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We formulate and solve a new stochastic integer programming model for dynamic sequencing and scheduling of appointments to a
single stochastic server. We assume that service durations and the number of customers to be served on a particular day are uncertain.
Customers are sequenced and scheduled dynamically (online) one at a time as they request appointments. We present a two-stage
stochastic mixed integer program that uses a novel set of non-anticipativity constraints to capture the dynamic multi-stage nature
of appointment requests as well as the sequencing of customers. We describe several ways to improve the computational efficiency
of decomposition methods to solve our model. We also present some theoretical findings based on small problems to help motivate
decision rules for larger problems. Our numerical experiments provide insights into optimal sequencing and scheduling decisions and
the performance of the solution methods we propose.
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1. Introduction

Many service systems provide appointments to customers
in advance of their arrival. However, because service times
are uncertain, the amount of time to allocate between cus-
tomer arrivals is a challenging decision. Short inter-arrival
times can lead to high service system utilization but at the
expense of long customer wait times. Long inter-arrival
times, on the other hand, tend to reduce customer waiting
but at the expense of lower resource utilization. Achieving
a balance between these competing criteria can be chal-
lenging because simple rules, such as longest processing
time first sequencing and setting the mean service time for
customer inter-arrivals, often perform poorly (Denton and
Gupta, 2003; Denton et al., 2007).

When the number of customers to be scheduled is known
in advance, schedules can be designed using stochastic op-
timization models (Denton et al., 2007; Gul et al., 2011) or
through experimentation with simulation models (Ho and
Lau, 1992; Robinson and Chen, 2003) or queuing models
(Soriano, 1966; Mercer, 1973; Sabria and Daganzo, 1989).
However, in many service systems appointment schedul-
ing is complicated by the fact that the exact number of
customers to be scheduled is not known in advance. In-
stead, customers request appointments sequentially over
time, and appointments are quoted online; i.e., sequentially
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at the time of each appointment request. Since rescheduling
of appointments is uncommon in most service industries it
is necessary to make these online scheduling decisions in
such a way that schedules are adaptable to variation in
customer demand.

In health care delivery systems, achieving this balance
is particularly important because of the high cost of re-
sources, including human and physical resources. In this
context uncertainty in demand often arises due to the in-
herently uncertain nature of urgent care. In outpatient clin-
ics, for instance, customers are often classified into groups
such as routine and urgent. Routine patients are scheduled
in advance, often weeks or months in advance. Urgent pa-
tients, on the other hand, are scheduled on much shorter
notice, typically days or hours in advance of the first patient
arrival and may have a higher priority for service. Such pa-
tients are often referred to as add-ons. Furthermore, due
to the nature of urgent patients, the exact number to be
scheduled is not known with certainty. Therefore, routine
appointment scheduling must be done in a way that an-
ticipates the potential future need to schedule additional
urgent patients.

In this article we describe a stochastic integer program-
ming model for dynamic sequencing and scheduling of ap-
pointments to a single stochastic server. The model is a
generalizable representation of the appointment scheduling
process for many kinds of service systems (e.g., consulting
services, visa services, accounting services). Appointment
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1268 Erdogan et al.

requests are received sequentially, one at a time, for a given
future day of service. Requests are probabilistic and there-
fore the exact number of requests that will be received is
not known with certainty. At the time of each appointment
request, the scheduler (e.g., clinical assistant in primary
care clinic or experienced nurse in an outpatient surgery
center) must decide on the appointment time to quote to
the customer. By setting the appointment time for each
customer the scheduler sets both the sequence of arrivals
and the inter-arrival times between customers. In this arti-
cle we study how to simultaneously optimize both of these
decisions when they must be made sequentially with im-
perfect information about the total demand on the system.
The solutions resulting from the model we present can be
used to construct a scheduling template that defines the
appointment time to assign for each customer request. The
objective is to minimize a weighted sum of the expected
cost of direct waiting and waiting until time to appoint-
ment and overtime. Direct waiting is the time spent waiting
beyond the assigned appointment time, whereas waiting
until time to appointment is the time spent waiting from the
start of the day (earliest possible appointment time) and
the appointment time. The latter waiting time is relevant
for customers who have an urgent need for access such as
urgent surgeries that arise on short notice and need to be
incorporated into the daily schedule.

We discuss the special structure of our model and sev-
eral ways to improve the computational efficiency of the
L-shaped method to solve our model. We present some
theoretical findings based on a special case of the problem
and use these to provide some insight into optimal schedul-
ing decisions for larger problems. We present a series of

numerical experiments that provide insights into optimal
sequencing and scheduling decisions as well as the perfor-
mance of the solution methods we propose. Drawing on our
computational experiments we classify problems into those
that are easy to solve and those that are computationally
challenging.

The remainder of this article is organized as follows: In
Section 2 we provide background and literature review on
appointment sequencing and scheduling. In Section 3 we
present a detailed problem definition and model formula-
tion. Section 4 describes structural properties of the model
and solution methodology, and Section 5 presents the ex-
perimental results. Finally, in Section 6 we discuss our main
findings and future research directions.

2. Background and literature review

Since much of the literature is in the context of health
care we use the terms patient and customer interchange-
ably. Most of the previous work on dynamic appointment
scheduling has assumed a fixed First-Come-First-Served
(FCFS) queue discipline. Figure 1 illustrates the evolution
of an online appointment schedule over time for a spe-
cific example in which up to five customers are scheduled.
Figure 1(a) illustrates the FCFS policy in a dynamic
scheduling environment. Figure 1(b) illustrates the more
general case, which we consider in this article, in which
the sequence is not fixed a priori. Note that customers are
scheduled in order of their appointment requests; however,
their appointment times on the day of service do not nec-
essarily follow that order.

Fig. 1. Illustration of the online scheduling problem for scheduling up to five customers. Figure (a) illustrates the case in which the
sequence of appointments is FCFS and (b) illustrates the general case in which the FCFS sequence is relaxed.

D
ow

nl
oa

de
d 

by
 [

] 
at

 1
6:

44
 2

5 
A

ug
us

t 2
01

5 



Online appointment sequencing and scheduling 1269

We study the general online scheduling problem because
there are a number of health care environments in which
this problem arises. Given the dynamic nature of most
scheduling environments, in practice schedulers must con-
sider the relative importance of customers when assigning
appointment times. Since scheduling is done sequentially
and rescheduling is uncommon in most service systems,
sequencing decisions are an important part of setting ap-
pointments. When each sequencing and scheduling deci-
sion is made, the possibility of future uncertain arrivals of
patients, perhaps with varying priority for service, must be
considered.

In the static (off-line) context, scheduling appointments
with multiple patient classes has received recent attention
from several researchers. Previous studies have considered
patient classifications according to characteristics such as
new/returning patients, child/adult patients, or according
to service durations (e.g., high versus low variance). In the
context of surgery scheduling, for example, surgeries are
often classified in two categories: elective and urgent. For
elective cases, surgery may be planned well in advance (e.g.,
months) to be performed on a future date. For non-elective
cases, on the other hand, the surgery is unanticipated. These
cases must be worked in to the existing schedule, either by
using intentionally reserved or otherwise available space in
the schedule or by creating space by canceling previously
scheduled elective cases.

In some health care environments threshold policies are
applied. According to these policies, lower-priority patients
(outpatients) are scheduled until a capacity threshold is
reached. Remaining capacity is reserved for higher-priority
patients that may arrive in the future. For example, Green
et al. (2006) considered appointment scheduling in the con-
text of a diagnostic medical facility in the presence of two
types of demand, inpatients and outpatients, both of which
must be served by the same resources. They formulated a
Markov Decision Process (MDP) model and used it to de-
termine dynamic priority rules for admitting patients. An
alternative strategy, used by some hospitals, is to allocate
separate capacity for emergencies and add-ons. This is com-
mon in the context of surgical practices where one or more
operating rooms (ORs) may be reserved for surgeries that
arise on short notice. Another strategy is to reserve slack
time in the schedule for urgent patients (Gerchak et al.,
1996; Klassen and Rohleder, 2003; Torkki et al., 2006).

Wang (1993) studied a dynamic scheduling problem in
which an additional customer is scheduled after an initial
batch of customers has been scheduled. He used phase-
type distributions to investigate the transient solution of a
Markovian server to determine the optimal start times for
each customer. To find the appointment time of the new
customer, the schedule was divided into intervals accord-
ing to the currently scheduled appointments, and a set of
nonlinear equations was solved for each interval. The place-
ment of the new customer was determined by the interval
that has the minimum objective function value after an

initial schedule had been developed. However, the author
assumed a single additional customer and did not attempt
to find the optimal schedule in light of the possibility of ad-
ditional customer arrivals, which is the problem considered
in this article.

Cayirli et al. (2006) developed a simulation model to de-
termine the sequence and schedule for new and returning
patients. The authors tested several sequencing rules includ-
ing FCFS, alternating between new and returning patients,
sequencing new patients at the beginning, and sequencing
returning patients at the beginning. In addition to these se-
quencing rules, several scheduling rules to determine the ap-
pointment allowances were tested. These rules included al-
locating equal intervals between patients, double-booking
the first two patients (Bailey’s Rule), and scheduling two
patients at a time with equal intervals. They concluded that
sequencing decisions have more impact on the performance
of the system than the appointment scheduling rules. In an-
other study, Cayirli et al. (2008) considered different envi-
ronmental characteristics such as no-show rates, the ratio of
new patients to returning patients, and walk-ins. They con-
cluded that FCFS is not necessarily optimal when there are
multiple patient classes. They found that different sequenc-
ing and scheduling rules should be selected depending on
the environmental characteristics. Unlike previous studies
based on simulation models that compare the performances
of predetermined sequencing and scheduling rules we aim
to find optimal dynamic appointment schedules using a
novel two-stage stochastic integer programming formula-
tion of the multi-stage decision process.

