadly for younger
patients. This assumption is also empirically consis-
tent with the Surveillance Epidemiology and End
Results (SEER) data (National Cancer Institute 2009).

In the remainder of this section we present our main
theoretical results that provide general insight into the
optimal policy for biopsy referral decisions. Theorem 1
provides a monotonicity result for our POMDP model.

Theorem 1. Under Assumptions 1, 2, and 3, the opti-
mal biopsy referral policy is of control-limit type with
�∗

t 4C5 such that

a∗

t 4�t5=

{

W if �t4C5≤�∗
t 4C51

B if �t4C5 > �∗
t 4C50

Theorem 1 implies that the optimal policy is of
control-limit type under the above assumptions. The
existence of a control-limit type policy means the
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optimal decisions on the belief space are separated
by the threshold, �∗

t 4C5. This is important for two
reasons. First, the introduction of partial observabil-
ity and the fact that the underlying health states
are not ordered (state C and T are not ordered in
that the reward of being in state C is greater than
in state T , but the annual probability of developing
metastatic prostate cancer from state C is higher than
state T ) makes the proof of the structural proper-
ties novel relative to existing literature (e.g., Albright
1979, White 1980, Lovejoy 1987). Second, such poli-
cies are intuitive and much easier to implement in
practice, which is particularly important in an already
challenging clinical environment. Although the result
in Theorem 1 is intuitive there are counter examples
demonstrating that intuition can be misleading. For
instance, Lovejoy (1987) presents an example of a sim-
ple POMDP, which counter to intuition, does not have
a threshold policy.

Next, we provide a sufficient and necessary condi-
tion for the existence of the stopping time policy in
our POMDP model in Theorem 2 and Corollary 2.

Theorem 2. Under Assumptions 2 and 3, there exists
a finite age, N , at which it is optimal to discontinue biopsy
referral if and only if the following condition is satisfied:

R̄N 4T 5− R̄N 4C5≤�/f 0

Theorem 2 provides a general result for a partially
observable stopping time problem that is potentially
relevant to other medical decision-making problems
in which the patient’s health state is not known
without invasive and imperfect testing. Discontinuing
biopsy referral at age N means a∗

t 4�t5 = W , ∀�t ∈ç,
∀ t ≥ N . Note that this implies that PSA screening
should be discontinued, which we state formally as
the following corollary.

Corollary 2. If a∗
t 4�t5=W1 ∀�t ∈ç1 ∀ t ≥N , PSA

screening should be discontinued.

Proof. This corollary is a direct result of Theo-
rem 2.

In words, Corollary 2 states that if the incremen-
tal benefit of treatment is not greater than the ratio
of disutility of biopsy to the biopsy detection rate,
it is no longer optimal to screen. Intuitively this
means that reducing the negative impact of biopsy or
increasing the biopsy detection rate will increase the
age at which screening should be discontinued. Fur-
thermore, improving the benefit of treatment will also
increase the age at which screening is discontinued.
Note that, although Proposition 1 guaranteed any
additional PSA test will provide nonnegative incre-
mental benefit, Corollary 2 implies that PSA screening
should be discontinued if an additional PSA test can-
not provide positive incremental benefit.

Theorem 2 and Corollary 2 provide an insight into
published clinical recommendations that prostate can-

cer screening should be terminated for older patients
when their risk of dying of prostate cancer becomes
low relative to other causes of death (e.g., heart
disease). Estimating the stopping time N is useful
for two reasons. First, it provides a foundation for
guidelines such as those of the U.S. Preventive Ser-
vices Task Force (2008), which recommend terminat-
ing screening for older patients. Second, it provides a
means to improve computational efficiency in solving
the POMDP because it defines a finite horizon beyond
which the policy is fixed. Thus, it informs the choice
of N̂ in the POMDP model formulation.

6. Computational Results
In this section we present results based on our
POMDP model. We describe the data used to esti-
mate our model parameters and details about how
we estimated model parameters based on the med-
ical literature. We present sensitivity analysis based
on variation of the model parameters, and we present
estimates of the benefits of annual PSA screen-
ing. Finally, we discuss insights that can be drawn
from the results of our numerical experiments. For
instance, the biopsy referral threshold on the proba-
bility of having prostate cancer is nondecreasing as
age increases, the optimal biopsy referral policy is
the most sensitive to the disutility of treatment, the
optimal expected QALYs is the most sensitive to the
other cause mortality probability and the probabil-
ity of prostate cancer incidence, and both the optimal
policy and the expected QALYs are insensitive to the
biopsy detection rate.

6.1. Data Description
The data we used for parameter estimation in our
model consists of 11,872 patients from Olmsted
County, Minnesota. It includes PSA values, biopsy
information (if any), diagnosis information (if any),
and the corresponding ages for patients recorded
from 1993 through 2005. This regional data set
includes all patients in Olmsted County irrespective
of their prostate cancer risk. We use it to estimate
prostate cancer probabilities conditional on PSA level
for a general population. To our knowledge, it is the
largest data set of its kind for a North American
population.

Among the patients in our data set, 1,140 patients
have at least one biopsy prior to detection during
their lifetime, and 739 patients (81.4%) have exactly
one biopsy. Because we focus on the prostate biopsy
referral policy for primary screening, we do not con-
sider PSA records after cancer treatment. Based on
expert opinion, we removed abnormal PSA records
such as the following. Suppose there are three consec-
utive PSA tests for any patient; the first one and the
third one are lower than 2.5 ng/ml; the second one is
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greater than 4.0 ng/ml and two times higher than the
first and third. Then we assume the second PSA value
is abnormal (likely caused by infections or data entry
error), and remove it from the data set. This method
eliminates a total of 94 abnormal PSA records.

