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Appointment scheduling systems are used by primary and specialty care clinics to manage access to service providers, as well as by
hospitals to schedule elective surgeries. Many factors affect the performance of appointment systems including arrival and service
time variability, patient and provider preferences, available information technology and the experience level of the scheduling staff.
In addition, a critical bottleneck lies in the application of Industrial Engineering and Operations Research (IE/OR) techniques. The
most common types of health care delivery systems are described in this article with particular attention on the factors that make
appointment scheduling challenging. For each environment relevant decisions ranging from a set of rules that guide schedulers to
real-time responses to deviations from plans are described. A road map of the state of the art in the design of appointment management
systems is provided and future opportunities for novel applications of IE/OR models are identified.
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1. Introduction

The health care industry represents approximately 15% of
the gross domestic product of the United States. Health care
expenditures are growing at a rate such that the amount of
public money needed to finance health care, which currently
stands at 45% of all health care expenditures, is expected to
double by 2050. Americans who are covered by employer-
sponsored plans have experienced double digit increases in
premiums as employers shift a greater portion of rapidly ris-
ing health care costs to the employees (Economist, 2004).
When we add factors such as an aging population, increas-
ing demand for chronic care and strained public and private
health care budgets to this mix, it is no surprise that there is
a growing pressure on health service providers to improve
efficiency.

Appointment scheduling systems lie at the intersection
of efficiency and timely access to health services. Timely ac-
cess is important for realizing good medical outcomes. It is
also an important determinant of patient satisfaction. The
ability to provide timely access is determined by a variety
of factors that include fundamental questions about how
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many and which types of physical assets and equipment a
health system should invest in, how should it allocate re-
sources among multiple sites, how should it staff each clinic
or hospital site, what rules best determine which providers
and patients receive higher priority access to resources, and
how appointments are scheduled. The focus of this article
is on appointment scheduling. We do not consider ques-
tions pertaining to the size of facilities, equipment and staff,
and to resource allocation in multiple-service-site systems.
(An example of such issues can be found in Chao et al.
(2003)).

Scheduled patient encounters include primary and spe-
cialty care visits, as well as elective surgeries. In each of these
environments, the process of scheduling appointments (as-
signing a specific time when the patient is scheduled to start
receiving care) is different, which we will describe shortly.
In addition, there are unscheduled encounters that include
walk-ins and urgent or emergency cases. The former, oc-
curring mostly in primary care clinics, can be directed to an
alternate facility if the clinic in question is heavily booked.
However, urgent specialty care and surgical patients often
need to be treated as soon as possible. The goal of a well-
designed appointment system is to deliver timely and conve-
nient access to health services for all patients. Appointment
systems also smooth work flow, reduce crowding in waiting
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rooms and allow health systems to honor patient and
provider preferences while matching supply and demand.

Each of primary care, specialty care and hospital services
have certain unique features that give rise to different chal-
lenges for managing appointments. In the primary care set-
ting, the vast majority of patients require services that can
be performed within a fixed time length. Therefore, primary
care clinics tend to divide available provider time into equal-
length time slots such that, by and large, patients’ needs can
be accommodated in a standard appointment slot. For cer-
tain types of visits that require more time, clinics may assign
multiple appointment slots. The appointment scheduling
problem then reduces to that of finding a suitable match
among the available time slots of providers in the clinic,
provider prescribed restrictions on how available slots may
be filled and patients’ preferences for day/time of week as
well as for a particular service provider. (An example of
provider restrictions on the use of available slots is the limit
that many providers place on the number of physical exams
or new patients that can be scheduled in any given session.)
Still, the problem of matching supply and demand is not
easy because different patients have different perceptions
of the urgency of their need and different day-of-week and
time-of-day preference patterns.

Patient service times in specialty care clinics tend to vary
more depending on the patients’ diagnoses and other char-
acteristics. Therefore, provider time may not be divided into
standard time slots. Moreover, many specialty services re-
quire a referral from the primary care physician. In such
cases, appointments are booked by the medical assistant
of the referring doctor. Bookings may occur at periodic
intervals (e.g., at the end of each day). Appointment man-
agement for specialty care clinics is further complicated be-
cause of two reasons: (i) the need to reserve capacity for
urgent appointment requests that must be treated soon af-
ter they occur; and (ii) the need to realize high utilization
of more-expensive specialists’ time.

Scheduling surgical appointments is even more complex.
Procedure times are variable, several pre-surgery appoint-
ments may be required for necessary medical exams and a
variety of service providers/resources have to be simulta-
neously scheduled in order to deliver the desired services.
For example, in addition to the team of surgeons, a prop-
erly equipped surgery room, specialized nursing staff and
anesthesiologists have to be available at the desired start
time. Therefore, surgery scheduling sometimes occurs in
two stages. Patients first choose from a menu of available
time windows (each may be a week long) during which they
prefer to have the procedure performed. The physician’s
office later confirms a specific day and surgery start time,
which we refer to as the appointment. Surgeons typically
need to fit all procedures scheduled for a day within a block
of operating room time that is assigned for their use. They
have preferences with respect to which types of procedures
they like to perform on specific days and times of week. Such
considerations can further complicate scheduling. Finally,

a significant proportion of overall demand in a variety of
surgical specialty areas is from urgent patients who need to
be treated as soon as possible.