More recently, Zonderland et al. (2010) studied the trade-
off between cancelation of scheduled elective surgeries to
accommodate urgent arrivals and the unused OR time that
is reserved for uncertain urgent surgeries. The authors used
an infinite-horizon MDP to determine the number of slots
to be reserved for urgent arrivals. They found that when the
cost of canceling elective surgeries is higher than the cost of
OR idle time, the optimal policy is to reserve appointment
slots for a certain number of urgent arrivals in advance but
postpone the remaining urgent surgeries. They found that
when the cost of OR idle time is high, the optimal pol-
icy is to cancel elective surgeries to accommodate urgent
surgeries.

A number of studies have considered dynamic scheduling
with the aim of finding the optimal daily scheduling pol-
icy in the presence of no-shows and cancelations (Hassin
and Mendel, 2008; Kolisch and Sickinger, 2008; Muthu-
raman and Lawley, 2008; Robinson and Chen, 2010; Lin
et al., 2011). Liu et al. (2010) also studied dynamic ap-
pointment scheduling, however, with the aim of finding the
optimal future appointment day depending on the no-show
probability of the requesting patient. In these studies, the
patients were classified according to no-show probabilities.
One exception is the work by Kolisch and Sickinger (2008)
that also considered different patient classes including
outpatient, inpatient, and emergency. The service durations
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1270 Erdogan et al.

in the above studies were assumed to be either deterministic
(Kolisch and Sickinger, 2008; Robinson and Chen, 2010)
or exponential (Hassin and Mendel, 2008; Muthuraman
and Lawley, 2008), which is not a limitation in our model
presented in this article.

The studies by Muthuraman and Lawley (2008), Zeng
et al. (2010), and Lin et al. (2011) are most relevant to this
article. In Muthuraman and Lawley (2008), the authors im-
plemented a myopic policy that schedules patients to slots
sequentially as requests are received, until the profit func-
tion of revenue and waiting and overtime costs starts de-
creasing. Later, Zeng et al. (2010) developed heuristics for
the problem defined in Muthuraman and Lawley (2008)
that also considers heterogenous patient types depending
on no-show behavior. In Lin et al. (2011), the authors
developed an MDP to generate the optimal appointment
scheduling of patients to time slots while considering the
dynamic nature of appointment requests (i.e., add-ons).
The solution is divided into two parts: the off-line part
that determines the optimal schedule before appointment
requests start and the online part that retrieves the opti-
mal schedule and implements the scheduling decision as
appointments arrive. The authors used backward induc-
tion to find the optimal solution for small instances and
Approximate Dynamic Programming (ADP) methods that
utilize state aggregation and simulation for larger instances.
They found that a “semi-optimal policy”, which accepts
the patients with high no-show probability until demand
reaches the point at which over-booking becomes necessary
and transfers the additional high no-show probability pa-
tients to later days after overbooking, performs better than
the “myopic policy”, which maximizes the profit function
that rewards the patients served and penalizes overtime and
waiting time.

Our work differs from Lin et al. (2011) in several ways:
first, we do not discretize the appointment scheduling pro-
cess. In addition to waiting time our model also considers
a cost associated with a fixed time (e.g., start of day). This
allows us to consider urgent services (e.g., emergencies)
and reservation of capacity during the day to accommo-
date these uncertain requests. Second, we formulate the
problem as a stochastic integer program and focus on a
method for obtaining optimal solutions or tight optimality
gaps. The ability to compute optimality gaps is one of the
major benefits of our math programming approach (ver-
sus ADP methods, such as those used by Lin et al. (2011),
for which there is very little known about how to compute
error bounds). The model by Lin et al. (2011) also is not
restricted by service time distributions. However, it compu-
tationally relies on numerical integration and is viable only
for certain distributions, such as exponential and gamma
distributions.

Another related study is that of Erdogan and Denton
(2011), which presented two stochastic programming mod-
els for two variants of the appointment scheduling prob-
lem. The first model was a static scheduling problem with

no-shows. The second model was a dynamic appointment
scheduling problem in which the customers are sequentially
allocated to an appointment time as they request appoint-
ments. The appointment times are allocated on an FCFS
basis. In contrast, in this article we relax the assumption
of an FCFS sequence and we consider the total waiting
(direct and time to appointment) cost measured from the
start of the day. These differences lead to a unique dis-
crete and stochastic model that is more realistic for service
systems that serve customers with varying priority (e.g.,
hospital-based surgical practices, urgent care clinics) but
also much more challenging to solve. The dynamic ap-
pointment scheduling problem assuming FCFS sequence
introduced in Erdogan and Denton (2011) was formulated
as a multi-stage stochastic program and solved with the
nested Bender’s decomposition method via decomposing
the problem into several Linear Programs (LPs). The LPs
at each stage had special structures such that a solver was
not required to find the optimal solution. The master LPs
at each iteration were solved using CPLEX or alterna-
tively with an algorithm that exploited the geometry of the
simple two-variable structure, and subproblem LPs were
solved without a solver using dual information. Relaxing
the FCFS assumption, on the other hand, introduced a se-
quencing aspect to the dynamic scheduling problem. This
required the introduction of binary sequencing variables,
transforming the model to a mixed-integer stochastic pro-
gram. Thus, it required fundamentally different solution
techniques such as a branch-and-cut algorithm to solve
the mixed-integer master problems at each stage during
the decomposition as opposed to the methods used in Er-
dogan and Denton (2011). The new problem presented in
this article also inherits the multi-stage structure to cap-
ture the dynamic nature of the problem caused by each
appointment request. However, in order to avoid solving a
mixed-integer program at each iteration and at each stage,
we present a compact re-formulation of the model to repre-
sent a multi-stage problem as a two-stage stochastic Mixed-
Integer Program (MIP), which eliminates the need to use
a nested decomposition method. This allows the L-shaped
method to be used to decompose the problem into an MIP
in the first stage and an LP in the second stage; moreover,
this allows us to exploit the special structure of the problem
in several ways that we describe in Section 4.

3. Model formulation

We begin by presenting a standard model for the static ap-
pointment scheduling problem (Denton and Gupta, 2003).
The static problem as described in the previous section aims
to find the optimal start times for a given number of cus-
tomers, n, to visit a stochastic server. Service times are ran-
dom variables and the objective is to minimize a weighted
sum of expected customer waiting time and expected over-
time with respect to an established session length, d.

D
ow

nl
oa

de
d 

by
 [

] 
at

 1
6:

44
 2

5 
A

ug
us

t 2
01

5 



Online appointment sequencing and scheduling 1271

Commonly considered criteria include customer waiting
time, server idle time, and overtime, which can be written
as follows:

w1(ω) = 0,

wi (ω) = (wi−1(ω)+ Zi−1(ω)− xi−1)+, i = 2, . . . , n,

si (ω) = (−wi−1(ω)− Zi−1(ω)+ xi−1)+, i = 2, . . . , n,

�(ω) = (wn(ω)+ Zn(ω)+
n−1∑
i=1

xi − d)+.

The variable wi (ω) denotes waiting time of customer i , si (ω)
denotes server idle time immediately prior to customer i ’s
arrival, xi denotes the customer allowance (inter-arrival
time between customer i and i + 1), and Zi (ω) denotes
the random service duration for customer i under random
duration scenario ω. (Note that the expression (·)+ indicates
max(·, 0).) The optimization problem can be written as

min
x

{
n∑

i=1

(cw
i Eω[wi (ω)]+ cs Eω[si (ω)])+ c�Eω[�(ω)]

}
,

(1)
where cw, cs , and c� denote the costs of waiting time, idle
time, and overtime, respectively.

In the dynamic scheduling context, appointment deci-
sions are made one at a time as customers request appoint-
ments. Figure 2 depicts a simple case with two customers.
The first customer requests an appointment with probabil-
ity one and the second customer requests with probability
q (with probability 1− q a second customer does not re-
quest an appointment). We assume d = 0; thus, overtime
corresponds to makespan, and Z1 and Z2 are independent
and identically (i.i.d.) distributed service durations. For this
special case, Erdogan and Denton (2011) proved that it
is optimal to schedule customers in FCFS order (as op-
posed to scheduling the second (add-on) customer first re-

ferred to as Add-On-First-Served (AOFS)) when the wait-
ing costs for two customers are also identical. The model
we consider in this article is more general than the model
discussed in Erdogan and Denton (2011). We use it to es-
tablish conditions under which FCFS or AOFS may be
optimal.

We formulate the general online appointment sequencing
and scheduling problem as a stochastic MIP with binary de-
cision variables representing patient sequencing decisions
and continuous decision variables representing inter-arrival
times and appointment times. The appointment schedul-
ing process is as follows. Customers request appointments
for a specific day of service and requests arise probabilis-
tically over time up any time prior to the day of service
until some cutoff time at which the schedule is closed (e.g.,
5 pm the day before the day of service) or a maximum
of n appointments is reached. Customers are quoted their
appointment times online as requests arise over time. The
sequence of appointments may change over time as the ap-
pointment schedule evolves; however, once an appointment
time is quoted for a given customer it cannot be changed.
The sequential nature of this process can be formulated
as a multi-stage stochastic program with stages represent-
ing each customer request. We formulate this multi-stage
problem as a two-stage stochastic MIP with constraints
that enforce non-anticipativity of the sequence of appoint-
ment scheduling decisions. We use the following notation,
where upper case indicates random variables and boldface
indicates vectors.

Model parameters:

n : number of customers to be scheduled
ω : index for service duration scenarios

p j : probability of exactly j customers requesting an
appointment

Fig. 2. Example of the dynamic scheduling problem for scheduling two customers according to FCFS and add-on first served
sequencing rules (w j,i represents waiting time of customer i when there are j customers in the system).

