Optimization of Surgery Delivery Systems

Brian Denton
Edward P. Fitts Department of Industrial & Systems Engineering
North Carolina State University
March 23, 2009
Collaborators

Hari Balasubramanian (University of Massachusetts)
Sakine Batun (University of Pittsburgh)
Bjorn Berg (NCSU)
Todd Huschka (Mayo)
Andrew Miller (University of Bordeaux)
Heidi Nelson (Mayo)
Ahmed Rahman (Mayo)
Andrew Schaefer (University of Pittsburgh)

Supported by National Science Foundation – CMMI 0620573
Summary

- Surgery process and complicating factors
- Stochastic Programming:
 - Problem 1: Single OR scheduling
 - Problem 2: Multi-OR Surgery Allocation
- Simulation Optimization:
 - Problem 3: Bi-criteria scheduling of an Outpatient Procedure Center
- Future research
Surgery Process

- **Patient Intake**: administrative activities, pre-surgery exam, gowning, site prep, anesthetic

- **Surgery**: incision, one or multiple procedures, pathology, closing

- **Recovery**: post anesthesia care unit (PACU), ICU, hospital bed
Outpatient Procedure Center
Outpatient Suite Process Map

INTAKE
- Patient arrives at the hospital lobby
- Patient walks down or taken to the operation room
- Patient notifies the lobby front desk that s/he is here
- Patient may wait to go to the operation room

SURGERY
- Patient is put on the OR bed and waits for the OR team to arrive
- Patient is given IV if needed and monitored
- Surgeon arrives at the OR. Patient gives consent for operation to the surgeon.
- Patient is sedated
- Patient is intubated
- Patient is extubated

RECOVERY
- Patient is discharged
- Patient recovers in the recovery area
- Patient is taken to the recovery area
- Patient may wait to go to the recovery area
Complicating Factors

- Many types of resources to be scheduled: OR team, equipment, materials
- High cost of resources and fixed time to complete activities
- Large number of activities to be coordinated in a highly constrained environment
- Uncertainty in duration of activities
- Many competing criteria
Surgery Duration Uncertainty

Minutes

Hernia
Surgery Duration Uncertainty
Problem 1: Single OR Scheduling
Single OR Scheduling - $S(n)/G(n)/1$

Planned OR Time

x_1 x_2 x_3 x_4 x_5

a_1 a_2 a_3 a_4 a_5

Idling

Waiting

Overtime

Min{ Idling + Waiting + Overtime}
Stochastic Optimization Model

\[
\min \left\{ \sum_{i=1}^{n} C_i^w \cdot E[Z[W_i]] + \sum_{i=1}^{n} C_i^s \cdot E[Z[S_i]] + C_L \cdot E[Z[L]] \right\}
\]

\[
W_i = \max(W_{i-1} + Z_{i-1} - x_{i-1}, 0)
\]

\[
S_i = \max(-W_{i-1} - Z_{i-1} + x_{i-1}, 0)
\]

\[
L = \max(W_n + Z_n + \sum x_i - d, 0)
\]
Literature Review – Single Server

- **Queuing Analysis:**
 - Mercer (1960, 1973)
 - Jansson (1966)
 - Brahimi and Worthington (1991)

- **Heuristics:**
 - White and Pike (1964)
 - Soriano (1966)
 - Ho and Lau (1992)

- **Optimization:**
 - Weiss (1990) – 2 surgery news vendor model
Stochastic Linear Program

\[
\min \{ E_Z \left[\sum_{i=2}^{n} c_i^w w_i + \sum_{i=2}^{n} c_s^s s_i + c^L l \right] \}
\]

s.t.

\[
\begin{align*}
 w_2 & \quad - s_2 \\
 - w_2 + w_3 & \quad - s_3 \\
 - w_n & \quad - s_n + l - g = Z_n - d + \sum_{j=1}^{n-1} x_i \\
\end{align*}
\]

\[x_i \geq 0, w_i \geq 0, s_i \geq 0, i = 1, \ldots, n, \quad l, g \geq 0\]
Two Stage Recourse Problem