In all three environments, a patient who schedules an ap-
pointment faces two types of access delays. Indirect (virtual)
waiting time is the difference between the time that a patient
requests an appointment and the time of that appointment.
Direct (captive) waiting time is the difference between a pa-
tient’s appointment time (or his/her arrival time if he/she
is tardy) and the time when he/she is actually served by the
service provider. In contrast, in a system with no appoint-
ments, e.g., when a service provider accepts only walk-ins
or urgent cases, patients experience only direct waiting. In-
direct waiting is usually orders of magnitude greater than
direct waiting. Whereas direct waiting is an inconvenience
to the patient, excessive indirect wait can pose a serious
safety concern (Murray and Berwick, 2003).

A well-designed appointment system achieves small di-
rect waiting times for unscheduled (especially urgent/
emergency) episodes without increasing the direct waiting
times of scheduled patients or lowering resource utilization.
This is accomplished by specifying various “rules” that de-
termine which types of patients may access available service
provider resources at what times. We refer to such rules as
access rules and include them within the scope of this ar-
ticle. Access rules also reduce the negative impact of indi-
rect waiting on scheduled urgent appointments by reserving
some capacity exclusively for their use.

Appointment systems can be a source of dissatisfaction,
both for the patients and for the providers. Patients are
impacted by the lack of availability of timely and conve-
nient appointment slots, especially when their need is ur-
gent. Clinicians are impacted by the uncertainty in the num-
ber of patient appointments from day to day, and the mix
of appointments on any given day. These factors can af-
fect clinicians’ earnings as well as their job satisfaction lev-
els. In many instances, clinicians can handle high-priority
demand, and variations in case mix, only by stretching
their schedules to absorb demand variation—i.e., by shrink-
ing lunch time, pushing back dinner and double booking
(working faster). (The soft nature of provider capacity is
one of the factors that differentiates health care delivery
systems from manufacturing, transportation and logistics
systems.) Even with such strategies in place, it is sometimes
necessary to reschedule certain booked appointments for
non-urgent services in order to take care of urgent demand.
Moreover, significant direct waiting time is not uncommon
in environments that deal with life-threatening urgent cases.
Frequent involuntary changes in appointments and long
direct waits can cause dissatisfaction among patients who
book in advance.

There are many factors that affect the ability of appoint-
ment schedulers to utilize available providers’ time effi-
ciently and effectively. Some examples include inter-arrival
and service time variability, cancelations and no-shows,
patient preferences for a particular day of week, time of
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day and for certain physicians, degree of flexibility permit-
ted by the physicians in the use of their time (e.g., some
preauthorize double booking at certain times of the day if
demand is high, whereas others require the scheduler to call
for approval each time), appropriate level of information
technology, and a smooth-running call center for managing
patient requests. In addition to these issues, we believe that
a critical bottleneck lies with the application of Industrial
Engineering & Operations Research (IE/OR) models. Such
models have the potential to improve appointment schedul-
ing via algorithmic decision support tools, similar to their
successful application in other service industries such as the
airlines, car rental agencies and hotels (see Talluri and Van
Ryzin (2004a)).

We believe that IE/OR decision support techniques can
simultaneously reduce costs and improve access to health
services. The purpose of this article is to provide a critical
survey of the state of the art in modeling and optimization
of appointment scheduling problems. We consider both di-
rect and indirect patient delays and provide a synthesis of
previous research pertaining to all three scheduling envi-
ronments mentioned earlier. Moreover, our approach views
the scheduling problems arising in the three environments
as different application domains within a common under-
lying modeling framework. We also discuss opportunities
for IE/OR community to make significant future contri-
butions toward solving health care appointment schedul-
ing problems. Our focus is on appointment scheduling by
which we mean three things: (i) choice of access rules; (ii)
encounter start times; and (iii) approaches for handling dif-
ferences between scheduled and realized supply/demand.
We do not consider issues related to the size of facilities,
equipment and staff.

This article is organized as follows. In Section 2 we de-
scribe the appointment scheduling environments and de-
cisions in primary care clinics, specialty clinics and hos-
pitals. In Section 3 we classify the underlying complexity
of scheduling appointments according to four key factors.
This helps to categorize and critique the relevant IE/OR lit-
erature, which we do in Section 4. Section 5 summarizes sev-
eral areas that represent opportunities for future research.
Finally, in Section 6, we conclude the paper by commenting
on the role of Electronic Medical Records (EMR) in partic-
ular, and Health Information Technology (HIT) in general,
as vehicles for deploying IE/OR-based decision support
systems. While some of the above-mentioned discussions
focus greater attention on problems that are common to
the US health care system, much of the underlying content
of this article is generalizable to appointment scheduling
issues in any health care delivery system.