D
ow

nl
oa

de
d 

by
 [

] 
at

 1
6:

44
 2

5 
A

ug
us

t 2
01

5 



1272 Erdogan et al.

Z(ω) : vector of random service durations for n customers
d : session length to complete all customers before

overtime occurs
cw : vector of direct waiting time cost coefficients for n

customers
ca : vector of appointment time (or waiting until time

to appointment) cost coefficients for n customers
c� : cost coefficient for overtime
cs : cost coefficient for idle time

Decision variables:

o j,i,i ′ : binary sequencing variable where o j,i,i ′ = 1 if
customer i immediately precedes i ′ at stage
j , and o j,i,i ′ = 0 otherwise (first-stage decision
variable)

xj,i,i ′ : time allowance for customer i given that i im-
mediately precedes i ′ (appointment inter-arrival
time for customer i and i ′) at stage j (first-stage
decision variable)

a j,i,i ′ : arrival time of customer i ′, given that i immedi-
ately precedes i ′ at stage j (first-stage decision
variable)

w j,i,i ′(ω) : waiting time of customer i ′ given that customer
i immediately precedes i ′ at stage j under dura-
tion scenario ω (second-stage decision variable)

s j,i,i ′(ω) : server idle time between customer i and i ′, given
that i immediately precedes i ′ at stage j un-
der duration scenario ω (second-stage decision
variable)

� j (ω) : overtime at stage j with respect to session length
d under duration scenario ω (second-stage de-
cision variable)

The index j denotes the stage of the decision-making pro-
cess, which is defined by the arrival of customer j ’s ap-
pointment request. The decision variables defined above
are denoted by vectors o, x, a, w, s, which are sequence-
dependent at each stage. Furthermore, the sequence may
change from one stage to the next as customer requests
arrive. This is due to the fact that in a given stage, when a
new customer requests an appointment, the customer may
be scheduled between two previously scheduled customers.
For instance, as depicted in Fig. 1(b), at stage j = 2, two
customers have already requested appointments and the
assigned sequence is 2–1. When the next customer requests
an appointment, at stage j = 3, the new sequence could be
2–3–1 if customer 3 is sequenced between customers 2 and
1. Thus, one of the previously established immediate prece-
dence relationships in the sequence might be broken at a
later stage. The probability of having j customers request
appointments, p j , can be written as follows:

p j = (1− q j+1)
j∏

i=1

qi , for all j = 1, . . . , n − 1,

pn =
n∏

i=1

qi ,

where qi is the probability that customer i requests an
appointment, given that customer i − 1 has requested. In
other words, it is the probability that at least an additional
customer will request an appointment, given that i − 1 cus-
tomers have already requested appointments. Note that we
assume that q1 = 1; i.e., there is always at least one customer
in the system.

In our model formulation, for each stage j , we include
two dummy customers, customer 0 and customer j + 1.
Customer 0 is always at the beginning of the sequence,
and customer j + 1 is always at the end of the sequence.
This simplifies the formulation by ensuring each customer
(except dummy customers) is preceded and followed by
another customer. A valid sequence of appointments at any
stage j is one that begins with the dummy customer 0 and
ends with the dummy customer j + 1. Between successive
stages, the sequence of customers does not change, except
for the possibility that the j th customer will be inserted
between two customers in the previous stage’s sequence or
appear immediately before the dummy customer j + 1.

The problem described above is by nature a multi-stage
decision process, with the customer appointment requests
defining the stages. However, multi-stage stochastic inte-
ger programs are widely regarded as computationally in-
tractable. Therefore, we formulate our model as a two-stage
stochastic program (2-SLP) in which binary (sequencing)
decisions are dependent on the appointment request sce-
nario and appear in the first stage. We use a novel set of
constraints to enforce non-anticipativity of the appoint-
ment sequencing decisions across stages. This formula-
tion has the benefit of a continuous and convex recourse
function in the second stage, which allows for the ap-
plication of the L-shaped method, which we discuss in
Section 4.

The 2-SLP formulation of the on-line appointment se-
quencing and scheduling problem can be written as follows:
(D-ASSP)

min
n∑

j=1

p j

[ j∑
i=1

j∑
i ′=1

ca
i ′a j,i,i ′

]
+ Q(o, x, a), (2)

s.t.
j∑

i ′=1

o j,0,i ′ = 1, ∀ j, (3)

j∑
i ′=1

o j,i ′, j+1 = 1, ∀ j, (4)

j+1∑
i ′=1
i �=i ′

o j,i,i ′ = 1, ∀ j, i = 1, 2, . . . , j, (5)

j∑
i ′=0
i �=i ′

o j,i ′,i = 1, ∀ j, i = 1, 2, . . . , j, (6)
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Online appointment sequencing and scheduling 1273

j+1∑
i ′=0
i �=i ′

j+1∑
i=0

o j,i,i ′ = j + 1, ∀ j, (7)

o j,i, j + o j, j,i ′ ≥ 2(o j−1,i,i ′ − o j,i,i ′), ∀ j, ∀ i, i ′ < j, (8)

xj,i,i ′ ≤ M1o j,i,i ′, ∀ j, i, i ′, (9)

a j,i,i ′ ≤ M1o j,i,i ′, ∀ j, i, i ′, (10)

j+1∑
i ′=1
i �=i ′

xj,i,i ′ =
j+1∑
i ′=1
i �=i ′

a j,i,i ′ −
j+1∑
i ′=0
i �=i ′

a j,i ′,i , ∀ j, i, (11)

j+1∑
i ′=1
i �=i ′

a j,i ′,i =
j∑

i ′=1
i �=i ′

a j−1,i ′,i , ∀ j, i, (12)

xj,i,i ′, a j,i,i ′ ≥ 0, o j,i,i ′ ∈ {0, 1}, ∀ j, i, i ′, (13)

where

Q(o, x, a) = Eω[Q(o, x, a, ω)], (14)

and Q(o, x, a, ω) defines the second-stage scenario
subproblem:

min
n∑

j=1

p j

[ j∑
i=1

j∑
i ′=1

(cw
i ′w j,i,i ′ (ω)+ css j,i,i ′ (ω))+ c�� j (ω)

]
,

(15)

s.t.

w j,i,i ′(ω) ≤ M2(ω)o j,i,i ′, ∀i, i ′, j, ω, (16)

s j,i,i ′(ω) ≤ M3(ω)o j,i,i ′, ∀i, i ′, j, ω, (17)

−
j∑

i ′=1

w j,i ′,i (ω)+
j∑

i ′=1

w j,i,i ′(ω)−
j∑

i ′=1

s j,i,i ′(ω)

= Zi (ω)−
j∑

i ′=1

xj,i,i ′, ∀i, j, ω, (18)

� j (ω) ≥
j∑

i=1

j∑
i ′=1

s j,i,i ′(ω)+
j∑

i=1

Zi (ω)

+
j∑

i ′=1

xj,0,i ′ − d, ∀ j, ω, (19)

w j,i,i ′(ω), s j,i,i ′(ω) ≥ 0, ∀ j, i, i ′, ω, (20)

� j (ω) ≥ 0, ∀ j, ω. (21)

We refer to the above problem as the Dynamic Appoint-
ment Sequencing and Scheduling Problem (D-ASSP). In
our two-stage formulation, the vectors of time allowances,
x, appointment times, a, and binary sequencing variables

o, are first-stage decisions. The random service time du-
rations vector, Z(ω), with support � ∈ 
n, depends on
outcomes indexed by ω ∈ �. Customer waiting time, w(ω)
∈ 
n3

, server idle time s(ω) ∈ 
n3
, and overtime �(ω) ∈ 
n

denote the second-stage (recourse) decisions made after the
first-stage decisions and the observation of random service
duration scenario, ω. Service times for all customers sched-
uled on a particular day are observed simultaneously at the
start of the day. Although this is an approximation of the
true sequential observation process, it results in no inaccu-
racy in the model due to the assumption that customers are
not rescheduled on the day of service.

The first-stage constraints in the above formulation de-
fine feasible appointment schedules with respect to se-
quencing decisions. In the above formulation, constraint
set (3) ensures that dummy customer 0 is always at the be-
ginning of the sequence at each stage. Constraint set (4)
ensures that dummy customer j + 1 is always at the end
of the sequence at stage j . Constraint sets (5) and (6) im-
ply that each (non-dummy) customer is part of a feasible
sequence i.e., each customer comes before another and fol-
lowed by another within a given stage. Constraint set (7)
ensures that j + 1 precedence relationships exist at each
stage j including the precedence relationships with dummy
customers.

Treating x, a, and o as first-stage decisions implies that
they are made with perfect information about the num-
ber of future appointment arrivals. To correct this we add
non-anticipativity constraints (Birge and Louveaux, 1997).
Standard non-anticipativity constraints require that deci-
sions are the same for any decisions that share the same
history of the appointment request process. However, this
typically results in a very large number of constraints.
Instead, we use a problem-specific set of constraints, con-
straint set (8). These constraints require each stage’s se-
quencing decisions are made only based on the information
available at that stage and that they are feasible with respect
to the sequencing decisions made in the earlier stages. We
provide the following proposition to prove the validity of
the D-ASSP formulation.

Proposition 1. A sequence of appointments at stage j =
1, . . . , n is valid if and only if Constraints (3) to (8) are
satisfied.

Proof. See the Appendix. �

Constraints (9) and (10) ensure that corresponding time
allowances, xj,i,i ′ , and appointment times, a j,i,i ′ , may be
non-zero only if customer i precedes i ′ at stage j . M1 is
chosen to be sufficiently large to be an upper bound on the
optimal values of decisions xj,i,i ′ and a j,i,i ′ . Constraint (11)
implies that the allowance for each customer is equal to the
time difference between the appointment time of that cus-
tomer and the appointment time of the following customer
in the sequence. Constraint (12) enforces the appointment
time for a customer to be preserved in the future stages. In
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1274 Erdogan et al.

other words, Constraint (12) ensures that the arrival time
of customer i remains the same at each stage even though
his or her position in the sequence may change.

In the second stage, constraint sets (16) and (17) ensure
that waiting and idling times, w j,i,i ′ and s j,i,i ′ , will be non-
zero only if customer i directly precedes customer i ′ at stage
j . Constraint set (18) determines the sequence-dependent
waiting times for each customer. A customer’s waiting time
depends on the waiting time, allowance, and the service time
of the preceding customer. Similarly, constraint set (19) de-
termines the overtime at each stage j , which depends on the
total idle time between customers and total service dura-
tions of all customers. Note that the expression

∑ j
i ′=1 xj,0,i ′

denotes the time before the first customer’s arrival at stage j
and the expression

∑ j
i=1

∑ j
i ′=1 s j,i,i ′(ω) represents the total

idle time between customers.

