Optimization of Health Care Delivery Systems

Brian Denton
Edward P. Fitts Department of Industrial & Systems Engineering
NC State University, Raleigh, NC
DN 370
Web: http://www.ise.ncsu.edu/bdenton/

October 30, 2009
Summary

- **Health Care Operations:**
 - Planning and scheduling of appointment-based service systems
 - Stochastic Programming and Robust Optimization

- **Medical Decision Making:**
 - Screening and treatment decisions for chronic diseases
 - Markov Decision Processes (MDPs) and Partially observable MDPs
Appointment-Based Service Systems
Collaborators

Ayca Erdogan (NC State University)
Bjorn Berg (NC State University)
Lindsay Moomaw (NC State University)
Todd Huschka (Mayo)
Heidi Nelson (Mayo)
Andrew Miller (University of Bordeaux)
Hari Balasubramanian (University of Massachusetts)
Andrew Schaefer (University of Pittsburgh)
Sakine Batun (University of Pittsburgh)
John Fowler (Arizona State University)
Serhat Gul (Arizona State University)

Supported by National Science Foundation – DMI 0620573
Summary

- Optimization models for appointment based stochastic service systems
 - Single server scheduling
 - Multiple server scheduling
 - Dynamic scheduling
 - Bi-criteria scheduling
 - Scheduled service networks
Surgery

- **Patient Intake:** administrative activities, pre-surgery exam, gowning, site prep, anesthetic

- **Surgery:** incision, one or multiple procedures, pathology, closing

- **Recovery:** post-anesthesia care unit (PACU), ICU, hospital bed
Complicating Factors

- Multiple expensive resources
- Large number of activities to be completed in a fixed period of time
- Uncertainty in duration of activities
- Many competing criteria
Outpatient Procedure Center
Single Server Scheduling
Single OR Scheduling ($S(n)/G(n)/1$)

\[\min \{ \text{Idling} + \text{Waiting} + \text{Overtime} \} \]
Stochastic Optimization Model

\[
\min \left\{ \sum_{i=1}^{n} c_i^w E_Z[w_i] + \sum_{i=1}^{n} c_i^s E_Z[s_i] + c^L E_Z[l] \right\}
\]

\[
\begin{align*}
 w_i &= \max(w_{i-1} + Z_{i-1} - x_{i-1}, 0), \quad i = 1, \ldots, n - 1 \\
 s_i &= \max(-w_{i-1} - Z_{i-1} + x_{i-1}, 0), \quad i = 1, \ldots, n - 1 \\
 l &= \max(w_n + Z_n + \sum_{i=1}^{n-1} x_i - d, 0)
\end{align*}
\]
Stochastic Linear Program

\[\min \{E_Z[\sum_{i=2}^{n} c_i^w w_i + \sum_{i=2}^{n} c^s s_i + c^L l]\} \]

s.t. \[w_2 - s_2 = Z_1 - x_1 \]
\[- w_2 + w_3 - s_3 = Z_2 - x_2 \]
\[- w_n - s_n + l - g = Z_n - d + \sum_{j=1}^{n-1} x_i \]
\[x_i \geq 0, w_i \geq 0, s_i \geq 0, i = 1, \ldots, n, \quad l, g \geq 0 \]
Two Stage Recourse Problem

Initial Decision (x) \rightarrow Uncertainty Resolved (Z) \rightarrow Recourse (y)

$$\min \{Q(x) = E_Z[Q(x,Z)]\}$$

$$Q(x,Z^k) = \min \{c \cdot y^k \mid T x + W y^k = Z^k, y^k \geq 0\}$$
Example

- Schedule for $n=7$ with i.i.d. distributions with $U(1,2)$:

\[X_i \]

\[\mu = 1.5 \]

Multi-OR Surgery Allocation
Outpatient Procedure Center
Multi-OR Room Scheduling

Performance Measures:
- Cost of opening ORs
- Overtime costs

Decisions:
- How many ORs to open?
- Which OR to schedule each surgery block?
Extensible Bin Packing

\[x_j = \begin{cases}
1 & \text{if OR } j \text{ open} \\
0 & \text{if OR } j \text{ closed}
\end{cases} \]

\[y_{ij} = \begin{cases}
1 & \text{if Surgery } i \text{ assigned to OR } j \\
0 & \text{Otherwise}
\end{cases} \]

\[Z = \min \{ \sum_{j=1}^{m} c^f x_j + c^v o_j \} \]

s.t. \[y_{ij} \leq x_j \quad \forall (i, j) \]

\[\sum_{j=1}^{m} y_{ij} = 1 \quad \forall (i) \]

\[\sum_{i=1}^{n} b_i y_{ij} - o_j \leq d_j x_j \quad \forall (i, j) \]

\[y_{ij}, x_j \in \{0,1\}, \quad o_j \geq 0 \]
Two-Stage Stochastic MIP

\[Q(\mathbf{x}) = \min \left\{ \sum_{j=1}^{m} c^f x_j + c^v E_\omega [o_j(\omega)] \right\} \]

s.t. \[y_{ij} \leq x_j \quad \forall (i, j) \]

\[\sum_{j=1}^{m} y_{ij} = 1 \quad \forall (i) \]

\[\sum_{i=1}^{n} b_i(\omega) y_{ij} - o_j(\omega) \leq d_j x_j \quad \forall (i, j, \omega) \]

\[y_{ij}, x_j \in \{0,1\}, \quad o_j(\omega) \geq 0, \forall \omega \]
General Insights