2. Scheduling environments and decisions

The ensuing descriptions of the three commonly encoun-
tered health care scheduling environments are based on the

authors’ first-hand knowledge of the systems used by sev-
eral health service providers. They do not reflect specific
practices of any one provider. Furthermore, they do not
cover all possible variations found in practice. Instead, our
goal is to paint a picture of the typical scheduling environ-
ment in each setting.

We focus on three topics—access rules, encounter start
times and approaches for handling differences between the
scheduled and the realized supply/demand as the day un-
folds. (Note that sometimes appointment scheduling is un-
derstood to imply only the task of setting encounter start
times.) Access rules help sort patients into different priority
classes, specify access targets and the amount of reserved
capacity for each class, and guide managers’ response to the
variation between realized and scheduled demand and sup-
ply. Encounter start times specify the date and time when
service providers and patients are expected to be ready for
the examination or procedure. Differences between sched-
uled and actual demand/supply are common. They can
arise as a result of longer than expected service times,
provider/patient tardiness, late cancelations and no-shows,
and unanticipated urgent/emergency demand. Hereafter,
we refer to the latter decisions as daily scheduling decisions.
Equipment/staff capacity choices and staff scheduling also
affect appointment scheduling; they are not considered in
this paper.

2.1. Primary care appointments scheduling

Historically, primary care practices were the quintessen-
tial cottage industry within the system of delivering health
care. Physician-owned and -managed clinics were typically
served by a single doctor or a small group of doctors, who
took care of the medical needs of families from cradle to
grave. Appointment systems tended to be manual and ad
hoc, and physicians often worked variable hours to provide
needed service to urgent requests. In recent years, clinics
have grown larger. Often, they are a part of an even larger
health care delivery system (or network) comprising many
primary care and specialty clinics and hospitals. Modern
clinics also have on-site lab facilities and X-ray machines
for carrying out routine diagnostic tests.

When faced with a medical problem, patients often con-
tact their Primary Care Physicians (PCPs) first, with the re-
sult that PCPs are sometimes called the gatekeepers of the
health care delivery system. In a majority of cases, patients
call in advance to book an appointment; however, some do
walk in. Some clinics have on-site appointment schedulers.
Increasingly, however, appointment booking operations are
centralized at a remote call center, which serves many clinics
belonging to a health care network.

Physicians divide their available clinic time into appoint-
ment slots, which are usually between 15 to 30 minutes
long. In addition, providers determine the number of stan-
dard slots needed for each category of appointment request.
Certain types of appointments, e.g., physical exams, require
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multiple slots. Other types, e.g., routine follow-up visits, re-
quire a single slot. Providers choose start and end times of
their work schedule for each day over a pre-specified period
of time (say 4 weeks) several weeks in advance of that time
period. They also provide schedulers with any restrictions
on how available slots may be assigned to incoming requests
for appointments. For example, certain appointment slots
are reserved each day for physical exams, which makes it
easy for schedulers to find contiguous open slots needed
for such appointments. This practice also helps physicians
plan their day in advance.

Access rules in the primary care environment reserve cer-
tain slots exclusively for certain types of patients. Patient
types could depend on medical urgency, type of service re-
quested and on whether or not the patient belongs to the
physician’s panel. For each physician, his/her panel consists
of all those patients who have designated him/her as their
PCP. Matching patients with their PCPs is important for
continuity (quality) of care and for clinic efficiency because
otherwise physicians’ end up spending more time reading
medical histories of unfamiliar patients.

A recent innovation that has been adopted by many pri-
mary care clinics is the Advanced or Open Access system,
credited to Murray and Tantau (1999, 2000). In this ap-
proach, physicians attempt to accommodate patients’ re-
quests for appointments on the day they call. (This is not to
be confused with walk-ins who do not call in advance. We
discuss walk-ins at a later point in this section.) Future ap-
pointments at a time that is more convenient for the patient
are also permitted. Service providers vary available capac-
ity to meet each day’s demand. The ability of a patient to
book an appointment on the day (s)he calls is no longer a
function of his/her medical condition. In contrast, clinics
that do not offer Advanced Access often employ a triage
nurse to assess the urgency of medical need of a caller who
requests an appointment without delay. Only those callers
whose need is deemed urgent are offered one of several slots
reserved each day for urgent requests.