6.2. Estimating Parameters
Because some patients in the data set likely have
prostate cancer that has not yet been diagnosed,
the information matrix, Qt4lt � st5, is subject to bias.
Patients without any biopsy result and with a false
negative biopsy result may be a source of bias.
To adjust for this, we randomly selected 20% of neg-
ative biopsy results to be positive. To adjust the bias
caused by patients without any biopsy result, we used
the methods proposed by Begg and Greenes (1983) to
correct for this bias. We use biopsy as the confirma-
tive test. This is consistent with its use as the con-
firmative test for outcome prediction based on PSA
test results in other studies (Punglia et al. 2003). Thus,
we assume that patients who have positive biopsies
are true cancer patients, and those who have negative
biopsy are true no cancer patients. We first separate
the patients into different groups according to their
PSA values (60115, 6112055, 6205145, 64175, 671105, and
≥10) and ages (6401505, 6501605, 6601705, 6701805, and
≥80). Within each group, we assume patients without
a confirmative test (biopsy) have the same probability
of prostate cancer as patients who have had a confir-
mative test. The resulting information matrix is

Qt4lt � st5

=



















00471 00337 00101 00059 00015 00017 0 0 0

00319 00287 00142 00135 00056 00061 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



















1 ∀t0

The rows of Qt4lt � st5 correspond to states NC, C,
T , M , and D, respectively; the columns correspond
to PSA intervals 60115, 6112055, 6205145, 64175, 671105,
6101�5, T , M , and D, respectively. Our choice of the
PSA intervals is based on clinically meaningful cut
points identified by a urologist involved in this study.
Our choice balances the density of samples in each
PSA interval and is consistent with the PSA inter-
vals chosen in other prostate cancer research (Partin
et al. 1997, Thompson et al. 2004, Makarov et al.
2007). (Finer PSA intervals were tested in numerical
experiments, and the optimal policy and the expected
QALYs were found to be insensitive to an increase in
the number of PSA intervals.) The information matrix,
Qt4lt � st5, is fixed for all the ages in this empirical
study because our preliminary numerical experiments

showed that changes in Qt4lt � st5 with respect to age
do not significantly influence the optimal policy.

In the results we present, we assume patients de-
tected with nonmetastatic prostate cancer are treated
by radical prostatectomy. Radical prostatectomy is
historically the most common treatment (Burkhardt
et al. 2002, Kawachi et al. 2010, Hamilton et al. 2011)
and reported to be the best treatment in terms of
expected QALYs for all the ages (Sommers et al. 2007).
It is also the only form of treatment for which the
patients’ cancer stages can be understood by patho-
logical examination of the removed organ. To esti-
mate the annual probability of developing metastasis
for patients in state T , b, we use the weighted
average of the probability of developing metastasis
from three nonmetastatic prostate cancer stages using
Mayo Clinic Radical Prostatectomy Registry survival
data. In our base case b = 00006.

We estimated the annual death probability for
metastasis from the five-year death probabilities
for patients’ age <65 and ≥65 from the SEER
data (National Cancer Institute 2009). Based on our
estimates the disease-specific annual death probabil-
ity of metastatic prostate cancer is zt = 00074 for t < 65
and zt = 00070 for t ≥ 65. The disease-specific metasta-
sis probability from cancer not detected is estimated
using the weighted sum of the grade-specific metas-
tasis probability (Scardino et al. 1994) and the prob-
abilities of grades upon detection (Ghani et al. 2005).
The base case estimate is e = 00069 for all ages.

In our base case, we use a decrement of � =

0005 in the year of biopsy to estimate quality adjust-
ment in the year a patient has a biopsy. Because no
estimates of utility decrement exist yet for prostate
biopsy, this is an estimate based on a similar choice of
parameters for a recent bladder cancer study for the
occurrence of surveillance cystoscopy (Kulkarni et al.
2009) and a breast cancer biopsy study (Chhatwal
et al. 2010). In our base case, the disutility of metas-
tasis is � = 0024 (Bremner et al. 2007). We assume
that the annual QALY in years after treatment via
prostatectomy is the mean of two extremes: (a) the
most severe (metastasis) and (b) minor (mild sex-
ual disfunction) symptoms according to patient sur-
veys reported in Bremner et al. (2007). Hence, annual
QALYs of being in state T , 1 − �, equals 00855, which
is the midpoint of 0076 and 0095.

The annual probability of prostate cancer incidence,
wt (shown in Table 4), is estimated from an autopsy
review study (Bubendorf et al. 2000) that provides

Table 4 Age-Specific Values of the Annual Probability of Prostate
Cancer Incidence, wt

t 40–50 50–60 60–70 70–80 ≥80
wt 2032 × 10−3 4070 × 10−3 7002 × 10−3 6017 × 10−3 1017 × 10−2
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Table 5 Age-Specific Annual Probability of Death from Other Causes, dt

t 40–44 45–49 50–54 55–59 60–64 65–69 70–74 75–79 80–84 85–89 90–94 95–99
dt 00003 00004 00006 00009 00013 00019 00030 00049 00081 00129 00200 00297

Table 6 Parameters, Their Sources, and Specific Values Used in Our
Base Case Analysis

Parameter Source Value

wt Bubendorf et al. (2000) Age specific
dt National Cancer Institute (2009), Arias (2010) Age specific
b Mayo Clinic Radical Prostatectomy Registry 00006
e Scardino et al. (1994), Ghani et al. (2005) 00069
zt National Cancer Institute (2009) Age specific
f Haas et al. (2007) 008
� Kulkarni et al. (2009), Chhatwal et al. (2010) 0005
� Bremner et al. (2007) 00145
� Bremner et al. (2007) 0024

estimates of prostate cancer prevalence in the general
population in ten-year age intervals.

The mortality probability from other causes, dt
(shown in Table 5), is age specific and based on
the general mortality probability from the National
Vital Statistics Reports (Arias 2010) minus the prostate
cancer mortality probability from the National Can-
cer Institute (2009). Note that because the National
Cancer Institute reports a single annual probability
of prostate cancer incidence for ages greater than 95
and the National Vital Statistics Reports (Arias 2010)
reports a single annual probability of all-cause mor-
tality for ages greater than 95, we assume that dt are
fixed after the age of 95, i.e., N̂ = 95 in our numeri-
cal experiment. Our base case biopsy detection rate is
008 (Haas et al. 2007).

A summary of all of the parameter values and their
sources are provided in Table 6. It is worth noting
that these parameter estimates satisfy Assumptions 1,
2, and 3 in §5. Thus, they validate our assumptions
empirically. In §6.3 we use sensitivity analysis to eval-
uate the influence of changes in each of these param-
eters on the optimal biopsy referral policy.

6.3. Computational Experiments and
Sensitivity Analysis

POMDP models are often computationally intracta-
ble, however, because of the low dimensionality of the
belief state instances of our model, the POMDP can be
solved exactly in a reasonable computation time using
incremental pruning (Zhang and Liu 1996, Cassandra
et al. 1997). All the experiments in this study were
completed on a 64-bit Intel Xeon 2.5 GHz CPU with
6 MB of cache. All instances were solved in less than
six minutes.