Initial Decision (x) \rightarrow Uncertainty Resolved \rightarrow Recourse (y)

$$\min\{Q(x) = E_Z[Q(x, Z)]\}$$

$$Q(x) = \sum_{k=1}^{K} p^k Q(x, Z^k)$$

$$Q(x, Z^k) = \min\{c \cdot y^k \mid T x + W y^k = h^k, y^k \geq 0\}$$
Example

• Comparison of surgery allocations for n=3, 5, 7 with i.i.d. distributions with U(1,2):
Surgical Suite Decisions

- Number of cases to schedule
- Number of ORs and staff to activate each day
- Surgery-to-OR assignment decisions
- Scheduling of staff and patients in intake, surgery, and recovery
- How to design the suite (intake rooms, recovery rooms, ORs)
- Selection of equipment resources (surgical kits, diagnostic equipment)
Problem 2: Multi-OR Surgery Allocation
Multi-Operating Room Scheduling

Decisions:
- How many operating rooms (ORs) to open?
- Which OR to schedule each surgery block in?

Performance Measures:
- Cost of operating rooms opened
- Overtime costs for operating rooms
Extensible Bin Packing

\[x_j = \begin{cases}
1 & \text{if OR } j \text{ open} \\
0 & \text{if OR } j \text{ closed}
\end{cases} \]

\[y_{ij} = \begin{cases}
1 & \text{if Surg.Block } y \text{ i assigned to OR } j \\
0 & \text{Otherwise}
\end{cases} \]

\[Z = \min \left\{ \sum_{j=1}^{m} c^f x_j + c^o o_j \right\} \]

s.t. \[y_{ij} \leq x_j \quad \forall (i, j) \]

\[\sum_{j=1}^{m} y_{ij} = 1 \quad \forall (i) \]

\[\sum_{i=1}^{n} z_i y_{ij} - o_j \leq d_j x_j \quad \forall (i, j) \]

\[y_{ij}, x_j \in \{0,1\}, \quad o_j \geq 0 \]
Symmetry

- $m!$ optimal solutions:

- Anti-symmetry constraints:

\begin{align*}
 x_1 &\geq x_2 \\
 x_2 &\geq x_3 \\
 &\vdots \\
 x_m &\geq x_{m-1}
\end{align*}

\begin{align*}
 y_{11} &= 1 \\
 y_{21} + y_{22} &= 1 \\
 &\vdots \\
 \sum_{j=1}^{m} y_{mj} &= 1
\end{align*}
Two-Stage Stochastic MIP

\[Q(\mathbf{x}) = \min \{ \sum_{j=1}^{m} c^f x_j + c^p E_\omega [o_j(\omega)] \} \]

s.t. \[y_{ij} \leq x_j \quad \forall (i, j) \]

\[\sum_{j=1}^{m} y_{ij} = 1 \quad \forall (i) \]

\[\sum_{i=1}^{n} Z_i(\omega) y_{ij} - o_j(\omega) \leq d_j x_j \quad \forall (i, j, \omega) \]

\[y_{ij}, x_j \in \{0,1\}, \quad o_j(\omega) \geq 0, \forall \omega \]
Integer L-Shaped Method

Master Problem:

\[Z = \min \left\{ \sum_{j=1}^{m} c^f x_j + \Theta \right\} \]

s.t. \(y_{ij} \leq x_j \quad \forall (i, j) \)

\[\sum_{j=1}^{m} y_{ij} = 1 \quad \forall (i) \]

\(y_{ij}, x_j \in \{0,1\}, \Theta \geq 0 \)

\(\Theta \geq E_\omega [\pi(h-Tx)] \)
Heuristic and Bounds

Dell’Ollmo (1998) – 13/12 approximation algorithm for bin packing with extensible bins

EBP Heuristic:

\[n \leftarrow LB; \]
\[\text{repeat}; \]
\[\quad LPT(n); \]
\[\quad \text{if } (o_j = 0, \forall j) \quad \text{Stop}; \]
\[\quad n \leftarrow n + 1; \]
\[\text{end(\text{repeat});} \]

\[LB = \left[\sum_{i=1}^{n} \bar{z}_i \over T(1 + \frac{c^f}{c^vT}) \right] \]