The impetus for adopting Advanced Access comes from
the desire to make clinic practices more patient focused, to
accommodate faster access for patients with urgent needs
and to gain competitive advantage. This approach also elim-
inates the need for a triage nurse. However, the implemen-
tation of Advanced Access systems remains a challenge be-
cause of a variety of reasons. First, even when providers
work hard to absorb variations in daily demand, their abil-
ity to do so is limited. Therefore, it may not be possible to ac-
commodate all appointment requests on the day they origi-
nate. This leads to demand spillover to a future day, limiting
the clinic’s ability to meet that future day’s demand. Second,
the true demand for same-day service is not captured by the
appointments data because it is difficult to tell whether a
patient actually preferred to book an appointment on a fu-
ture date or (s)he did so because a same-day appointment
was not available. This makes it difficult for clinic directors
to determine approximately how much capacity should be

available at the start of each day for that day’s demand.
Third, in many clinics, different physicians’ panel composi-
tions and sizes are significantly different, with the result that
some physicians have fewer available slots to accommodate
same-day demand.

In addition to deciding how to schedule appointment
requests from patients who call in advance, primary care
clinics also need to decide how to respond to walk-ins, and
any unplanned shortfall in capacity (due to provider ill-
ness or emergency) while minimizing their impact on the di-
rect waiting time of patients with scheduled appointments.
We call such decisions by clinic managers daily scheduling
decisions. Daily scheduling has become increasingly more
important as many clinics have adopted Advanced Access
systems and because the amount of excess capacity that
a provider can make available in response to greater than
anticipated demand is limited. Clinic directors recognize
that patients’ perceptions of urgency of need are an impor-
tant factor in determining their overall satisfaction with
the timeliness of access. Therefore, many are experiment-
ing with alternative ways to accommodate daily scheduling
variation, such as pooling provider appointment slots for
urgent care, using nurse practitioners and doctors’ assis-
tants, and forming provider teams. With a provider team
in place, when an appointment with a patient’s PCP is not
available, (s)he is offered an appointment with a member of
the care team who is somewhat familiar with the patient’s
medical history.

2.2. Specialty clinic appointments scheduling

Specialty care clinics are designed to deliver health services
that are focused on specific, often complex, diagnoses and
treatments. In some cases, multiple medical specialties may
be integrated into a group practice which may have sev-
eral departments, each specializing in a different branch
of medicine. Rules governing access to specialists can vary
by the medical specialty, as well as by the health network.
Certain specialties such as pediatrics and obstetrics are typ-
ically designated as open access. This means that patients
can call to book an appointment without the need for a re-
ferral first. Open access clinics are similar to primary care
clinics in terms of appointment scheduling. In fact, it is
not uncommon to find a shared call center, which serves all
primary care and open access specialty clinics in a health
care network. Many specialty clinics do require referrals.
In that case, the referring physician is often the patient’s
PCP and his/her clinical assistant books an appointment
for the patient. In many instances, a referral is required only
for the first appointment, and the patient is able to directly
schedule all subsequent appointments.

Unlike a primary care environment where most services
can be performed within a fixed-length appointment slot,
specialists’ appointment lengths can be highly variable and
diagnosis dependent. Different patients have different ur-
gency of need and quick access is critical to realizing good
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medical outcomes for urgent cases. In addition, a specialist
is a more expensive resource for the health service network,
and certain specialty areas have a shortage of qualified
physicians. Thus, specialty clinics face the difficult task of
simultaneously guaranteeing quick access for high-priority
cases and realizing high utilization of the specialist’s time.
This is accomplished via a combination of access rules that
govern advance booking and daily scheduling approaches
for managing supply–demand mismatches.

Access rules help clinics determine how much capacity
to reserve for each type (or length) of appointment and for
future callers with more urgent needs. These rules also de-
termine planned appointment lengths for each diagnosis of
the referring physicians. In addition to medical urgency, ca-
pacity reservation can also be driven by the need to serve
out-of-town patients who are unable to take advantage of
near-term appointments on account of travel delays, and to
accommodate patient cross-flows among several specialty
clinics. A cross-flow occurs when a patient discovers dur-
ing an appointment with a particular specialist that (s)he
needs an appointment with a different specialist in order
to complete his/her diagnosis/treatment. Access rules also
help improve capacity utilization by making it easier to
fit appointments of varying lengths in a provider’s daily
schedule.

Daily scheduling concerns taking care of deviations from
planned clinic time and booked appointments, both of
which are common in specialty services. For example, when
outpatient clinics are attached to hospitals, specialists may
serve as stand-by consultants and providers of emergency
care. They may also see patients on short notice to clear
them as surgical candidates, with the result that clinic man-
agers face uncertainty in both demand and physician avail-
ability. Managing short-term supply and demand imbal-
ance in specialty care environments is particularly difficult
in rural or less populated areas. In such cases health care
providers may collaborate to pool resources, for instance,
by having a rotating specialist-on-call schedule.