Results of the base-case parameter settings are pre-
sented in Figure 4. The optimal policy, denoted by

the belief threshold between biopsy and wait, is illus-
trated in the figure. There are several interesting prop-
erties of the optimal policy. First, as expected from
Theorem 1, the optimal policy is control-limit type.
Second, there is a stopping time for screening at
age 74, and thus the optimal policy is consistent with
Theorem 2. Finally, we note that the threshold is
increasing in age; thus, as patients age, their proba-
bility of having prostate cancer must be higher for a
biopsy referral to be optimal. This is consistent with
increases in all-other-cause mortality that occurs as
patients age, and the general consensus in the medical
community that because of the low risk of death from
prostate cancer, treatment becomes less beneficial as
age increases. The biopsy threshold increases rapidly
around the biopsy stopping age primarily because of
the significant increase in risk of death from other
causes for older patients. This trend is observed in
Table 5, which provides probabilities of death from
other causes based on Centers for Disease Control
and Prevention life tables (Arias 2010). When death
from other causes becomes large relative to death
from prostate cancer, the expected benefit of treatment
decreases significantly, resulting in a rapid change in
the biopsy threshold.

Some of the parameters in our model are subject
to variation either because they differ among patients
because of differences in preferences (e.g., the per-
ceived impact of biopsy, �) or differences in phys-
iology (e.g., anticipated recovery from surgery, �).
Furthermore, there is variation in reported estimates
such as the annual probability of prostate cancer
incidence, wt (Bubendorf et al. 2000). Therefore, in
Figure 5 we present the results of a one-way sensi-
tivity analysis for the model parameters that define
the core process and reward function. In several cases,
parameters were varied between lower and upper

Figure 4 Optimal Biopsy Referral Policy

40 50 60 70 80 90

0.0

0.2

0.4

0.6

0.8

1.0

Age

P
ro

ba
bi

lit
y 

of
 h

av
in

g 
P

C
a

B

W

Note. The solid line denotes the optimal threshold for the base case, and
PCa is an abbreviation for prostate cancer.
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Figure 5 One-Way Sensitivity Analysis for Parameters: wt , dt b, e, zt , f , �, �, �, and �

(a) wt varies in bounds from Bubendorf et al. (2000)
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Note. Solid lines denote the base-case optimal policy, dashed lines denote the optimal policies for the upper bound of the parameter estimates, dotted lines
denote the optimal policies for the lower bound of the parameter estimates, and PCa is an abbreviation for prostate cancer.
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Table 7 Bounds on wt Derived from Bubendorf et al. (2000) for
One-Way Sensitivity Analysis

(a) Lower bounds of wt

t 40–49 50–59 60–69 70–79 ≥80
wt 2000 × 10−4 1051 × 10−3 2043 × 10−3 5022 × 10−3 7012 × 10−3

(b) Upper bounds of wt

t 40–49 50–59 60–69 70–79 ≥80
wt 5001 × 10−3 4091 × 10−3 8052 × 10−3 1051 × 10−2 1010 × 10−2

bound based on published estimates in the literature,
when such estimates were available. In other cases,
parameters were varied by ±20% from the baseline
values provided in §6.2. We discuss some of the inter-
esting observations and general insights that can be
drawn below.

Figure 5(a) is a one-way sensitivity analysis for wt ,
in which the upper and lower bounds on wt (shown
in Table 7) are based on the lowest and highest
estimates of the annual probability of prostate can-
cer incidence reported in autopsy studies (Bubendorf
et al. 2000). The figure illustrates the optimal policy
for the base case, and the lower and upper bounds on
wt (note that the solid line denotes the base case, the
dashed line denotes the upper bound, and the dot-
ted line the lower bound in all figures). We observe
that optimal threshold is insensitive to changes in wt ,
based on the fact that the lines in Figure 5(a) are
nearly overlapping. This is intuitive because wt is
directly related to the probability of prostate cancer,
and the nature of the policy, which is defined by the
belief, automatically compensates for this fact. As we
show later, the value function itself is quite sensitive
to changes in wt .

The optimal policy was also found to be relatively
insensitive to the annual probability of developing
metastasis from state T , b, and the biopsy detection
rate, f . Although the effects are small, we observed
that the threshold for screening is decreasing in b.
Thus, the probability threshold at which biopsy is
recommended goes up as the probability of develop-
ing metastasis goes up. This is intuitive because the
change represents less aggressive biopsy referral deci-
sions to compensate for the higher likelihood of dis-
ease progression following treatment. We also observe
that the threshold is decreasing in f , indicating that
the likelihood of prostate cancer must be higher to
warrant biopsy as the accuracy of detection decreases.
Although the direction of the changes is intuitive, it is
interesting to note that the magnitude of the changes
is very small for these parameters, indicating that
changes in their estimates are unlikely to substantially
effect the optimal policy.

The optimal policy was found to be particularly
sensitive to the disutility parameters for biopsy, �,
treatment, �, and metastasis, �, as illustrated in Fig-
ures 5(g)–5(i). Figure 5(g) is a one-way sensitivity anal-

ysis of varying the disutility of biopsy, �, from 0001
to 001 (a wide range was used in this case to reflect
potentially significant variation among patient pref-
erences for biopsy). As � increases, we observe that
the threshold for biopsy goes up, consistent with the
greater impact of the test on quality of life. Figure 5(h)
shows the one-way sensitivity analysis for the util-
ity decrement after prostatectomy, �, which has lower
bound � = 0005 (consistent with mild urinary problem
after prostatectomy) and upper bound � = 0024 (con-
sistent with metastasis), which are taken from Bremner
et al. (2007). The threshold increases with respect to �,
reflecting the decreased benefits of screening repre-
sented by a higher disutility of treatment. Figure 5(i)
is the one-way sensitivity analysis for the disutility of
metastasis, �, with lower bound � = 0015 from Krahn
et al. (2003) and upper bound � = 0046 from Sandblom
et al. (2004). As illustrated in Figure 5(i), when �
was decreased to 0015, the optimal biopsy threshold
increased, implying that patients should be subjected
to less aggressive prostate cancer screening, and vice
versa when � was perturbed to 0046.

The optimal policy is also sensitive to change in
the prostate cancer death probability, zt . The one-way
sensitivity analysis for zt is illustrated in Figure 5(e),
where the lower bound, 0007, is an estimate from
Messing et al. (2006) and the upper bound, 0037,
is an estimate from Aus et al. (2005a). When zt
was perturbed to 0037, the optimal biopsy thresh-
old moved considerably lower, which implies that
patients should be subjected to more aggressive
prostate cancer screening if the outcome of having
metastatic cancer is worse, and vice versa when zt
was perturbed to 0007. In Figure 5(b) the all-other-
cause mortality, dt , was perturbed by ±20%. The
results imply that patients should be subjected to
more aggressive prostate cancer screening if their
probability of dying from other causes is lower, and
vice versa when dt is higher. The changes are intu-
itive because increasing probability of death from
other causes naturally decreases the relative benefits
of detecting and treating prostate cancer, since the
patient’s expected lifespan following treatment will be
lower. Thus, the results for dt imply that comorbidi-
ties (e.g., heart disease, diabetes, other cancers) should
be considered when making screening decisions for
individual patients.