4. Problem structure and solution methodology

In this section we first present a special case of the problem
that provides some insight into the tradeoff between the
cost of delaying customers (waiting until time to appoint-
ment) and the stochastic nature of online arrivals. Next, we
discuss several special properties of our model that can be
exploited to achieve computational efficiency.

4.1. A special case

Consider the case in which n = 2, with one routine
customer requesting an appointment with probability one,
followed by an urgent add-on customer that requests an ap-
pointment with probability q. We analyze this case to give
insight into the patterns we observe in the optimal sched-
ules for larger problems studied in Section 5. We begin by
assuming the two customers have identical deterministic
services times. We define the two alternative sequencing
decisions as follows:
FCFS: The first customer in the appointment request se-
quence is scheduled to arrive first. A second (add-on) cus-
tomer requests an appointment with probability q, and this
customer is scheduled to arrive after the first customer.
AOFS: The second (add-on) customer in the appointment
request sequence requests an appointment with probability
q after the first customer requests an appointment. How-
ever, the second customer is scheduled to arrive first.
We impose the deterministic service time assumption by
defining Zi = μ with probability one for i = 1, 2. The fol-
lowing assumptions are made about the time to appoint-
ment and direct waiting costs. First, we assume ca

2 = cw
2 ; i.e.,

that the cost of waiting for the add-on customer is the same
whether it is direct or time to appointment waiting. Second,
we assume ca

1 = 0; i.e., there is no cost of waiting until the
time-to-appointment for the routine customer. We further
assume the session length d = 0; i.e., we consider the com-

mon case of minimizing a weighted sum of makespan and
indirect waiting costs. These assumptions are consistent
with many health care environments such as surgery and
primary care practices in which urgent add-on customers
have high waiting costs, and routine customers arrive at
their assigned appointment time and therefore only accrue
costs for direct waiting.

The decision process for the appointment scheduling
problem described above is illustrated in Fig. 3. We note
that when the sequence is FCFS it is clearly optimal to as-
sign the first customer to arrive at time 0 since a non-zero
appointment time would result in unnecessary additional
waiting cost. When the sequence is AOFS, on the other
hand, we denote the arrival time of the second (routine)
customer by a1. It is straightforward to show that a1 = 0
if qcw

1 ≤ (1− q)c� and a1 = μ if qcw
1 > (1− q)c�. This fol-

lows from the fact that the optimal appointment time for
the AOFS, denoted by aAOFS

1 , can be expressed as

aAOFS
1 = argmin{q(2c�μ+ cw

1 (μ− a1)+)

+ (1− q)c�(a1 + μ)}.

Given this, the following decision rules are optimal:

� AOFS is optimal if
– qcw

1 ≤ (1− q)c� and cw
1 ≤ ca

2 , which corresponds to
the case where customers are double booked at time
0,
or

– qcw
1 > (1− q)c� and qca

2 ≥ (1− q)c�.
� FCFS is optimal if

– qcw
1 ≤ (1− q)c� and cw

1 > ca
2 , which corresponds to

the case where customers are double booked at time
0,
or

– qcw
1 > (1− q)c� and qca

2 < (1− q)c�.

The above decision rule is consistent with intuition in a
number of ways. For example, if q and ca

2 are low—i.e.,
the likelihood of the add-on customer arriving and the
direct cost of waiting if the add-on customer does arrive
are low—then it tends to be optimal to schedule the add-
on customer after the routine customer. Conversely, when
the add-on customer is likely to request an appointment
and/or the cost of waiting until appointment is high, it
tends to be optimal to schedule the add-on customer first
in the sequence.

The above example helps provide insight into the trade-
off involved in the optimal sequencing decision for the rou-
tine and add-on customer. Next, we consider the case in
which service times are stochastic. We assume that the ser-
vice times of the routine and add-on customers, Z1 and
Z2, respectively, are independent and identically distributed
(iid) random variables with mean μ. All other assumptions
are the same as the above example. The optimal objective
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Online appointment sequencing and scheduling 1275

Fig. 3. Illustration of the decision process for the case of n = 2
with one routine customer, and one add-on customer arriving
with probability q.

function for FCFS can be written as follows:

F∗FCFS = EZ[(1− q)c� Z1 + q(ca
2 Z1 + c� Z1 + c� Z2)]

= (1− q)c�μ+ q(ca
2 + 2c�)μ. (22)

The expression for F∗FCF S follows from the fact that it is
optimal to schedule the routine customer at time 0. Note
that the optimal FCFS solution is obtained by assuming
the appointment time for the add-on customer is also zero,
which follows trivially from the fact that direct waiting and
waiting until appointment time are equal (ca

2 = cw
2 ). The

optimal objective function for AOFS can be written as
follows:

F∗AOF S = EZ[(1− q)c�(a AOF S
1 + Z1)+ q(cw

1 (Z2 − a AOF S
1 )+

+ c�((Z2 − a AOF S
1 )+ + a AOF S

1 + Z1))]

= c�a AOF S
1 + c�μ+ q(cw

1 + c�)EZ[(Z2 − a AOF S
1 )+].

(23)

Using the above definitions we state the following
proposition.

Proposition 2. If Z1 and Z2 are i.i.d. and

ca
2 ≥ cw

1 (24)

then the optimal sequence is AOFS.

Proof. See the Appendix. �

This proposition states that Equation (24) is a sufficient
condition for the optimal sequence to be AOFS. Al-
though we prove this only for the special case of n = 2
in this section, we provide evidence in Section 5 that this
simple condition provides a useful rule of thumb for larger
problems.

4.2. Special structure of the model

The D-ASSP model formulation expressed in Equations
(2) to (21) is a two-stage stochastic MIP, with binary deci-
sions in the first stage and a continuous second-stage LP.
In this section we present several properties of the dynamic
appointment sequencing and scheduling model that we in-
troduced in the previous section.

4.2.1. Solution to scenario subproblems
The D-ASSP model has complete recourse since the re-
course problem, Q(o, x, a, ω) has a feasible solution for
any choice of o, x, a. Given a first-stage solution with a
feasible sequence and feasible appointment times and al-
lowances, the optimal second-stage solution can be com-
puted easily by computing the corresponding waiting time,
idle time, and overtime variables. For instance, assuming
that a first-stage solution to a three-customer problem is
2–3–1. Table 1 includes the sequences and corresponding
second-stage variables at each of the three decision stages
based on this first-stage solution. At stage 1, the system
only has customer 1 and the two dummy customers (cus-
tomers 0 and 2). At stage 2, customer 2 is also included, and
according to the optimal sequence, this customer precedes
customer 1 since the optimal sequence at stage 2 is 0–2–
1–3. Knowing that customer 2 precedes customer 1, the
waiting time of customer 1 can be found using the waiting
time of preceding customer 2. Similarly, at the third stage,
given that the sequence is 0–2–3–1–4, the waiting time of
customer 1 can be found by using the waiting time of the
preceding customer 3, which in turn is determined by the
waiting time of customer 2. In our implementation of the
L-shaped method, at each iteration, for each scenario, the
subproblem solution is obtained as described above. This
eliminates the need to solve the subproblem LP (e.g., us-
ing the simplex method). The optimal basis of the primal
problem can be used to directly compute the dual solu-
tion. Thus, much less computational effort is expended
in computing the optimal solution to the second-stage
subproblems.

4.2.2. Big M values
Both the first-stage and second-stage problems given in
Section 3 have big M values in their formulations. These
values must be chosen carefully because having unnec-
essarily large M values can cause computational disad-
vantages in solving MIPs since they lead to a weak LP
relaxation.

In our formulation, big M values provide upper bounds
on the values of first-stage decision variables, x and a, and
second-stage decision variables, w and s. For the first stage
constraints, (9) and (10), we let

M1 = max
ω

n∑
i=1

Zi (ω). (25)
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1276 Erdogan et al.

Table 1. Second-stage variables for waiting, idling, and overtime for a three-customer problem given a fixed set of sequencing decisions
is known

Stage Sequence Corresponding second-stage variables

1 w1,0,1 = (Z0 − x1,0,1)+
w1,1,2 = (w1,0,1 + Z1 − x1,1,2)+

0–1–2 s1,0,1 = (x1,0,1 − Z0)+
(0 and 2 dummy) s1,1,2 = (x1,1,2 − w1,0,1 − Z1)+

�1 = (s1,0,1 + s1,1,2 + Z0 + Z1 − x1,0,1 − d)+

2 w2,0,2 = (Z0 − x2,0,2)+
w2,2,1 = (w2,0,2 + Z2 − x2,2,1)+

0–2–1–3 w2,1,3 = (w2,2,1 + Z1 − x2,1,3)+
(0 and 3 dummy) s2,0,2 = (x2,0,2 − Z0)+

s2,2,1 = (−w2,0,2 − Z2 + x2,2,1)+
s2,1,3 = (−w2,2,1 − Z1 + x2,1,3)+

�2 = (s2,0,2 + s2,2,1 + s2,1,3 + Z0 + Z1 + Z2 − x2,0,2 − d)+

3 0–2–3–1–4 w3,0,2 = (Z0 − x3,0,2)+
w3,2,3 = (w3,0,2 + Z2 − x3,2,3)+
w3,3,1 = (w3,2,3 + Z3 − x3,3,1)+
w3,1,4 = (w3,3,1 + Z1 − x3,1,4)+

s3,0,2 = (−Z0 + x3,0,2)+
(0 and 4 dummy) s3,2,3 = (−w3,0,2 − Z2 + x3,2,3)+

s3,3,1 = (−w3,2,3 − Z3 + x3,3,1)+
s3,1,4 = (−w3,3,1 − Z1 + x3,1,4)+

�3 = (s3,0,2 + s3,2,3 + s3,3,1 + s3,1,4 + Z0 + Z1 + Z2 + Z3 − x3,0,3 − d)+

This is a valid bound because if the allowances or the ap-
pointment times are larger than the maximum sum of the
service durations over all duration scenarios, it will result
in an avoidable increase in idle time and/or overtime.