2.3. Scheduling elective surgery appointments

Surgery may be performed either on an inpatient or on an
outpatient basis. In the inpatient setting, patients are admit-
ted to the hospital prior to surgery and assigned a hospital
bed. After the scheduled procedure is completed, they re-
turn to their room for recovery. Outpatients, on the other
hand, arrive at the hospital on the day of surgery. After
surgery, they are held until post-operative recovery is com-
plete and then discharged. In many cases home care visits
and follow-up appointments are scheduled for additional
post-operative care.

As in primary and specialty care environments, there are
different degrees of urgency associated with surgical cases.
Elective or deferrable surgeries may be scheduled well in
advance because there is no need for immediate interven-
tion. Urgent or emergency cases, on the other hand, arise on

short notice and the speed of intervention is critical to the
patients’ potential for recovery. Such cases are not sched-
uled, but they must be accommodated along with the cases
that are scheduled on any given day. In some hospitals one
or more Operating Rooms (ORs) are reserved for such cases,
whereas in others, slack time is spread across multiple ORs
to accommodate unplanned procedures.

It is common for some ORs to be specialized for certain
types of surgery. In such cases, certain specialized equip-
ment are dedicated to the OR. In contrast, when ORs are
not specialized, equipment may be moved from one OR to
another. Some examples of specialized equipment include
a pressurized environment for hyperbaric surgery, diagnos-
tic imaging equipment for gastrointestinal endoscopy and
cardiopulmonary bypass equipment for coronary interven-
tions. A parallel also exists with respect to nursing staff,
who often have highly specialized training. The level of
cross-training of staff has a significant effect on the OR
managers’ ability to generate feasible OR schedules.

Elective surgery scheduling systems come in two vari-
eties: block-scheduling and open (or nonblock) schedul-
ing. Under a block-scheduling system individual surgeons
or surgical groups are assigned blocks of time of a partic-
ular OR in a periodic schedule (weekly or monthly). The
surgeons may book cases into their assigned blocks subject
to the condition that the cases “fit” within the block time.
Mean surgery durations (obtained from historical records)
are typically used to determine whether or not the cases fit.
For cases that do not fit, surgeons must request an allowance
to overbook. In an open scheduling system, surgeons sub-
mit requests for OR time, and an OR schedule is created
by the OR manager prior to the day of surgery. The sched-
ule specifies which surgeries are assigned to which ORs and
their start times. Hybrid systems are also prevalent. In such
cases, either some ORs are block booked while others are
left open, or unused block time is made available to other
surgeons after a certain deadline, which is set a particular
number of days prior to the planned session (Dexter et al.,
1999).

Access rules for elective surgery are concerned with allo-
cating surgeries to multiple ORs in open (non-block) envi-
ronments and to allocating OR time among surgical groups
in block-booking environments. These rules may depend on
many factors including operational costs, the demand for
certain surgery types, the degree of urgency and the revenue
associated with each surgery type. Sometimes block envi-
ronments have a two-step process for setting elective surgery
appointments. In the first step, a patient selects a window
of time (say a particular week) during which the procedure
is likely to take place. This decision is largely determined
by patient preference, medical urgency and applicable ac-
cess rules. This exercise is referred to as advance scheduling
in the literature (see, for example, Magerlein and Martin
(1978) and Blake and Carter (1997)). In the second step,
the patient is informed of a particular day and a particular
start time for his/her procedure. This is usually specified
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by the physician’s office several days to weeks in advance of
the procedure. Setting start times is sometimes referred to
as allocation scheduling. Start times are designated times
when the patient and the care giver team (surgeon, anesthe-
siologist and nurses) are scheduled to be available for the
start of the procedure. We give an example of a model that
can be used to determine surgery start times in Section 3.4.
Finally, it is necessary to ensure that both pre- and post-
operative (external) resources are available before and after
the scheduled date and time of the surgery. This exercise is
sometimes called external resource scheduling (Blake and
Carter, 1997).

Daily surgery scheduling decisions are made by an OR
suite manager, who is often the Chief Anesthesiologist or
the Head Nurse. As actual surgery durations and the num-
ber and mix of add-on cases are observed, the OR manager
must decide how to accommodate the new cases. (Add-on
cases are those that are accommodated after the initial OR
schedule is generated. They may be urgent cases, but that
is not always the case.) Even without add-on cases, daily
scheduling is complicated by the fact that delays in staff
and equipment availability can affect multiple such proce-
dures simultaneously. Responses to schedule variation may
involve moving scheduled surgeries from one OR to an-
other, and delaying or rescheduling previously scheduled
surgeries. Ultimately, the OR manager must ensure patient
safety by accommodating urgent cases, and strive to close
ORs on schedule to minimize overtime costs.