The optimal policy was also found to be fairly
sensitive to e, the annual probability of developing
prostate cancer metastasis of patients in state C. Fig-
ure 5(d) shows the one-way sensitivity analysis of e.
The results imply that patients should be subjected
to less aggressive prostate cancer screening if the out-
come of state C is better (lower probability of devel-
oping metastasis without treatment), and vice versa
when e is higher. In other words, the benefits of
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screening decrease as the probability of dying from
untreated prostate cancer goes down.

Figure 5(j) shows the one-way sensitivity analysis
on the discount factor, �, with a baseline value of 1.
In the sensitivity analysis, the lower bound of � takes
0097, the most commonly used value in the health eco-
nomics literature for cost effectiveness studies (Gold
et al. 2002) (note that no upper bound is evaluated
in this case). When � reduced to 0097, the optimal
biopsy threshold increased significantly, implying
more aggressive prostate cancer screening when a
greater discount applies to the future QALYs. This is
consistent with the fact that discounting decreases the
benefit of future life years, i.e., the expected value to
go, in favor of immediate rewards. Thus, the long-
term benefits of early detection and treatment of
prostate cancer are decreased by discounting.

In summary, from Figure 5 we can see that the opti-
mal policy is most sensitive to the utility decrements,
� and �, which are the factors affecting the reward
function. The optimal policy is also quite sensitive to
dt , e, zt , �, and �. On the other hand, it is less sensitive
to the annual probability of prostate cancer incidence,
wt , the annual probability of developing metastasis of
state T , b, and the biopsy detection rate, f .

Note that the results in Figure 5 differ from the
recommended guidelines summarized in Table 1 in
several ways. First, all but one of the guidelines in
Table 1 are independent of age, whereas the opti-
mal policy based on our model is highly dependent
on the patient’s age. Second, our results suggest that
the decision to biopsy is dependent on a number of
factors including a patient’s all-other-cause mortality,
disutility of biopsy and treatment, and the annual
probability of prostate cancer death, none of which
are considered by the guidelines in Table 1.

Figure 5 illustrates the sensitivity of the optimal
policy to changes in model parameters. In contrast,
Figure 6 illustrates the changes to the optimal value
function at age 40 given that the parameters are var-
ied in the same ranges used in Figure 5. We found
that the value function is most sensitive to the annual
probability of death from other causes, dt , and the
annual probability of prostate cancer incidence, wt .
It is also very sensitive to the utility decrement of
treatment, �.

Although not illustrated in Figure 6, we found that
changing the discount factor � from 1 to 0097 will
make the optimal value function decrease more than
10 QALYs. In this sense, the optimal value is the
most sensitive to �. The use of a discount factor, par-
ticularly over long time frames, has been a highly
debated topic for decades (for a discussion of this, see
Gold et al. 2002). From Figure 6, dt and wt are the
parameters affecting expected QALYs the most; from
Figure 5, the parameters defining the reward function,
� and � are among the ones with greatest influence

Figure 6 One-Way Sensitivity Analysis on Optimal Values for Model
Parameters
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Note. dt (annual probability of death from other causes), wt (annual prob-
ability of prostate cancer incidence), zt (annual probability of death from
metastatic prostate cancer), � (annual disutility of having metastasis),
e (annual probability of developing metastasis from state C), � (annual disu-
tility of treatment), � (disutility of biopsy), f (biopsy detection rate), and
b (annual probability of developing metastasis from state T ).

on the optimal policy. Both the optimal policy and
the expected QALYs were found to be insensitive to
the biopsy detection rate, f . Note that the main rea-
son for biopsy referral is that the benefit of treatment
is greater than no treatment when a positive biopsy
result is observed. The benefits of treatment are pri-
marily influenced by the disutility of treatment, which
results in a long-term permanent change in a patient’s
annual quality of life. Because the biopsy detection
rate, f , does not directly influence the outcome trade-
off between treatment and no treatment, and because
the disutility of biopsy is a one-time loss and there-
fore dominated by the influence of treatment disu-
tility, variation in f does not significantly affect the
decision to biopsy.

6.4. Benefits of Prostate Cancer Screening
We measured the total estimated benefit of prostate
cancer screening by estimating how much the value
function at age 40, i.e., the expected QALYs for a
40-year-old patient with no prostate cancer, improves
when the optimal policy is adopted versus no PSA
screening (at = W1 ∀ t1 ∀�t ∈ ç). In Table 8 the opti-
mal objective values are provided for our base case
along with several choices of model parameters, �, �,
and �. The benefits of prostate cancer screening are
most significant for cases in which � and �, the factors
that define the effect of screening and treatment on
the patients quality of life, are minimized. For � = 1,
the base-case benefit of screening is 00102 QALYs per
person for the male population regardless of their risk
of prostate cancer. For the case that is most favorable
for the benefits of prostate cancer screening and treat-
ment (� = 0005, � = 0001), the benefit is 0.217 QALYs
per person.
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Table 8 Sensitivity Analysis for Expected QALYs for a 40-Year-Old Patient Assuming �404C5= 0 Comparing
the Optimal Policy to the Case of No Screening, Allowing at Most One Biopsy over One’s Lifetime

Expected QALYs under Improvements over Percentage
� � � optimal biopsy referral policy no screening (QALYs) improvement

0.97 0005 0001 210861 00069 00317
0005 210845 00053 00244
001 210831 00039 00180

00145 0001 210826 00034 00157
0005 210812 00020 00093
001 210803 00011 00052

0024 0001 210798 00006 00029
0005 210793 00001 00006
001 210792 00000 00001

1 0005 0001 370689 00217 00574
0005 370660 00188 00498
001 370629 00157 00416

00145 0001 370603 00131 00347
0005 370574 00102 00270
001 370549 00077 00204

0024 0001 370531 00059 00156
0005 370507 00035 00092
001 370493 00021 00055

Note. Base-case values are shown in bold.

In Table 9 we compare our optimal policy to
the widely adopted American Urological Association
(AUA) age-adjusted guideline described in Table 1.
This guideline calls for annual PSA screening with
4.0 ng/mL threshold for biopsy. Comparing Tables 8
and 9, we see that the AUA age-adjusted guideline
is worse than no screening at moderate and higher
disutility values.