The M values in the second stage, M2(ω) and M3(ω), are
scenario-dependent. Thus, bounds on M2(ω) and M3(ω)
can take advantage of information about service times rep-
resented by ω. We use the fact that none of the waiting time
variables can take values larger than the sum of the service
durations of all customers for each scenario, ω. This is true
since it is not possible for a customer to wait more than
the sum of completion times of all customers (which cor-
responds to arrival of all customers at time 0). This bound
can be tightened further by making the bound customer-
specific. Each customer i’s waiting time must be less than
or equal to the total service durations of all customers that
could be sequenced prior to customer i . The new bound
can be achieved by setting

M2(ω) =
n∑

i=1,i �=i ′
Zi (ω). (26)

Next we consider M3(ω) that upper bounds idle time.
The allowance for each customer is bounded above by the
maximum of sum of service durations of all customers over
all scenarios because the idle time between two customers,
say i and i ′, can never exceed this bound minus the duration

of the customer i (given that i precedes i ′). Thus, M3(ω) can
be written as follows:

M3(ω) = max
ω

n∑
k=1,k�=i

Zk(ω)− Zi (ω). (27)

Note that M3(ω) is dependent on customer i , but the de-
pendency is suppressed for simplicity in the formulation.

4.2.3. Valid inequalities
To improve convergence, we include additional cuts to the
first-stage problem. The goal is to provide a tighter bound
on θ , a surrogate variable representing the recourse function
Q(o, x, a) in the first-stage problem, using the mean value
problem. To construct this mean-value-based subproblem,
the random scenario duration Zi is replaced with its mean
value, μi , in a single scenario subproblem. By Jensen’s in-
equality, the solution to this mean value subproblem pro-
vides a lower bound on the value of the recourse problem
(see Birge and Louveaux (1997) for a discussion of this
and other relevant properties of stochastic programs). This
bound on the value of θ is as follows:

θ ≥ Q(o, x, a, ξ̄ ).

New auxiliary variables, w̄, s̄, and �̄ represent the waiting
time, idle time, and overtime variables in this mean-value-
based subproblem. This approach is the same as that de-
scribed in Batun et al. (2011) and Erdogan and Denton
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Online appointment sequencing and scheduling 1277

(2011). The set of cuts based on the mean value relaxation
is as follows:

θ ≥
n∑

j=1

p j

[ j∑
i=1

j∑
i ′=1

(cw
i ′ w̄ j,i,i ′(μ)+ cs s̄ j,i,i ′(μ))+ c��̄ j (μ)

]

(28)
w̄ j,i,i ′(μ) ≤ M2(μ)o j,i,i ′, ∀i, i ′, j, (29)
s̄ j,i,i ′(μ) ≤ M3(μ)o j,i,i ′, ∀i, i ′, j, (30)

−
j∑

i ′=1

w̄ j,i ′,i (μ)+
j∑

i ′=1

w̄ j,i,i ′(μ)−
j∑

i ′=1

s̄ j,i,i ′(μ)

= μi −
j∑

i ′=1

xj,i,i ′, ∀i, j, (31)

�̄ j (μ) ≥
j∑

i=1

j∑
i ′=1

s̄ j,i,i ′(μ)+
j∑

i=1

μi +
j∑

i ′=1

xj,0,i ′ − d, ∀ j,

(32)
w̄ j,i,i ′(μ), s̄ j,i,i ′(μ) ≥ 0, ∀ j, i, i ′, (33)

�̄ j (μ) ≥ 0, ∀ j. (34)

4.2.4. L-shaped method
We solved the D-ASSP using the L-shaped method, which
is an iterative decomposition method that proceeds by im-
proving an approximation (relaxation) of the first-stage
problem (master problem) by adding supporting hyper-
planes (optimality cuts; see Birge and Louveaux (1997) for a
detailed description of the L-shaped method). After finding
an integer-feasible solution to the master problem, all sub-
problems are solved and a new optimality cut is generated
from the dual solutions of the subproblems. The optimality
cut is added to improve the master problem solution, which
is subsequently re-solved. This continues until the stopping
criteria have been met.

Our implementation of the L-shaped algorithm is sum-
marized in the following pseudocode.
L-Shaped Algorithm

1. ν = 1 (iterations), ω = 1 (scenario), initialize M1,
M2(ω) and M3(ω), ∀ω

2. Initialize L-shape tolerance = 0.01
3. if option=0
4. Use formulation in (3)–(12) for the master

problem
5. else if option=1
6. Add mean value based cuts to the master problem
7. Initialize optimality tolerance for MIP solver
8. While ((L-shape gap > L-shape tolerance) and

(Current time < Time limit) do

9. ν ← ν + 1
10. Solve master problem ν and obtain current obj. value
11. Solve subproblem for each scenario ω

12. Add optimality cut to the master problem
13. L-shape gap = 100 (best obj. value – obj. value

ν)/(best obj. value)
14. end While

The L-shaped gap is a percentage that is calculated as the
ratio of the difference between the best objective function
value found and the current objective function value to the
best objective function value found.

In our numerical experiments, we tested several standard
ways (using CPLEX 12.0) to improve the solution perfor-
mance of the MIP in the first-stage problem. We utilized
presolve to eliminate redundant variables and constraints.
We also experimented with warm starting by using the op-
timal solution of the MIP in the master problem of the
previous iteration as a starting solution for the MIP in
the current iteration’s master problem. We experimented
with adding many types of MIP cuts. We added general-
ized upper bound cover cuts and implied bound cuts to the
first stage problem (Wolsey, 1998). We also evaluated the
solution performance with several search strategies includ-
ing branch-and-cut and dynamic search offered by CPLEX
12.0. We also tested different variable selection strategies,
such as strong branching.

5. Results

In this section, we first present results illustrating the struc-
ture of the optimal sequence and schedule for some spe-
cific examples. Then, we present the results of experiments
to evaluate computational performance of our L-shaped
method implementation on a series of larger test problems.
All experiments were done on a Intel Core2Quad CPU,
Q6600 2.39 GHz, with 4GB RAM. The methods were im-
plemented in C++ with the CPLEX 12.0 callable library.
We sampled 1000 random service duration scenarios for
each model instance. All solutions reported are based on a
tolerance of 1%.

5.1. Examples of the structure of the optimal solution

We use two examples to illustrate the structure of the op-
timal solution. First, we consider a model instance with
five customers (n = 5). All customers are assumed to have
identical cost coefficients for waiting times (cw

i = 4, ∀i ) and
appointment times (ca

i = 2, ∀i ), probabilities of request-
ing appointments (qi = 0.5, ∀i ), and service time distribu-
tions (Zi ∼ U(30, 40), ∀i ). The cost of overtime is c� = 10,
and the cost of idle time is cs = 5. The optimal sequence
and appointment times for this problem are presented in
Table 2 (the non-dummy customers are written in bold
font). Results in Table 2 indicate that FCFS is optimal for
this particular example. Note that this is consistent with the
sufficient condition in Proposition 4.1, which was proven
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1278 Erdogan et al.

Table 2. Optimal solution of a five- customer problem instance
with identical characteristics, cw

i = 4, ca
i = 2, qi = 0.5, ∀i , c� =

10, cs = 5, Zi ∼ U(30, 40),∀i , d = 115. Note that ai , i = 1, . . . , 5
is an abbreviated form of the appointment decision variable used
to denote the appointment time for customer i

Appointment
Sequence times Allowances

Stage 1: 0− 1− 2 a1 = 0 x5,1,2 = 30.22
Stage 2: 0− 1 − 2− 3 a2 = 30.22 x5,2,3 = 33.01
Stage 3:

0− 1 − 2 − 3− 4
a3 = 63.22 x5,3,4 = 35.05

Stage 4:
0− 1 − 2 − 3 − 4− 5

a4 = 98.23 x5,4,5 = 33.44

Stage 5: 0−
1 − 2 − 3 − 4 − 5− 6

a5 = 131.65

Bold numbers indicate non-dummy patients

for the special case of n = 2 but also holds for this larger
problem.

Next we present results for a five-customer problem in-
stance with two different customer types: three routine and
two add-ons. Routine customers are known to request ap-
pointments with certainty (qi = 1 for i = 1, 2, 3). Add-on
customers request appointments with probability 0.5. Thus,
qi = 0.5 for i = 4, 5. The waiting time cost for routine cus-
tomers is cw

i = 4, and for add-on customers it is cw
i = 10.

The waiting until appointment time cost for routine cus-
tomers is ca

i = 0, and for add-on customers it is ca
i = 10.

This problem instance is motivated by health care environ-
ments in which add-on patients have a high cost of direct
waiting and waiting until appointment time. For instance,
in surgery scheduling, urgent add-on patients sometimes

Table 3. Optimal solution of a three routine + two add-on
customer problem instance, cw

i = 4 ∀i = 1, 2, 3, cw
i = 10 ∀i =

4, 5, ca
i = 0 ∀i = 1, 2, 3, ca

i = 10 ∀i = 4, 5, c� = 10, cs = 5, qi =
1,∀i = 1, 2, 3, qi = 0.5, ∀i = 4, 5, Zi ∼ U(30, 40),∀i , d = 115.
Note that ai , i = 1, . . . , 5 is an abbreviated form of the appoint-
ment decision variable used to denote the appointment time for
customer i

Appointment
Sequence times Allowances
Stage 1: 0− 1− 2 a5 = 0 x5,5,4 = 0
Stage 2: 0− 1 − 2− 3 a4 = 0 x5,4,1 = 0
Stage 3:

0− 1 − 2 − 3− 4
a1 = 0 x5,1,2 = 35.87

Stage 4:
0− 4 − 1 − 2 − 3− 5

a2 = 35.87 x5,2,3 = 34.38

Stage 5: 0−
5 − 4 − 1 − 2 − 3− 6

a3 = 70.25

Bold numbers indicate non-dummy patients

cannot afford to wait, thus, they are scheduled early in the
day. Routine patients, on the other hand, can be scheduled
at any time, but have a cost associated with direct waiting.
The service time distribution, cost of overtime, and cost of
idle time are the same as the previous experiments (c� = 10,
cs = 5, Zi ∼ U(30, 40), ∀i ). The results in Table 3 show that
the optimal sequence places add-on customers at the be-
ginning of the schedule (if they request appointments) due
to their high cost of appointment times. Note that the first
routine customer is also scheduled to arrive at time 0 along
with the add-on customers (if they request appointments).
Thus, this customer will be served first if the add-on cus-
tomers do not request appointments. Note that for this
problem instance, the optimal sequence is AOFS, which is
consistent with the sufficient condition in Proposition 2.