3. Complicating factors

Health service providers struggle to balance supply and de-
mand. Achieving this balance is often difficult on account
of the uncertainty in the patient arrival and service times,
patient and provider preferences, punctuality, cancelations
and no-shows. It is further complicated by the fact that
patients’ needs for health services have varying degrees of
urgency, and the decision-making process is often dynamic,
i.e., some decisions about non-urgent patients must be made
in advance of having complete information about urgent
and emergency demand. Furthermore, the allocation of re-
wards and costs in health systems are such that the patient’s,
the physician’s and the health system’s incentives may not be
aligned. This leads to the additional complexity of deciding
whose perspective is appropriate when designing appoint-
ment systems.

In what follows, we have devoted a separate subsection
to four key factors, which we believe to be the key vari-
ables that influence the performance of appointment sys-
tems. We also identify which types of variability predom-
inate in each of the three delivery environments discussed
earlier. We have deliberately left out factors such as cance-
lations and no-shows. Late cancelations and no-shows can
lead to poor resource utilization, lower revenues and longer
patient waiting times. Providers often use the openings in

their schedule created by cancelations and no-shows to ac-
commodate walk-ins and urgent requests. However, these
actions are typically insufficient to replace revenue and uti-
lization shortfall (Moore et al., 2001).

Late cancelations and no-shows are important in envi-
ronments where capacity is tight or where no-shows and
cancelations constitute a significant proportion of all ap-
pointments. The proportion of appointments affected by
late cancelations and no-shows is low for clinics that largely
serve patients with private insurance or Medicare patients.
In contrast, clinics that serve under/uninsured populations,
Medicaid recipients, or patients with mental health issues
experience significant no-shows. No-shows are also posi-
tively correlated with the amount of time patients have to
wait to get an appointment (Dove and Schneider, 1981).
We discuss opportunities for future work on appointment
scheduling with no-shows and cancelations in Section 5.2.

3.1. The mapped arrival process

In each of the three environments described in Section 2, the
appointment system is designed for a particular mapping
of the actual patient appointment requests to a mapped
arrival process. For example, appointment systems for pri-
mary care clinics assume that each appointment decision is
made when the patient calls with an appointment request.
Thus, in this instance the mapped arrival process is the same
as the actual arrival process. In contrast, specialty clinic
appointments may be booked by the referring physician’s
clinical assistant at the end of each session. That is, the ac-
tual requests during a session are accumulated and for the
purpose of designing the appointment system, the mapped
process has batch arrivals that occur at regular intervals.

As described in Section 2, surgical appointments may
occur in two steps. In the first step, the patient and the
provider agree upon a time window during which the proce-
dure might occur. For making these decisions, the mapped
arrival process is usually the same as the actual arrival pro-
cess and the physician’s office manager may use aggregate
capacity control rules to determine whether or not to book
a surgery in a particular week. In the second step, the ex-
act date and time of the procedure is determined. Typically,
this occurs after all demand for elective procedures for that
time window has been observed. Thus, for the purpose of
setting appointment start times, the mapped arrival pro-
cess consists in a given number of procedures that need to
be scheduled during a session (block). In addition to the ad-
vantage of having more demand information before choos-
ing the day of surgery and surgery start times, this two-step
process provides some insulation against cancelations and
delays in scheduling pre-surgery exams and obtaining med-
ical records from other providers.

The mapped arrival process can be classified by the inter-
arrival times, the number of arrivals at each arrival epoch
and the number of arrival epochs during the booking hori-
zon. The booking horizon refers to the length of time
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Fig. 1. Arrival process types and delivery environments.

between the opening of bookings for a particular session
(block of time) of the provider to the start of that session.
Rather than describe all possible variations, we focus in the
following on the most common types of mapped arrival
processes. The delivery environments in which each type of
mapped process is most common are summarized in Fig. 1.

� The Single Batch Process: In this situation, appointment
scheduling decisions are not made until after observing
all demand for a session, with the result that inter-arrival
times are irrelevant. The number of cases of each patient-
priority class that should be scheduled during a session is
determined by access rules. This number is assumed to be
known at the time of determining encounter start times,
albeit may vary in different instances of the problem.
Note that the mix of patients who need to be scheduled
during a session is not homogenous—they may have dif-
ferent medical urgencies, require different types of equip-
ment and staff resources and vary considerably in the
required service time. The single batch process is com-
monly assumed when determining elective surgery start
times.

� The Unit Process: In this case, booking requests are as-
sumed to occur one at a time and at random time epochs.
This corresponds to the situation where the mapped pro-
cess is identical to the actual appointment-request arrival
process. Booking requests can be for different types of
services and of different urgency levels. The unit arrival

process is commonly assumed for designing appointment
systems for primary and specialty care environments.

� The Periodic Process: The periodic mapped process arises
when appointment requests are accumulated over dis-
crete time periods and appointment times are firmed
up for all requests over an interval at the end of each
period. The inter-arrival times are constant. However,
the number and type of arrivals during an inter-arrival
period may be random. The periodic mapped process
is assumed when scheduling appointments for specialty
care clinics and for elective surgeries. Note that the single
batch process is a special case of the periodic process. The
former arises when the discrete interval covers the entire
booking horizon. Still, we treat them as separate cate-
gories because the appropriate appointment scheduling
models for these two situations are quite distinct.