To put our results in a different context, we eval-
uated the benefits of screening for patients who ulti-
mately develop cancer between the age of 40 and 50.
Based on our experiments we find that the expected
incremental benefit is about 1.56 QALYs per person
for the base case parameter setting and ranges from

Table 9 Sensitivity Analysis for Expected QALYs for a 40-Year-Old
Patient Assuming �404C5= 0 Comparing the Optimal Policy
to Annual PSA Screening with 4.0 ng/mL Threshold for
Biopsy, Allowing at Most One Biopsy over One’s Lifetime

Expected QALYs Improvement
under optimal over the Percentage

biopsy guideline improvement
� � referral policy (QALYs)

0.05 0001 370689 00178 00472
0005 370660 00188 00499
001 370629 00207 00550

0.145 0001 370603 00104 00277
0005 370574 00115 00306
001 370549 00140 00373

0.24 0001 370531 00045 00120
0005 370507 00060 00160
001 370493 00096 00256

Note. Base-case values are shown in bold.

0.26 to 2.90 based on varying the disutilities � and �
in the ranges used in Table 8.

7. Conclusions
The U.S. Preventive Services Task Force (2008, p. 185)
provides the following recommendation: “Current
evidence is insufficient to assess the balance of ben-
efits and harms of screening for prostate cancer in
men younger than age 75 years. Do not screen for
prostate cancer in men age 75 years or older.” Our
theoretical results in §5 provide a foundation for the
concept of stopping screening at older ages. Our base
case results from our empirical study in §6 estimate
the optimal stopping time at 74 years of age, which is
surprisingly close to the U.S. Preventive Services Task
Force recommended stopping time. However, based
on our sensitivity analysis, we find that the decision
is highly dependent on a number of factors that may
vary among patients. Based on our sensitivity anal-
ysis, we find that it may be optimal to discontinue
screening as early as age 63 if the quality of life after
treatment is expected to be very low.

The partially observable nature of cancers, such as a
prostate cancer, make it challenging to estimate model
parameters. Our sensitivity analysis provides a basis
to help prioritize research on the collection of data
to better estimate model parameters. For example,
from our sensitivity analysis, we observed that the
referral threshold is most sensitive to utility decre-
ments of QALYs, but not very sensitive to the biopsy
detection rate. Thus, it appears that improvements in
prostate biopsy technology are not likely to signifi-
cantly influence the expected QALYs of the optimal
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biopsy referral policy. On the other hand, methods
for estimating disutilities, an area in which very lit-
tle research has been done, are very important for
measuring the benefit of PSA screening in individ-
ual patients. Furthermore, reducing the disutilities of
treatment and biopsy could significantly influence the
optimal policy, and incorporating individual charac-
teristics of a patient (body mass index and medical
history) could help better inform biopsy and treat-
ment decisions.

Our results in §6 shed light on the recent con-
troversy about PSA screening (Andriole et al. 2009,
Schröder et al. 2009). For instance, we quantify the
benefits of annual PSA screening. The results in
Table 8 illustrate the benefits are significantly greater
than the benefit per person of some well-known
population-based prevention programs such as vac-
cination against measles and rubella, which has an
estimated benefit per person of 0.008 QALYs (Wright
and Weinstein 1998). Therefore, our results indicate
that there is a potentially significant benefit from PSA
screening policies based on the risk of prostate cancer
relative to other public health interventions.

Heterogeneity plays an important role in personal-
ized medicine. To achieve a more personalized biopsy
referral decision, more information about the individ-
ual patient is needed. For example, our results suggest
that personalized utility assessment, consideration of
comorbidity, and family history of prostate cancer are
particularly important directions for future research
because we have shown that the optimal policy is
highly sensitive to these factors. Once such informa-
tion is available, it will be easy to obtain personalized
screening policy by updating parameter estimation.

There are some limitations of our study, which
present opportunities for future research. First, prosta-
tectomy was assumed to be the only treatment
because it is one of the most common treatments,
and because prostatectomy data was readily available
for our study. Our model could be easily adapted
to consider other treatment options such as radia-
tion therapy, brachytherapy, and active surveillance,
if data on expected quality adjusted survival after
such treatments becomes available. Second, we have
not considered physical screening through digital rec-
tal examination (DRE). There are several reasons for
choosing to omit DRE from the model: (a) accu-
rate DRE data is typically not available in large
population-based data sets such as ours; (b) DRE is
a highly subjective test (what is worrisome for one
physician may not be for another); (c) the large major-
ity of patients that are referred for biopsy are referred
based on PSA elevations alone. It is worth noting,
however, that if DRE data were available, we could
factor it into our model by considering it as an addi-
tional observation, without any changes to the struc-
ture of our model. Third, we did not consider the

decision to select among multiple treatment options,
i.e., we assume the choice of treatment for a given
patient is known prior to screening. Fourth, factors
such as sexual activity may cause a minor (typically
less than 1.0 ng/milliliter), transient (gone within
48 hours) increase in PSA levels (Tchetgen et al.
1996, Herschman et al. 1997). Patients are normally
told by their physician not to have sexual activ-
ity within 48 hours prior to a scheduled PSA test.
However, there could be variation in PSA resulting
from imperfect adherence to this recommendation.
Our model captures this as a factor influencing the
random nature of PSA. Finally, our study is based
on a single regional population in Olmsted County,
Minnesota. Future work based on a more diverse pop-
ulation could reveal insights about the role of race as
a risk factor in prostate biopsy referral decisions.

Our findings in this paper motivate the potential
benefits of developing decision support systems to
help patients and physicians make decisions about
biopsy referral. Many organizations (e.g., the Mayo
Clinic, Cardiff University, and the Centers for Dis-
ease Control and Prevention), have already devel-
oped decision aids for patients facing prostate cancer
screening decisions (O’Connor et al. 2009). However,
these decision aids do not provide individualized rec-
ommendations based on a patients history of PSA test
results, risk factors, or other factors that are likely to
influence decisions such as disutility of biopsy and
treatment, and all-other-cause mortality. Our model
provides the necessary foundation for implementing
such a decision support system.
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Appendix

A. Transition Probability Matrices and Reward Vectors

We denote the transition probability matrix at epoch t given the decision to wait, W , as Pt(st+1|st,W )
consisting of elements pt(st+1|st,W ), ∀st+1 ∈ S, st ∈ S, where the non-zero elements are:

pt(NC|NC,W ) = (1− dt)(1−wt),

pt(C|NC,W ) = (1− dt)wt,

pt(D|NC,W ) = dt,

pt(C|C,W ) = (1− dt)(1− e),

pt(M |C,W ) = e(1− dt),

pt(D|C,W ) = dt,

pt(T |T,W ) = (1− dt)(1− b),

pt(M |T,W ) = b(1− dt),

pt(D|T,W ) = dt,

pt(M |M,W ) = (1− dt)(1− zt),

pt(D|M,W ) = dt + zt(1− dt),

pt(D|D,W ) = 1.