5.2. Sensitivity to service time variance

In addition to the above experiments, we experimented
with cases in which customers have different variances for
their service durations. In the context of static scheduling
of a fixed number of customers, previous research indi-
cated that scheduling customers with higher variance later
in the schedule minimizes the potential impact of wait-
ing time for the later customers in the schedule (Weiss,
1990; Denton et al., 2007). Intuitively, such sequences
limit the amount of disruption that high-variance cus-
tomers can cause for the remainder of the scheduled
customers. In our next experiment, five customers hav-
ing the same mean duration but different variances were
considered. The cost of the appointment time for each
customer was assumed to be ca

i = 0 to prevent its ef-
fect on the sequencing decisions. Service durations were
chosen as follows: Z1 ∼ U(25, 35), Z2 ∼ U(15, 45), Z3 ∼
U(20, 40), Z4 ∼ U(23, 37), Z5 ∼ U(10, 50). Thus, service
durations have a fixed mean of 30 for each customer, how-
ever, variances differ. The variances of the service durations
of the customers were as follows: σ 2

1 = 8.33, σ 2
2 = 75, σ 2

3 =
33.3, σ 2

4 = 16.33, σ 2
5 = 133.33.

Table 4 provides the results for the above-defined model
instance. The results indicate that for the problems with
stochastic arrivals of customers with probability qi =
0.5, ∀i , the customers are sequenced in FCFS order re-
gardless of the changes in the cost coefficients. This is
due to the fact that the probability of having additional
customers is low when qi = 0.5, ∀i , since scheduling a cus-
tomer with a low probability to request an appointment be-
fore a higher-probability customer is not beneficial. For ex-
ample, the probability of having one, two, three, four, or five
customers in this experiment are p1 = 0.5, p2 = 0.25, p3 =
0.125, p4 = 0.0625, or p5 = 0.0625, respectively. As the
conditional probability gets higher (qi = 0.9 and qi =
1, ∀i ), in the last two rows of Table 4, the uncertainty in
appointment requests is reduced and the effect of hav-
ing variances on the sequence becomes more prominent.
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Online appointment sequencing and scheduling 1279

Table 4. Optimal sequencing rules for varying cost parameters
and conditional probabilities q in the presence of customers with
different variances. VAR denotes sequence in increasing order of
variance. (VAR* indicates one exception in the increasing vari-
ance sequence)

Sequencing
Parameters Optimal sequence rule

cw = cs = c� = 1
qi = 0.5 ∀ i = 1, . . . , 5 1− 2− 3− 4− 5 FCFS
cw = 10, cs = c� = 1
qi = 0.5 ∀ i = 1, . . . , 5 1− 2− 3− 4− 5 FCFS
cw = cs = 1, c� = 10
qi = 0.5 ∀ i = 1, . . . , 5 1− 2− 3− 4− 5 FCFS
cw = 10, cs = c� = 1
qi = 0.9 ∀ i = 1, . . . , 5 1− 3− 4− 2− 5 VAR*
cw = 10, cs = c� = 1
qi = 1 ∀ i = 1, . . . , 5 1− 3− 4− 2− 5 VAR*

Note that qi = 1, ∀i corresponds to the static scheduling
problem. In these cases, the optimal sequence approaches a
schedule in which customers are in increasing order of vari-
ance. Scheduling lower-variance customers first has been
observed to be near-optimal in the context of static ap-
pointment sequencing and scheduling (Denton et al., 2007)
because it prevents accumulation of high waiting times later
in the schedule.

5.3. Sensitivity to direct waiting and waiting until
appointment time costs

We experimented with a larger model instance with seven
routine + three add-on patients with varying cost param-
eters for add-on patients. The conditional probability of

requesting an appointment is one for routine customers
and 0.5 for add-on customers. The service time distribu-
tion is assumed to be Zi ∼ U(30, 40), and the length of
the day is assumed to be 275. Both waiting time costs for
routine customers are fixed to ca

i = 0, and cw
i = 1, respec-

tively. For add-on customers waiting time to appointment
and direct waiting time costs are varied between 0.01 and
1000. For each experiment 10 model instances were gen-
erated using a different random number generator seed to
sample scenarios.

Results in Table 5 show that, as the direct and time to
appointment waiting costs for add-on patients increase, the
sequence changes from FCFS to AOFS. It is interesting
that none of the instances of 4.2 could be solved to within
the tolerance of 1% within the 15 000-second time limit.
For these 10 instances the mean optimality gap achieved at
the time of termination was 5.61% and the worst-case gap
was 7.01%. The sequence varied considerably in the best
solution obtained, with add-ons appearing variously at the
beginning, end, and middle of the sequence.

To investigate instance 4.2 further we solved the 10 in-
stances (same problem instance with 10 different seeds)
with a computation time limit of 50 000 seconds. None
of the 10 instances were solve to optimality within the in-
creased time limit. According to the results at the time limit,
none of the sequences follow FCFS or AOFS but indicate
a mixed sequence of routine and urgent customers. The
objective function value for each instance at the time limit
is provided in Table 6. The table also provides the objec-
tive function value for the same instance if the sequence was
fixed to FCFS. According to the best results achieved within
the time limit using the D-ASSP model, a mixed sequence
of routine and add-on customers results in a schedule that
is on average 13.2% less costly than a sequence based on
the FCFS sequence. Note that the average gap at the time
limit for D-ASSP solution is 1.7% as opposed to the 1% for
the FCFS solution.

Table 5. Optimal sequencing rules for varying direct/time to appointment cost parameters. Problems were solved to a tolerance of
1% with a maximum time of 15 000 seconds. An asterisk (*) indicates that the model instance could not be solved to the specific
tolerance within the time limit

Number of
CPU time iterations

Instance ca cw ca cw

no. Routine Routine Add-on Add-on cL cs Optimal sequence Ave Max Ave Max

4.1 0 1 0.1 0.1 10 5 R-R-R-R-R-R-R-A-A-A 12 295.5 14 980 55.2 598
4.2 0 1 1 1 10 5 * * * * *
4.3 0 1 10 10 10 5 A-A-A-R-R-R-R-R-R-R 1174.8 1852 163.5 209
4.4 0 1 50 50 10 5 A-A-A-R-R-R-R-R-R-R 418.2 613 94.9 122
4.5 0 1 100 100 10 5 A-A-A-R-R-R-R-R-R-R 257.6 522 67.4 112
4.6 0 1 250 250 10 5 A-A-A-R-R-R-R-R-R-R 117.2 290 36 73
4.7 0 1 500 500 10 5 A-A-A-R-R-R-R-R-R-R 52.5 112 18.1 36
4.8 0 1 750 750 10 5 A-A-A-R-R-R-R-R-R-R 28.1 48 10.3 17
4.9 0 1 1000 1000 10 5 A-A-A-R-R-R-R-R-R-R 19.4 30 7.1 10
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1280 Erdogan et al.

Table 6. Comparison of the D-ASSP solution with FCFS for a 10 problem instances of Experiment 4.2. (Experiment set 4.2 could
not be solved with D-ASSP within 50 000-second time limit. The D-ASSP results presented in this table are for the best solutions
obtained within the time limit)

Obj. func. value Obj. func. value
Instance ca cw ca cw Sequence obtained of D-ASSP of FCFS
no. Routine Routine Add-on Add-on cL cs for D-ASSP solution solution

4.2.1 0 1 1 1 10 5 R-R-A-A-R-R-R-R-A-R 316.06 362.53
4.2.2 0 1 1 1 10 5 R-A-R-A-R-R-R-R-A-R 312.41 357.75
4.2.3 0 1 1 1 10 5 R-A-R-A-R-A-R-R-R-R 305.13 351.41
4.2.4 0 1 1 1 10 5 R-A-R-A-R-R-A-R-R-R 313.19 358.57
4.2.5 0 1 1 1 10 5 R-A-R-R-A-R-A-R-R-R 303.45 353.76
4.2.6 0 1 1 1 10 5 R-A-R-R-A-R-R-A-R-R 315.39 361.93
4.2.7 0 1 1 1 10 5 R-R-A-R-R-R-R-A-R-A 298.41 341.32
4.2.8 0 1 1 1 10 5 R-A-R-R-R-A-R-A-R-R 305.37 354.07
4.2.9 0 1 1 1 10 5 A-A-R-R-R-R-A-R-R-R 309.08 356.99
4.2.10 0 1 1 1 10 5 R-A-R-R-R-R-R-A-A-R 311.99 363.04

Next, we present an experiment set to evaluate the
changes in the structure of the optimal sequence as both
the cost ratio of direct waiting time to the cost of time
until appointment (cw/ca = 2, 5, 10) and the appointment
request probability (q = 0.3, 0.5, 0.7) change. For this ex-
periment, it is assumed that the direct waiting cost (cw) is
the same for routine and add-on customers. Table 7 shows
the sequence of the customers for these runs. For some ex-
periments, the 10 random seeds returned slightly different
optimal sequences. Thus, all sequences generated are also
provided in the table. According to the results, customers
are scheduled in FCFS order when q is low and cw/ca is
high; i.e., the uncertainty in total number of customers is
high and direct waiting is costlier than the waiting until
time to appointment. As q increases, the uncertainty in the
number of customers decreases and the sequence incorpo-
rates one add-on customer early in the schedule (following
at least one routine customer). On the other hand, when
cw/ca decreases from 10 to two, the relative importance of
time to appointment increases compared with direct wait-
ing the sequence becomes a mixture of add-on and routine
customers.