- New upper and lower bounds on the extensible bin-packing problem
- Valid inequalities to reduce the impact of symmetry
- Decomposition based solution methods
- New Robust MIP formulation

Other Research Directions
Dynamic Appointment Scheduling

- Patients request appointments stochastically
- Appointment decisions are made one at a time
- Multistage stochastic linear program

POD Scheduling

Chronic Disease Screening and Treatment
Collaborators

Jennifer Mason, NC State University
Daniel Underwood
Jingyu Zhang, NC State University
Yuan Zhang, NC State University
Murat Kurt, University of Pittsburgh
Darin England, Ingenix Inc.
Nilay Shah, Mayo Clinic
Steven Smith, Mayo Clinic
Brant Inman, Duke
Michael Pignone, UNC Chapel Hill
Mathew Nielson, UNC Chapel Hill

Supported by the Agency for Health Care Research and Quality (R21HS017628) and the National Science Foundation (CMMI-0844511)
Summary

- Disease screening under imperfect information
 - Biopsy referral decisions
 - National screening policies

- Optimal timing of medical treatment decisions
 - Treatment optimization
 - Adherence control
Disease Test Beds

- **Type 2 Diabetes:**
 - Mayo Clinic DEMS
 - Ingenix Inc.

- **Prostate Cancer:**
 - Olmsted county medical record
 - Mayo Clinic radical prostatectomy database

- **Bladder cancer**
 - UNC Medical Record
 - SEER
Diabetes

- There are more than 23 million people in the U.S. who have diabetes
 - 8% of the U.S. population
 - 90% have type 2 diabetes

- Two out of three people with diabetes will die from either stroke or coronary heart disease (CHD)
Cost of Statins

- More than $20 billion dollars are spent annually in the U.S. alone
- Side effects including liver failure, muscle pain, dizziness, nausea, headaches...
- Currently there is broad disagreement about the best policy for statin treatment
CHD & Stroke Risks

• What other factors affect CHD and Stroke risk?
 • Age
 • Gender
 • Ethnicity
 • Smoking
 • Blood Pressure
 • Hemoglobin A1c
 • Exercise & Diet
 • Body Mass Index

• In recent years several risk models have been developed to calculate the risk of CHD & Stroke:
 • UKPDS
 • Framingham
 • Archimedes
Markov Decision Process Model

- **Stages:**
 - Time horizon: Ages 40-100
 - Annual decision epochs

- **Decision:**
 - Initiate or delay statin treatment

- **States:**
 - Metabolic: Total cholesterol and HDL (each can be L, M, H, V), Blood pressure, HbA1c
 - Demographic: Gender, Race, BMI, smoking status, medical history
Non-Fatal Events (On Statins)

On Statins

Metabolic States before an event has occurred.

Death
Optimal Treatment Policy

- **Society**
 - Maximize a weighted combination of patient rewards for life years minus costs of treatment and health services

- **Patient**
 - Maximize rewards for quality adjusted life years

- **Third-party Payer**
 - Minimize costs of treatment and health services

Model Formulation

- Decision epochs: \(t \in T = \{1, 2, 3, \ldots, N\} \)
- Health States: \(s_t \in S = \{1, 2, 3, \ldots, L, L + 1\} \)
- Treatment Status: \(m \in \{0, 1\} \)

- Action: \(a_t(s_t) = \begin{cases} I, W & \text{if } m = 0 \\ W & \text{if } m = 1 \end{cases} \)

Optimality Equations:

\[
v_t(s_t, m) = \max \left[r(s_t, m) + \lambda \sum_{s_{t+1}} p(s_t', m' | s_t, m) v_t(s_t', m) \right]
\]

Expected Future Reward

Reward for living to current epoch

Transition probabilities
Example

Optimal Start Times for Males with very high total cholesterol and low HDL.
Numerical Results

Optimal Start Times - Males

TC/HDL

Age

Patient
Society
Third-party Payer
Numerical Results

Optimal Start Times - Females

Age

TC/HDL

- Patient
- Society
- Third-party Payer
Primary Prevention

- Define $\mu_t(s_t)$ to be the patients expected quality adjusted time to first event if treatment is initiated in state S_t
- States: defined by lipid ratio
- Objective: maximize time to first event $\left(r(s_t, m) = 1 - m\sigma \right)$
- Optimality equations:

$$v_t(s_t) = \max \left\{ r(s_t, 0) + \lambda \sum_{s_{t+1}} p(s_{t+1}', 0 \mid s_t, 0) v_t(s_{t+1}'), \mu_t(s_t) \right\}$$
Theoretical Insights

Theorem 1: If the transition probability matrix is IFR then the optimal policy has the control limit property such that for some lipid ratio $z^*_t \in S'$:

$$
\alpha_t(s_t) = \begin{cases}
1 & \text{for } s_t \geq z^*_t \\
0 & \text{for } s_t < z^*_t
\end{cases}
$$

Theorem 2: If the expected benefit loss is nondecreasing in age then the optimal threshold is nonincreasing in age.

Other Research Directions
Treatment Optimization

- Optimal sequencing and timing of treatment options for control of:
 - Cholesterol
 - Blood pressure
 - HbA1c

- Barriers to treatment:
 - Adherence monitoring and control

Prostate Cancer Screening

- Partially observable Markov decision process
- Structural properties of the optimal biopsy referral policy

Future Opportunities

Optimization Under Uncertainty

- Stochastic Prog.
- MDP/POMDP

Health Care Operations

Medical Decision Making
Questions?