We denote the transition probability matrix given the decision to biopsy, B, as Pt(st+1|st,B) consisting
of elements pt(st+1|st,B), ∀st+1 ∈ S, st ∈ S, where the non-zero elements are:

pt(NC|NC,B) = (1− dt)(1−wt),

pt(C|NC,B) = (1− dt)wt,

pt(D|NC,B) = dt,

pt(C|C,B) = (1− f)(1− dt)(1− e),

pt(T |C,B) = f(1− b)(1− dt),

pt(M |C,B) = fb(1− dt)+ e(1− f)(1− dt),

pt(D|C,B) = dt,

pt(T |T,B) = (1− dt)(1− b),

pt(M |T,B) = b(1− dt),

pt(D|T,B) = dt,

pt(M |M,B) = (1− dt)(1− zt),

pt(D|M,B) = dt + zt(1− dt),

pt(D|D,B) = 1.

Note that the first three and the last six elements of pt(st+1|st,W ) and pt(st+1|st,B) are identical because
they are independent of the action. From this point forward, we write them as pt(T |T ), pt(M |T ) pt(D|T ),
pt(M |M), pt(D|M) and pt(D|D), respectively.
There are a number of parameters that define the reward function in our model. We define the following

rewards given the decision to wait, W :

r̄t(NC,W ) = 1,

r̄t(C,W ) = 1,

r̄t(T ) = 1− ǫ,

r̄t(M) = 1− γ,

r̄t(D) = 0.

The rewards given the decision to biopsy, B, are as follows:

r̄t(NC,B) = 1−µ,

r̄t(C,B) = 1−µ− fǫ,

r̄t(T ) = 1− ǫ,

r̄t(M) = 1− γ,

r̄t(D) = 0.

The rewards defined above reflect the following assumptions. All the parameters, wt, dt, b, e, zt, f , µ, ǫ,
γ and λ, have values in [0,1]. A patient who has a biopsy suffers a loss of µ QALYs in the year of biopsy to
represent pain, anxiety, and short term procedure side effects such as infection. A non-metastatic prostate
cancer patient who has a positive biopsy, and is treated, suffers a loss of ǫ QALYs for all future life years, i.e.,
ǫ reflects quality of life decrement due to permanent side effects of treatment. Because we consider annual
decision epochs, and biopsy and subsequent treatment happen at the beginning of the one-year interval, −fǫ
in rt(C,B) represents the loss in QALYs for treatment during the year of a positive biopsy. Note that we
are implicitly assuming that the utility decrements, µ, ǫ, and γ are based on population averages, and the
decision maker is risk neutral.
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B. Proofs of the structural properties in Section 5

Lemma 1. R̄t(C)≥ R̄t(M), ∀t.

Proof. From (5) we have

R̄t(C)− R̄t(M) =r̄t(C,W )+λpt(C|C,W )R̄t+1(C)+λpt(M |C,W )R̄t+1(M)
− (r̄t(M)+λpt(M |M)R̄t+1(M))

=1+λ(1− dt)(1− e)R̄t+1(C)+λ(1− dt)eR̄t+1(M)
− (1− γ+λ(1− dt)(1− zt)R̄t+1(M))

=γ+λ(1− dt)(1− e)R̄t+1(C)−λ(1− dt)(1− e− zt)R̄t+1(M)
=γ+λ(1− dt)(1− e)(R̄t+1(C)− R̄t+1(M))+λ(1− dt)ztR̄t+1(M)
≥γ+λ(1− dt)(1− e)(R̄t+1(C)− R̄t+1(M)), (8)

where the inequality holds by dropping a nonnegative term based on the fact that the expected QALY of a
patient in M is nonnegative. Expanding (8) for t+1, · · · ,∞, we have

R̄t(C)− R̄t(M)≥ γ

(
1+

∞∑

i=1

i∏

j=1

λ(1− dt−1+j)(1− e)

)
≥ 0,

which implies R̄t(C)≥ R̄t(M), ∀t. �

Lemma 1 means that patients in state C have expected QALYs no less than those in state M given a∗t (πt) =
W, ∀t. In other words the expected discounted future QALYs are higher for a patient with cancer not
detected than for a patient with metastasis.

Lemma 2. R̄t(NC)≥ R̄t(C), ∀t.

Proof. From (5) we have

R̄t(NC)− R̄t(C) =r̄t(NC,W )+λpt(NC|NC,W )R̄t+1(NC)+λpt(C|NC,W )R̄t+1(C)
− (r̄t(C,W )+λpt(C|C,W )R̄t+1(C)+λpt(M |C,W )R̄t+1(M))

=1+λ(1− dt)(1−wt)R̄t+1(NC)+λ(1− dt)wtR̄t+1(C)
− (1+λ(1− dt)(1− e)R̄t+1(C)+λ(1− dt)eR̄t+1(M))

≥1+λ(1− dt)(1−wt)R̄t+1(NC)+λ(1− dt)wtR̄t+1(C)
− (1+λ(1− dt)R̄t+1(C))

=λ(1− dt)(1−wt)R̄t+1(NC)−λ(1− dt)(1−wt)R̄t+1(C)
=λ(1− dt)(1−wt)(R̄t+1(NC)− R̄t+1(C)), (9)

where the inequality holds by dropping a non-negative term, λ(1 − dt)e(R̄t+1(C) − R̄t+1(M)), based on
Lemma 1. Expanding (9) for t+1, · · · ,∞, we have

R̄t(NC)− R̄t(C)≥

∞∏

j=1

λ(1− dt−1+j)(1−wt−1+j)≥ 0,

which implies R̄t(NC)≥ R̄t(C), ∀t. �

Lemma 2 means that patients in state NC have expected QALYs no less than those in state C given
a∗t (πt) =W, ∀t. In other words the expected discounted future QALYs are higher for a patient without cancer
than for a patient with cancer in the absence of screening.