5.4. Value of the stochastic solution

In this section we present results to evaluate the benefit of
solving a stochastic programming model compared with
solving a deterministic problem using the mean of the ran-
dom service times for the scheduling problem. This relative
benefit is called the Value of Stochastic Solution (VSS). It
provides a measure of the value of the model relative to
the commonly used approach in practice of scheduling ac-
cording to the mean appointment time. We present the VSS
for 10 patient problems with varying routine and add-on
customers (with qi = 0.5) and varying costs. According to
the results presented in Table 8, VSS increases as the cost
of waiting time for add-on customers increases. This is due
to the fact that compared with the optimal sequence pro-
vided by stochastic programming solution, the mean value
solution tends to place the add-on customer later in the
schedule, which significantly increases the total cost due to
high waiting time cost. Therefore, as the relative importance
of the add-on customer increases, solving the stochastic
program becomes more and morebeneficial. Furthermore,

Table 7. Results for the problem instances with 10 customers with varying cost parameters (fixed overtime, idle time, and time to
appointment costs: c� = 10, cs = 5, ca

i = 0 ∀i = 1. . .7, ca
i = 1 ∀i = 7, 8, 9), qi = 1 ∀i = 1. . .7, Zi ∼ U(30, 40)

qi = 0.3 qi = 0.5 qi = 0.7

R-A-R-R-A-R-R-R-R-A
cw

ca = 2 R-R-R-R-R-A-R-R-A-A R-A-R-R-R-R-R-A-R-A R-A-R-R-R-R-R-R-A-A
FCFS R-A-R-R-R-R-R-R-A-A R-R-A-R-R-R-A-R-R-A

cw

ca = 5 FCFS R-A-R-R-R-R-R-R-A-A R-A-R-R-R-R-R-R-A-A
cw

ca = 10 FCFS FCFS R-A-R-R-R-R-R-R-A-A
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Online appointment sequencing and scheduling 1281

Table 8. VSS for 10 customer problems with varying cost coefficients

Ave. obj. Ave. obj.
func. value func. value

ca cw ca cw of D-ASSP of mean value
Instance Routine Routine Add-on Add-on cL cs solution solution Ave. VSS (%)

9 R + 1 A 0 1 1 1 10 5 786.93 829.19 5.03
0 1 1 10 10 5 787.09 845.80 6.82
0 1 1 100 10 5 787.09 1023.99 21.79

8 R + 2 A 0 1 1 1 10 5 578.52 609.59 4.64
0 1 1 10 10 5 598.34 645.87 7.17
0 1 1 100 10 5 631.50 899.41 28.09

7 R + 3 A 0 1 1 1 10 5 401.15 425.36 5.67
0 1 1 10 10 5 422.79 456.67 7.34
0 1 1 100 10 5 459.26 615.78 25.02

the minimum VSS across all instances is 4.64%, suggesting
that incorporation of uncertainty in the scheduling process
is generally important.

We also evaluated the benefit of solving stochastic pro-
gramming problem which considers the dynamic arrival
process compared with using a schedule based on expected
number of customers. In this approach, the total cost of
the stochastic programming problem with “R routine + A
add-on customers” is compared to the expected total cost
of a schedule that was initially optimized for the expected
number of routine and add-on customers. In this case, even
though the optimal schedule for the expected number of
customers is found, additional requests of customers if
they arrive have to be addressed without rescheduling. It is
also possible that none of the A add-on customers request
appointments, which leaves the time allocated for add-on
customers idle.

Table 9 compares the 7R+ 3A customer problem solved
with D-ASSP for 10 different random seeds, with the ex-
pected total cost of scheduling the mean number of rou-
tine and and add-on customers as described above. The
VSS that measures the impact of uncertainty in customer
demand for this particular problem instance reaches 38%
compared with the VSS of 25% presented in Table 8 that
considers the duration uncertainty. This highlights the im-
portance of capturing the stochastic nature of the appoint-
ment requests.

5.5. Computational performance of proposed methods

We performed ad hoc experiments to test several
implementations of the L-shaped method to solve D-ASSP
instances. We found the presolve option in CPLEX was ef-
fective in eliminating redundant variables and constraints

Table 9. VSS for the 10-customer problem considering the stochastic appointment request (ca routine = 0, cw routine = 1, ca add-on
= 1, cw add-on = 100, cL = 10, cs = 5 )

Expected no. of customers problem
Expected total cost

7R+3A 7 requests 8 requests 9 requests 10 requests of 7,8,9,10
SP solution p = 0.5 p = 0.25 p = 0.125 p = 0.125 request problems VSS %

SEED 1 456.11 551.09 118.99 921.10 1675.43 629.86 38.09
SEED 2 450.80 542.08 115.76 953.07 1716.83 633.72 40.58
SEED 3 454.04 557.79 108.39 894.35 1650.99 624.16 37.47
SEED 4 461.74 547.85 115.79 911.35 1668.95 625.41 35.45
SEED 5 472.11 569.34 129.78 920.69 1686.26 642.98 36.19
SEED 6 452.83 589.21 136.54 956.10 1711.38 662.18 46.23
SEED 7 450.83 545.67 116.49 904.11 1662.53 622.79 38.14
SEED 8 452.80 529.13 109.51 908.75 1670.41 614.33 35.67
SEED 9 455.60 537.19 108.77 906.63 1674.71 618.45 35.74
SEED 10 462.28 558.69 108.85 919.14 1671.19 630.35 36.36
Average 456.91 552.80 116.89 919.53 1678.87 630.42 37.97
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1282 Erdogan et al.

and reducing computation time. We also tested warm start
using the optimal solution of the MIP in the master prob-
lem from the previous iteration as a starting solution for the
MIP in the next iteration. However, we observed little bene-
fit of warm start when presolve is utilized. We further tested
standard valid inequalities. From our experiments we ob-
served that adding generalized upper bound cover cuts and
implied bound cuts improved solution performance. Ad-
dition of other cuts such as mixed-integer rounding cuts,
clique cuts, fractional cuts, and flow cover cuts had little
or no effect on the solution time. We observed that vary-
ing search techniques between traditional branch-and-cut
and CPLEX’s dynamic search made no significant differ-
ence on the solution time. Also, using different variable
selection strategies such as strong branching did not have a
significant effect on the solution time. In our experiments
CPLEX was able to solve the instances 4.3, 3.6, and 4.6. The
gap at the time limit for problems 3.5 and 4.5 were 92.9%,
and 87.54%, which are much worse than the reported gap
for the L-shaped method provided below.

We evaluated the computational performance of our L-
shaped method implementation in terms of number of it-
erations, CPU time, and optimality gap achieved in a fixed
time limit. All of the model instances used in the exper-
iments of this section were created by sampling using 10
different random seeds. We sampled 1000 random service
duration scenarios for each model instance. The results are
presented in terms of the average and maximum CPU time,
and average and maximum number of iterations across the
10 replications for each model instance.

Two different service time distributions were used for
the experiments: uniform and lognormal. Uniform is con-
sidered since it is a common test distribution in the ap-
pointment scheduling literature, and lognormal because it
is a common distribution for modeling service durations
for medical procedures (e.g., endoscopy clinics as in Berg
et al. (2010)). The results of the experiments with uniformly
distributed service durations are presented in Table 10.
Instances 3.1, 3.3, and 3.5 are dynamic scheduling prob-
lems including a single customer type with Zi ∼ U(30, 40),
qi = 0.5, ca

i = 2, cw
i = 4, ∀i . Instances 3.2, 3.4, and 3.6

include two customer types, routine and add-on. Rou-
tine customers are scheduled with certainty (qi = 1) and
add-on customers request appointments dynamically with
qi = 0.5. The cost coefficients for add-on customers are
cw

i = 8, and ca
i = 6. Experiment sets 4.1, 4.2, 4.3, 4.4, 4.5,

and 4.6 present the results of the same experiments with
lognormal service durations (Zi ∼ lognormal(3.2, 0.5)).

All of the experiments with five patients (instances 3.1,
3.2, 4.1, and 4.2) were solved within the time limit of 15 000
seconds to the predetermined 1% optimality gap. Among
the seven-customer experiments, instance sets 3.3, 3.4, and
4.4 are all solved to optimality, but instance set 4.3 reached
the time limit and terminated before finding the optimal
solution. None of the instance sets for problems with 10
patients were solved to optimality within the time limit of
15 000 seconds except one instance of 3.5. The results indi-
cate that as the number of patients increase the problems
become much harder to solve.

The quality of the solution at the time of termination
is also considered. Table 11 includes the optimality gap

Table 10. Computational performances of solution methods with uniformly distributed service times (Zi ∼ U(30, 40)) and lognormally
distributed service times (Zi ∼ lognormal(3.2, 0.5)). Problems were solved to a tolerance of 1% with a maximum time of 15 000 seconds.
An asterisk (*) indicates cases in which no model instances were solved to the specified tolerance. Times are reported in seconds

Uniform service distribution Lognormal service distribution

Number of Number of
Problem CPU time iterations CPU time iterations
size Customer Instance Instance
(patients) class no. Average Max. Average Max. no. Average Max. Average Max.

5 Identical 3.1 69.9 91 25.4 31 4.1 127.9 167 123.6 153
5 Patients

3 Routine + 3.2 29.5 39 22.5 30 4.2 23.3 32 71.4 88
2 Urgent
7 Identical 3.3 2312.9 3156 89.2 92 4.3 * * 279.6 289

7 Patients
4 Routine+ 3.4 1112.4 1460 188.2 225 4.4 4961 6510 478.1 627
3 Urgent
10 Identical 3.5 13 017 13 017 8 8 4.5 * * 9.5 10

10 Patients
7 Routine+ 3.6 * * 474 487 4.6 * * 396.6 381
3 Urgent
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Online appointment sequencing and scheduling 1283

Table 11. L-shaped gap at the time of termination for the instances
that are not solved to optimality

L-shape gap
Problem Instance Customer

size no. type Worst Best Average

7 4.3 Identical 18.2 13.78 15.33
(lognormal) Patients
10 (uniform) 3.5 10 Identical 8.45 3.19 7.18

Patients
3.6 7 Routine 0.23 0.13 0.18

3 Urgent
10 (lognormal) 4.5 10 Identical 33.93 29.63 32.22

Patients
4.6 7 Routine 8.19 5.93 7.01

3 Urgent

at the time of termination for the instances that could
not be solved to optimality. The results presented in the
table are the worst, best, and average gaps found within
10 replication of the instances with different random seeds.
The percentage gap is calculated as the ratio of the dif-
ference between best objective function value and current
objective function value to the best objective function value
found.