- Sort surgeries from longest to shortest
- Sequentially apply surgeries to emptiest room
Robust Formulation

\[Z = \min \left\{ \sum_{j=1}^{m} c^f x_j + F(x, y) \right\} \]

s.t. \[y_{ij} \leq x_j \quad \forall (i, j) \]

\[\sum_{j=1}^{m} y_{ij} = 1 \quad \forall (i) \]

\[y_{ij}, x_j \in \{0, 1\} \geq 0 \]

\[F(x, y) = \begin{cases}
\max_{\delta} \left\{ \sum_{j=1}^{m} \eta_j \right\} \\
\text{s.t.} \quad \eta_j = c^v \max\{0, \sum_{i:y_{ij}=1} \delta_{ij} y_{ij} - T_j x_j\}, \text{ } \forall j \\
\sum_{(i,j):y_{ij}=1} \frac{\delta_{ij} - \bar{z}_i}{\bar{z}_i - \bar{z}_i} y_{ij} \leq \tau \\
\bar{z}_i \leq \delta_{ij} \leq \bar{z}_i, \forall (i, j) : y_{ij} = 1
\end{cases} \]
<table>
<thead>
<tr>
<th>Instance</th>
<th>MV_IP</th>
<th>LPT_Heu</th>
<th>Tau=2</th>
<th>Tau=4</th>
<th>Tau=6</th>
<th>MV_IP</th>
<th>LPT_Heu</th>
<th>Tau=2</th>
<th>Tau=4</th>
<th>Tau=6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.808</td>
<td>0.806</td>
<td>0.892</td>
<td>0.906</td>
<td>0.933</td>
<td>0.999</td>
<td>0.998</td>
<td>0.880</td>
<td>0.948</td>
<td>0.948</td>
</tr>
<tr>
<td>2</td>
<td>0.953</td>
<td>0.966</td>
<td>0.898</td>
<td>0.896</td>
<td>0.970</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
<td>0.980</td>
</tr>
<tr>
<td>3</td>
<td>0.854</td>
<td>0.852</td>
<td>0.936</td>
<td>0.937</td>
<td>0.970</td>
<td>0.999</td>
<td>0.999</td>
<td>0.929</td>
<td>0.952</td>
<td>0.944</td>
</tr>
<tr>
<td>4</td>
<td>0.925</td>
<td>0.972</td>
<td>0.911</td>
<td>0.971</td>
<td>0.917</td>
<td>0.999</td>
<td>0.998</td>
<td>0.930</td>
<td>0.930</td>
<td>0.929</td>
</tr>
<tr>
<td>5</td>
<td>0.896</td>
<td>0.946</td>
<td>0.831</td>
<td>0.916</td>
<td>0.892</td>
<td>0.990</td>
<td>0.996</td>
<td>0.932</td>
<td>0.938</td>
<td>0.924</td>
</tr>
<tr>
<td>6</td>
<td>0.862</td>
<td>0.853</td>
<td>0.923</td>
<td>0.931</td>
<td>0.938</td>
<td>0.989</td>
<td>0.990</td>
<td>0.886</td>
<td>0.881</td>
<td>0.881</td>
</tr>
<tr>
<td>7</td>
<td>0.930</td>
<td>0.936</td>
<td>0.810</td>
<td>0.930</td>
<td>0.817</td>
<td>0.973</td>
<td>0.993</td>
<td>0.844</td>
<td>0.974</td>
<td>0.927</td>
</tr>
<tr>
<td>8</td>
<td>0.888</td>
<td>0.966</td>
<td>0.876</td>
<td>0.903</td>
<td>0.904</td>
<td>0.966</td>
<td>0.966</td>
<td>0.966</td>
<td>0.987</td>
<td>0.939</td>
</tr>
<tr>
<td>9</td>
<td>0.962</td>
<td>0.966</td>
<td>0.964</td>
<td>0.969</td>
<td>0.964</td>
<td>0.975</td>
<td>0.993</td>
<td>0.847</td>
<td>0.960</td>
<td>0.957</td>
</tr>
<tr>
<td>10</td>
<td>0.860</td>
<td>0.924</td>
<td>0.910</td>
<td>0.893</td>
<td>0.918</td>
<td>0.997</td>
<td>0.996</td>
<td>0.900</td>
<td>0.901</td>
<td>0.903</td>
</tr>
<tr>
<td>average</td>
<td>0.894</td>
<td>0.919</td>
<td>0.895</td>
<td>0.925</td>
<td>0.922</td>
<td>0.988</td>
<td>0.993</td>
<td>0.916</td>
<td>0.951</td>
<td>0.933</td>
</tr>
<tr>
<td>stdev</td>
<td>0.046</td>
<td>0.057</td>
<td>0.047</td>
<td>0.028</td>
<td>0.046</td>
<td>0.013</td>
<td>0.010</td>
<td>0.059</td>
<td>0.045</td>
<td>0.028</td>
</tr>
</tbody>
</table>