Lemma 3. R̄t(NC)≥ R̄t(T ) ∀t.
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Proof. From Assumption 1, we have

wt ≤
R̄t+1(NC)− R̄t+1(M)

R̄t+1(NC)− R̄t+1(C)
b⇒b(R̄t+1(NC)− R̄t+1(M))≥wt(R̄t+1(NC)− R̄t+1(C))

⇒(b−wt)R̄t+1(NC)+wtR̄t+1(C)− bR̄t+1(M)≥ 0 (by Lemma 2). (10)

From (5) we have

R̄t(NC)− R̄t(T ) =r̄t(NC,W )+λpt(NC|NC,W )R̄t+1(NC)+λpt(C|NC,W )R̄t+1(C)
− (r̄t(T )+λpt(T |T )R̄t+1(T )+λpt(M |T )R̄t+1(M))

=1+λ(1− dt)(1−wt)R̄t+1(NC)+λ(1− dt)wtR̄t+1(C)
− (1− ǫ+λ(1− dt)(1− b)R̄t+1(T )+λ(1− dt)bR̄t+1(M))

=ǫ+λ(1− dt)(1− b)(R̄t+1(NC)− R̄t+1(T ))
+λ(1− dt)((b−wt)R̄t+1(NC)+wtR̄t+1(C)− bR̄t+1(M))

≥ǫ+λ(1− dt)(1− b)(R̄t+1(NC)− R̄t+1(T )), (11)

where the inequality results from dropping the nonnegative term in (10). Using (11) for t+1, · · · ,∞, we have

R̄t(NC)− R̄t(T )≥ ǫ+
∞∑

i=1

ǫ
i∏

j=1

λ(1− dt−1+j)(1− b)≥ 0,

which implies R̄t(NC)≥ R̄t(T ), ∀t. �

Lemma 3 states that the expected discounted future QALYs for a patient in state NC is not less than a
patient in state T in the absence of screening.

Lemma 4. R̄t(T )− R̄t(M)≥ R̄t+1(T )− R̄t+1(M), ∀t

Proof. From (5) we have

R̄t(T )− R̄t(M)
=r̄t(T )+λpt(T |T )R̄t+1(T )+λpt(M |T )R̄t+1(M)− r̄t(M)−λpt(M |M)R̄t+1(M)
=γ− ǫ+λ(1− dt)((1− b)R̄t+1(T )+ bR̄t+1(M)− (1− zt)R̄t+1(M))
=γ− ǫ+λ(1− dt)(1− b)(R̄t+1(T )− R̄t+1(M))+λ(1− dt)ztR̄t+1(M). (12)

Iteratively expanding (12) for t, · · · ,∞, we have

R̄t(T )− R̄t(M) = γ− ǫ+(γ− ǫ)
∞∑
i=1

λi(1− b)i
i∏

j=1

(1− dt−1+j)+
∞∑
i=1

λi(1− b)i−1R̄t+i(M)
i∏

j=1

zt−1+j(1− dt−1+j).

(13)
By Assumptions 2 and 3 we have (1− dt) and zt are nonincreasing in t. Because the expected QALYs of
metastatic prostate cancer patients, R̄t(M), is also nonincreasing in age t, the right hand side of (13) is
nonincreasing in t. It implies the left hand side of (13) is also nonincreasing in t, i.e., R̄t(T ) − R̄t(M) ≥
R̄t+1(T )− R̄t+1(M), ∀t. �

Lemma 4 states that R̄t(s) is subadditive on t × S for s ∈ {T,M}, ∀t. Clinically it implies that the
incremental benefit of prostate cancer treatment is larger for younger patients.

Lemma 5. If there exists a t̄ such that a∗t̄ (πt̄(C) = 1) =W then a∗t (πt(C) = 1) =W for all t > t̄.

Proof. This is proved by contradiction. Given a∗t̄ (πt̄(C) = 1) =W , we assume that there exists a t̂ > t̄ such
that a∗

t̂
(πt̂(C) = 1) =B, i.e.,

vt̂(πt̂(C) = 1) =Rt̂(πt̂(C) = 1). (14)

Therefore,

vt̂−1(πt̂−1(C) = 1,W )−Rt̂−1(πt̂−1(C) = 1)
=rt̂−1(C,W )+λpt̂−1(C|C,W )vt̂(πt̂(C) = 1)+λpt̂−1(M |C,W )R̄t̂(M)
− rt̂−1(C,B)−λpt̂−1(C|C,B)R̄t̂(C)−λpt̂−1(T |C,B)R̄t̂(T )−λpt̂−1(M |C,B)R̄t̂(M)

=rt̂−1(C,W )+λpt̂−1(C|C,W )Rt̂(πt̂(C) = 1)+λpt̂−1(M |C,W )R̄t̂(M)
− rt̂−1(C,B)−λpt̂−1(C|C,B)R̄t̂(C)−λpt̂−1(T |C,B)R̄t̂(T )−λpt̂−1(M |C,B)R̄t̂(M)

=rt̂−1(C,W )+λpt̂−1(C|C,W )(−µ+(1− f)R̄t̂(C)+ fR̄t̂(T ))+λpt̂−1(M |C,W )R̄t̂(M)
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− rt̂−1(C,B)−λpt̂−1(C|C,B)R̄t̂(C)−λpt̂−1(T |C,B)R̄t̂(T )−λpt̂−1(M |C,B)R̄t̂(M)
=1− (1− dt̂−1)(1− e)µ+λ(1− f)(1− e)(1− dt̂−1)R̄t̂(C)+λf(1− dt̂−1)(1− e)R̄t̂(T )+λe(1− dt̂−1)R̄t̂(M)
− 1+µ+ fǫ−λ(1− f)(1− e)(1− dt̂−1)R̄t̂(C)−λf(1− b)(1− dt̂−1)R̄t̂(T )−λ(1− dt̂−1)(fb+ e(1− f))R̄t̂(M)

=µ+ fǫ− (1− dt̂−1)(1− e)µ− f(e− b)(1− dt̂−1)(R̄t̂(T )− R̄t̂(M))
≤µ+ fǫ− (1− dt̂)(1− e)µ− f(e− b)(1− dt̂)(R̄t̂+1(T )− R̄t̂+1(M))
=rt̂(C,W )+λpt̂(C|C,W )Rt̂+1(πt̂(C) = 1)+λpt̂(M |C,W )R̄t̂+1(M)
− rt̂(C,B)−λpt̂(C|C,B)R̄t̂+1(C)−λpt̂(T |C,B)R̄t̂+1(T )−λpt̂(M |C,B)R̄t̂+1(M)

≤rt̂(C,W )+λpt̂(C|C,W )vt̂+1(πt̂+1(C) = 1)+λpt̂(M |C,W )R̄t̂+1(M)
− rt̂(C,B)−λpt̂(C|C,B)R̄t̂+1(C)−λpt̂(T |C,B)R̄t̂+1(T )−λpt̂(M |C,B)R̄t̂+1(M)