Illustrative example 1: Next, we present summary statistics
from a particular clinic to provide an example of typical ar-
rival process variability in a primary care setting. Requests
for appointments arrive throughout the day. However, since
only booked calls are tracked, we can obtain statistics only
on those calls that resulted in an appointment. We found
that the call volume is the highest at the start of the day,
and that there is significant day-of-week seasonality; many
more calls are received on Mondays. Specifically, the num-
ber of daily calls per 1000 patient panel which resulted in a
booked visit, after excluding certain types of appointments
such as physical exams and follow ups, ranged from 6.68
to 12.17 in a clinic served by ten physicians. Furthermore,
the coefficient of variation of daily calls (which captures the
day-of-week variability) ranged from 0.34 to 0.49.

We show the arrival process variability for a particular
physician from this clinic in Fig. 2. This plot shows the
number of appointment requests on Mondays and Fridays
by the number of the week; week 1 is the first week of the
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year, and week 52 the last. Note, zero requests occur when
a particular Monday or Friday is a holiday. The mean, me-
dian and standard deviation of the number of requests are
29.88, 30 and 7.09 on Mondays and similar statistics for
Fridays are 16.45, 16.2 and 5.43. In addition to day of week
seasonality, call volumes are also affected by annual pat-
terns, e.g., greater demand occurs during the flu/allergy
seasons.

A highly variable arrival pattern makes it more difficult
to provide timely access, particularly after the effect of pa-
tient choices is factored into the problem. Without care-
ful attention to patient-choice patterns, clinics can end up
with crossed appointments (two service providers serving
patients in each other’s panel at a particular time of day),
loss of revenue and patient and provider dissatisfaction.

3.2. The service process

Service time requirements can be assumed to be either
known (deterministic) or random. In some cases, such as
for routine follow-up appointments at primary care clin-
ics it may be reasonable to assume that service times are
approximately deterministic. This is in part due the fact
that PCPs can more easily influence the time they spend
with a patient to fit within a fixed length of time. On the
other hand, for some types of surgical procedures, service
times can vary significantly from one patient to another.
This gives rise to three types of modeling scenarios: con-
stant service times, diagnosis dependent service times, and
random service times. Random service times can be either
identically distributed or diagnosis dependent. The delivery
environments in which each type of service process is most
commonly found are summarized in Fig. 3.

There are many factors that affect service durations. For
instance, the presence of student doctors in a surgery room
can increase all service durations. Such factors also make se-
quential surgery durations correlated. Case loads also affect
service duration. Clinicians work faster on days when their
calendar is heavily booked as compared to lightly booked
days. Similarly, patient attributes such as age, degree of dis-
ease progression, cultural background and language flu-
ency (need for an interpreter) can affect service durations.

Illustrative example 2: A key difficulty in setting surgery
start times comes from the uncertainty in procedure times.
First, the quality of solution is much worse when proce-
dure times are highly random. This means that both pa-
tient/provider waiting and use of overtime may be unavoid-

Constant

Primary Care

Diagnosis Dependent

Primary Care and
Specialty Clinics

Random

Surgeries and
Hospital Stays

Fig. 3. Service process types and delivery environments.

able. Second, solutions that optimize an expected perfor-
mance measure are often not implementable. For example,
key support staff may not volunteer to work the extra hours
needed to complete a day’s scheduled procedures. In that
case, it is necessary to cancel procedures and reschedule
them at a later date on a priority basis, which makes daily
scheduling much more challenging.

Procedure times can vary substantially from one pa-
tient to another, and from one surgeon to another. Figure
4 shows a histogram of procedure times (not counting
changeovers) of two surgeons, labeled A and B, for a com-
mon procedure called left-heart catheterization at a partic-
ular hospital. This is a diagnostic procedure that is used to
determine the patient’s coronary health and the need for
further intervention. The procedure times are in minutes.

The mean and median procedure times are 52 and 47
minutes for Doctor A, and 58 and 50 minutes for Doctor
B. The mean procedure times are statistically different (p-
value = 0.007 for a t-test of equality of means with unequal
variances). The 95th percentiles of the procedure time dis-
tributions for Doctors A and B are 90 minutes and 102
minutes, respectively. Since in a large number of hospitals,
the planned surgery times equal the mean of a few most
recent surgeries (by type and provider), the presence of
unpredictable cases simultaneously leads to longer direct
waits and poor utilization of OR time. In fact, the opti-
mal allowances for surgeries are not uniform even when
surgery times are sampled from the same distribution. The
optimal allowance depends on the position of a particular
procedure in the sequence of procedures performed during
a particular OR session (see Denton and Gupta (2003) for
details).