The inclusion of mean value cuts had a significant influ-
ence on the optimality gap obtained within the time limit
of 15 000 seconds. The smallest gap at the time of termi-
nation for the seven-customer model instances (instances
2.3, 2.4, 3.3, and 3.4) without mean value cuts was 107.2%;
the same set of instances were solved to within 1% when the
mean value cuts are added. For the model instances with
10 customers (instances 2.5, 2.6, 3.5, and 3.6), the best gap
found without mean value cuts was 240.11%, whereas with
mean value cuts, some instances terminated with optimality
gaps as small as 2%.

It is important to note that the results that we presented
in this section are for instances that are particularly difficult

Table 12. Results for the problem instances with seven and 10 pa-
tients that are solved to optimality. Parameters are c� = 10, cs =
5, cw

i = i, ca
i = i2, Zi ∼ U(30, 40) for uniformly distributed ser-

vice durations, Zi ∼ lognormal(3.2, 0.5) for lognormally dis-
tributed service durations

L-shaped method

Problem Distribution CPU Number of
size type time iterations

7 Uniform 41.17 2
Customers Lognormal 436.65 21
10 Uniform 215.57 2
Customers Lognormal 322.16 3

to solve. We generally found instances that have the same
time to appointment waiting cost for patients the most
challenging to solve. We also solved instances in which first-
stage costs, ca

i , and second-stage waiting time cost, cw
i , are

different for each customer. Table 12 provides two examples
of problems similar to those reported in Table 10. Again,
10 randomly generated problem instances were solved. All
of the instances were solved to optimality within the time
limit.

6. Conclusions

We formulated the online appointment sequencing and
scheduling problem using a novel formulation of the multi-
stage problem as a two-stage stochastic integer program.
The special case of two customers was used to develop
some insight into the tradeoff between the cost of waiting
until appointment time and the likelihood of additional
customers arriving. We discussed a number of structural
properties of the model and we presented the results of nu-
merical experiments for two alternative implementations
of the L-shaped method. We also provided insights into
the types of model instances that are most computationally
challenging. Our numerical experiments illustrated a num-
ber of properties of optimal online appointment schedules
from which managerial insights can be drawn.

Our numerical experiments indicated that problems for
which the cost of waiting until appointment time is low
are the most challenging to solve. For these problems we
observed that as the problem size grows (e.g., seven to 10
customer model instances), some of the instances could
not be solved to a tolerance of 1% within 15 000 seconds.
However, we observed that adding mean-value-based cuts
to the master problems produced significant improvements
in the optimality gap. For instance, the smallest gap at the
time of termination for the seven-customer model instances
was 107.2%, compared with 1% when the mean value cuts
were added. For the model instances with 10 customers,
the best gap found without mean value cuts was 240.11%,
compared with gaps as small as 2% with the mean value
cuts. Thus, we conclude that adding mean value cuts signif-
icantly improves computational efficiency of the L-shaped
method for this problem.

Our results showed that cost parameters, cw, ca, c�, ap-
pointment request probabilities, qi , and customer service
time distributions, can all significantly influence the struc-
ture of the optimal online schedule. We found that, when
all customers have the same costs and service time distri-
butions, FCFS is often a good rule of thumb. In general we
observe that when waiting until appointment time costs are
high for add-on customers (relative to idle time and over-
time costs) add-ons should all be sequenced first. In other
words, the scheduler should reserve capacity at the begin-
ning of the schedule for add-on cases. When waiting until
appointment time costs are low (or zero) add-on customers
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1284 Erdogan et al.

should all be scheduled last. The sufficient condition for
FCFS scheduling derived for the case of two customers
appears to provide a reasonable sequencing heuristic for
larger problems. We observed that as qi increases from 0.3
to 0.7, and as cw/ca decreases, the schedule shows a mixed
sequence of routine and add-on customers, usually allowing
capacity for one add-on customer at the beginning, one at
the end, and one closer to the middle. We also observed that
when service time distributions varied among customers
and qi increases, the customers with lower variances tend
to be scheduled early in the schedule. Thus, we conclude
that scheduling customers in increasing variance order is
recommended when arrivals are nearly deterministic, i.e.,
qi is close to one for all i . From a practical perspective the
model we present is quite data-intensive. One challenge is in
estimation of service time distributions, which requires ac-
cess to large numbers of samples of customer services times,
the availability of which varies depending on the particular
application setting. Another challenge is the estimation of
demand distributions for routine and add-on customers.
This can be achieved using historical data on the number
and types of customers scheduled. This may require a large
number of observations to estimate the condition proba-
bility of customer arrivals since such demand distributions
may vary by day of week, for example. Finally, estimation
of cost coefficients (e.g., waiting costs for routine versus
add-on customers) requires input from decision-makers.

There are some limitations of our model which present
opportunities for future research. For example, in some
scheduling environments no-shows can be a problem. Our
model is readily adapted to this case and future extensions
could explore the influence of this additional source of un-
certainty. Our model also assumes a single server, but many
service systems, particularly in health care environments,
involve multiple servers working in parallel, and multiple
stages of service. Finally, our model considers a single day
of service and therefore does not explicitly consider cus-
tomer preferences for different days of service. Thus, it is
primarily applicable either as an exact method for envi-
ronments in which customer preferences do not apply an
important role (e.g., scheduling of outpatient surgery) or
as a heuristic. We believe our model provides a basis for
development of more complex models in the future. The
methods we have developed for the single-server problem
provide a foundation for the development of exact decom-
position methods and/or heuristics for larger more realistic
problems.
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Appendix

Proof of Proposition 1. Proof is by induction. At stage j =
1, the sequence is required to be 0→ 1→ 2. This comes
from the fact that o1,0,1 = 1 by Equation (3), o1,1,2 = 1 by
Equation (4), and o1,i,i ′ = 0 for all other values of i, i ′ =
0, 1, 2 by Equation (7). This is obviously a valid sequence
for stage 1. Suppose that the above constraints hold for any
valid sequence of appointments at stage j = k− 1, and no
constraints are violated for any such valid sequence. We
will show that this implies a valid sequence for stage j = k,
completing the proof.
Let an arbitrary valid sequence of appointments at stage
j = k− 1 be

i0 → i1 → . . .→ ik−1 → ik.

Since this is assumed valid, we know that i0 = 0 and ik = k.
We also know that

ok−1,i0,i1, ok−1,i1,i2, . . . , ok−1,ik−1,ik = 1,

and ok−1,i,i ′ = 0 for all other values of i, i ′ = 0, . . . , k.
Given that all of the constraints hold at stage j = k, we

observe that no more than one variable in the set

S= {ok,is ,is+1 |s = 0, . . . , k− 2}
can be zero. Otherwise, from Equation (8) with j = k and
the assumption that the sequence at stage j = k− 1 is valid,
there are two distinct values t and s such that

ok,is ,k + ok,k,is+1 ≥ 2(ok−1,is ,is+1 − ok,is ,is+1 ) = 2,

ok,it,k + ok,k,it+1 ≥ 2(ok−1,it,it+1 − ok,it,it+1 ) = 2.

However, this implies that the variables on the left-hand
side of these inequalities are all equal to one. In particular,
this means that

ok,is ,k + ok,it,k = 2,

which violates Equation (6) when i = j = k. This observa-
tion leads to two cases.

In the first case, if all of the variables in S are equal to
one, then Equation (7) ensures that exactly two stage j = k
variables outside of this set are equal to one. In other words,
there are indices a, b, c, and d, where ok,a,b, ok,c,d �∈ S and
ok,a,b, ok,c,d = 1. Customer k and dummy customer k+ 1
must be involved in any valid sequence at stage j = k. How-
ever, ok,i,i ′ ∈ S implies that i, i ′ �= k, k+ 1. From Equa-
tion (4), we know that the third index of one of these
two non-zero variables must be k+ 1, and from Equation
(5) with j = k, we know that the second index of one of
these non-zero variables must be ik = k. Similarly, Equa-
tion (6) with j = k tells us that the third index of one
of the non-zero variables must be k. The only possibility
is ok,ik−1,k, ok,k,k+1 = 1. This corresponds to the valid se-
quence:

i0 = 0→ i1 → . . .→ ik−1 → ik = k→ k+ 1.

This sequence corresponds to placing the kth customer at
stage k after all previously scheduled customers.

In the second case, if all but one variable in S is equal to
one, then from Equation (8), there is a t such that

ok,it,k + ok,k,it+1 ≥ 2(ok−1,it,it+1 − ok,it,it+1 ) = 2.

This means that the variables on the left-hand side of the
inequality are both equal to one. This fact, along with con-
straint (4) at j = k, yields the valid sequence

i0 → i1 → . . .→ it → ik = k→ it+1

→ . . .→ ik−1 → k+ 1.

This sequence corresponds to placing the kth customer at
stage k after the (it)th and before the (it+1)th scheduled
customers.

These two cases represent all possible valid sequences
at stage j = k, and no constraints are violated by these
sequences. �

Proof of Proposition 2. The proof follows from optimality
considering the objective function for the FCFS and AOFS
cases as follows:

F∗AOF S = EZ[(1− q)c�(a AOF S
1 + Z1)+ q[cw

1 (Z2 − a AOF S
1 )+

+c�((Z2 − a AOF S
1 )+ + a AOF S

1 + Z1))]
≤ FAOF S (A1)
= c�μ+ q(cw

1 + c�)μ (A2)
≤ F∗FCF S, (A3)

where inequality (A1) follows from setting a AOF S
1 = 0 and

the fact that a specific solution such as a AOF S
1 = 0 results in
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a worse solution than the optimal solution. The inequality
(A3) follows from the sufficient condition ca

2 ≥ cw
1 in the

proposition. �
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