15 surgery instances
Variable Cost = 0.033 Variable Cost = 0.0083

Robust IP Robust IP

```
General Insights

• The fast LPT based heuristic works (fairly) well on a large number of instances
  – LPT works very well when overtime costs are low
  – LPT is better (and easier) than solving MV problem in most cases
• Robust IP is better than LPT when overtime costs are high
Current Research: Share ORs

Surgeon 1
- 1
- 2
- 3
- 4
- 5

Surgeon 2
- 1
- 2
- 3
- 4

Surgeon 3
- 1
- 2

OR 1

OR 2

Surgeon Turnover Time

Surgeon Idle Time

Overtime

OR Turnover Time

Surgeon Turnover Time
Problem 3: Patient Arrival Scheduling
Endoscopy Suite

Patient Waiting Time

1st Patient Arrival

Length of Day

nth Patient Completion

Preoperative Waiting Area

Operating Rooms

Recovery Area

Patient Check-in Waiting Area

Intake Area

Patient Arrivals

Schedule

Patient Discharge
Intake, Surgery, and Recovery
Simulation-optimization

- **Decision variables**: scheduled start times to be assigned to $n$ patients each day
- **Goal**: Generate the set of non-dominated schedules to understand tradeoffs between waiting and length of day
- Schedules generated using a genetic algorithm (GA)
- Non-dominated sorting used to identify the Pareto set and feedback into GA
Pareto Set

- The non-dominated sorting genetic algorithm (NSGA-II) of Deb et al. (2000) is used in the simulation optimization.
Selection Procedure

• Sequential two stage indifference zone ranking and selection procedure of Rinott (1978) is used to compute the number of samples necessary to determine whether a solution $i$ “dominates” $j$

• Solution $i$ “dominates” $j$ if:

$$E[W_i] < E[W_j] \quad \text{and} \quad E[L_i] < E[L_j]$$
Genetic Algorithm

- Main features of the GA:
  - Randomly generated initial population of schedules
  - Selection based on 1) ranks and 2) crowding distance
  - Single point crossover:
    \[
    \begin{align*}
    z_1 & \quad z_2 & \quad z_3 & \ldots & \quad z_n \\
    y_1 & \quad y_2 & \quad y_3 & \ldots & \quad y_n
    \end{align*}
    \]
    \[
    \begin{align*}
    z_1 & \quad z_2 & \quad - & \quad y_3 & \ldots & \quad y_n \\
    y_1 & \quad y_2 & \quad - & \quad z_3 & \ldots & \quad z_n
    \end{align*}
    \]
  - Mutation
Example

Solutions in Criteria Space

[Graph showing the relationship between session length and waiting time with two schedules marked: GA and SA schedule]
Current and Future Research

• Investigating new stochastic programming and robust optimization formulations and methods
• Dynamic (online) scheduling problems
• Surgical suite design and re-configuration
• Real time control on the day of surgery
Questions?