=vt̂(πt̂(C) = 1,W )−Rt̂(πt̂(C) = 1)
≤0, (15)

where the second equality follows from (14), the third equality follows from (4), the fourth equality follows
from the definition of transition probabilities and rewards in Appendix A, the first inequality follows from
Assumption 2 and Lemma 4, the sixth equality follows reversely from the same deduction of the fifth, fourth,
and third equalities, the last inequality follows from (14). (15) implies a∗

t̂−1
(πt̂−1(C) = 1) =B. Furthermore,

by iteratively applying the same deduction in (15) we have a∗t (πt(C) = 1) =B, ∀t < t̂, which contradicts the
given condition, a∗t̄ (πt̄(C) = 1) =W and t̄ < t̂. Therefore a∗t (πt(C) = 1) =W for all t > t̄. �

Lemma 5 means that if it is not optimal to biopsy a patient known to have prostate cancer at a given
age, then it is not optimal to treat the patient in the future. In other words, patients who are detected with
non-metastatic prostate cancer are treated immediately or not at all. Alternatively, this can be interpreted
as follows. Patients who are not treated upon detection of cancer leave the screening process.

Lemma 6. Rt(πt) is nonincreasing in πt(C) for any t.

Proof. Rt(πt) denotes the cumulative reward for πt given a∗t (πt) = B. From (4) it follows that Rt(πt) is
nonincreasing in πt(C) if R̄t(NC)≥ (1− f)R̄t(C)+ fR̄t(T ), which follows from Lemmas 2 and 3. �

Theorem 1. Under Assumptions 1, 2, and 3, the optimal biopsy referral policy is of control-limit type

with π∗t (C) such that

a∗t (πt) =

{
W, if πt(C)≤ π∗t (C)
B, if πt(C)>π∗t (C).

Proof. This theorem can be categorized and proved by considering three different cases, which are mutually
exclusive and collectively exhaustive:
Case 1 (a∗t (πt(C) = 1) =B): By the condition of this case, vt(πt(C) = 1,W )<Rt(πt(C) = 1). From Lemma 6,
Rt(πt(C)) is linear decreasing in πt(C) and vt(πt(C),W ) is convex decreasing in πt(C) (Smallwood and Sondik
1973, Sondik 1978 proved this for general PODMP maximization problem). It follows that vt(πt(C),W )
and Rt(πt(C)) have at most one intersection of πt(C), which implies a∗t (πt) = W, if πt(C) ≤ π∗t (C) and
a∗t (πt) =B, if πt(C)>π∗t (C), where π∗t (C) is the intersection.
Case 2 (a∗t (πt(C) = 1) 6=B and R̄t(T )< R̄t(C)): From (4) and (6), it is straightforward to show R̄t(πt(C))>
Rt(πt(C)), ∀πt(C). And from (3) we have vt(πt(C)) ≥ R̄t(πt(C)) > Rt(πt(C)), i.e., a∗t (πt) 6= B, ∀πt(C). It
can be written as a∗t (πt) =W, if πt(C)≤ π∗t (C) and a∗t (πt) =B, if πt(C)>π∗t (C), where π∗t (C) = 1.
Case 3 (a∗t (πt(C) = 1) 6=B and R̄t(T )≥ R̄t(C)): From (4), we have

dRt(πt(C))

dπt(C)
=−R̄t(NC)+ (1− f)R̄t(C)+ fR̄t(T ). (16)

From (6), we have
dR̄t(πt(C))

dπt(C)
=−R̄t(NC)+ R̄t(C). (17)

From (16), (17), and R̄t(T )≥ R̄t(C), one of the assumptions of Case 3, we have

dR̄t(πt(C))

dπt(C)
≤

dRt(πt(C))

dπt(C)
. (18)
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Given that pt(NC|C,W ) = pt(NC|C,B) = 0 and πt(C) = 1, it follows from (2) that πt+1(C) = 1. Furthermore
πt̄(C) = 1 implies πt(C) = 1 for all t≥ t̄. By Lemma 5 we have vt(πt(C) = 1) = R̄t(πt(C) = 1); along with the
piecewise convex property of vt(πt(C)), and the fact that vt(πt(C))≥ R̄t(πt(C)), ∀πt(C)∈ [0,1], we have

dvt(πt(C))

dπt(C)
|πt(C)=1 ≤

dR̄t(πt(C))

dπt(C)
.

Otherwise there exits a δ→ 0+ such that vt(πt(C) = 1− δ)< R̄t(πt(C) = 1− δ), which contradicts with the
fact that vt(πt(C))≥ R̄t(πt(C)), ∀πt(C)∈ [0,1]. Then from (18), we have

dvt(πt(C))

dπt(C)
|πt(C)=1 ≤

dRt(πt(C))

dπt(C)
,

then from the piecewise convexity of vt(πt(C)), we have

dvt(πt(C))

dπt(C)
≤

dRt(πt(C))

dπt(C)
, ∀πt(C). (19)

From (19) and a∗t (πt(C) = 1) 6=B, one of the assumptions of Case 3, we have a∗t (πt(C)) =W for all πt(C),
which implies a∗t (πt) =W, if πt(C)≤ π∗t (C) and a∗t (πt) =B, if πt(C)>π∗t (C), where π∗t (C) = 1. �

Theorem 2. Under Assumptions 2, and 3, there exists a finite age, N , at which it is optimal to discontinue

biopsy referral if and only if the following condition is satisfied:

R̄N(T )− R̄N(C)≤ µ/f.

Proof. We prove the necessity and sufficiency separately in the following two cases.
Case 1 (Necessity of µ/f ≥ R̄N(T )−R̄N(C)): Since N is a stopping time for biopsy referral, a∗t (πt) =W, ∀πt ∈
Π, ∀t ≥ N . Therefore vN(πN(C) = 1) = R̄N(πt(C) = 1) ≥ RN(πt(C) = 1). Then by (4) and (6) we have
R̄N(C)≥−µ+(1− f)R̄N(C)+ fR̄N(T ). Therefore µ/f ≥ R̄N(T )− R̄N(C).
Case 2 (Sufficiency of µ/f ≥ R̄N(T )− R̄N(C)): µ

f
≥ R̄N(T )− R̄N(C) implies R̄N(C)≥−µ+(1− f)R̄N(C)+

fR̄N(T ). By (4) and (6) we have R̄N(πN(C) = 1)≥RN(πN(C) = 1) , i.e., a∗N(πN(C) = 1) =W . By Lemma 5

a∗t (πt(C) = 1) =W, ∀t≥N,

and by Theorem 1 we have
a∗t (πt) =W, ∀πt ∈Π, ∀t≥N.

Therefore N is a stopping time for biopsy referral. �
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