3.3. Patient and provider preferences

Common examples of patient preferences are as follows.
Some patients prefer an appointment on the day they call,
or soon thereafter, and the day of the week or the time of
the appointment is not particularly important to them. Oth-
ers prefer a particular day of week and a convenient time.
They do not mind waiting for convenience. Patients have
different degrees of loyalty toward their designated PCP, or
a particular specialist/surgeon. Some book appointments
only with a particular provider, even when this leads to an
inconvenient appointment time or extra waiting, whereas
others switch easily to alternate providers.

Providers also vary greatly in their practice styles. Some
open up more capacity by double booking, working
through lunch and working after hours to take care of ur-
gent demand. Others adhere strictly to their daily schedules.
Some place few, if any, restrictions on how their available
time is used for appointments. Others have strict guidelines
for the use of their time. For instance, many physicians re-
strict the number and timing of physical exams each day.
Some surgeons require office visits and pre-operative eval-
uation for all referrals. Others may do so only for certain
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Fig. 4. Procedure times for left-heart catheterization.

cases, based on medical histories. Hospital data show that
surgeons prefer to perform surgeries on certain days of the
week. For example, some prefer the first half of the week
(Monday to Wednesday) and demand for OR time is typi-
cally greater earlier in the week.

The presence of patient preferences often implies that
the optimal scheduling policies are neither simple, nor easy
to implement (see examples in Gupta and Wang (2008)).
Furthermore, accommodating preferences can easily make
mathematical models of the appointment booking process
intractable, which is perhaps one reason why the major-
ity of mathematical models do not include preferences. It
is also the reason why the vast majority of appointment
booking systems are not automated. Instead, they rely on
a human scheduler to work with patients to determine a
convenient date and time. However, the criticality of mod-
eling patient and provider preferences varies by the delivery
environment, as summarized in Fig. 5.

The ability to model patient preferences is very impor-
tant in the primary care setting. It is also important to
match patients with their PCPs for continuity of care and
revenue/cost considerations. In contrast, in some specialty
clinics and surgery scheduling environments, provider pref-
erences take on a greater significance, and patient expecta-
tions for scheduling flexibility are lower. Patients needs are
often associated with a specific episode of care. Whether or
not a patient seeks to be paired with a particular provider
can vary significantly depending on the nature of the health
service. As a result, in some cases, there is greater oppor-
tunity in the specialty care and surgery environments to
control the match between supply and demand of appoint-
ments by pooling supply. With respect to the urgent cases
in these environments, such patients are accommodated im-
mediately without regard to the time of the appointment or
the on-call physician.

3.4. Incentives and performance measures

Design of appointment systems needs to consider the costs
and benefits of the various options to the health service
network, the physicians and the patients. Unfortunately,
the incentives of these groups are not always aligned, which
makes it difficult to get buy-in from the different stake-
holders on the choice of acceptable objective functions. By
and large, the appointment systems in use today benefit the
service network and the physician more than the patient.
Developing patient-oriented solutions offers exciting new
opportunities for research on appointment systems design.

Appointment scheduling problems can be formulated ei-
ther as cost minimization problems or as revenue (profit)
maximization problems. Focusing on the first approach, we
illustrate the difficulty associated with choosing an objec-
tive function for the problem of determining the start times
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of n surgeries in a non-block environment. In this exam-
ple scenario, which is fashioned after the model presented
in Denton and Gupta (2003), appointment requests are
mapped onto a single batch arrival process, surgery times
are random, provider preferences determine the surgery se-
quence and patient preferences are not modeled. All n pro-
cedures must be scheduled and only decisions variables are
the surgery start times. These must be chosen to minimize
overall cost that has three components: patient direct wait-
ing time, OR idle time, and tardiness with respect to the
allotted time for the session. We assume that the patients
and the providers are punctual.

Let Z denote the vector of random surgery durations, a
the vector of scheduled start times, W and S the vectors of
waiting and OR idle times for a given a and Z, d the length
of the day, and L the tardiness for a given a. For ease of
exposition, we also define scheduled surgery times x, which
are equivalent to a. In particular, only n − 1 parameters
need to be determined, the ith surgery’s scheduled dura-
tion xi = ai+1 − ai for i = 1, · · · , n − 1, and a1 = 0. The
waiting, idleness and tardiness metrics can be determined
according to the following recursive relationships:

Wi = (Wi−1 + Zi−1 − xi−1)+, i = 2, . . . , n, (1)
Si = (−Wi−1 − Zi−1 + xi−1)+, i = 2, . . . , n, (2)

L =
(

Wn + Zn +
n−1∑
i=1

xi − d
)+

. (3)

The burden of costs associated with waiting, idling and
tardiness with respect to the session length does not fall
equally on the different stakeholders in this problem. OR
idling and overtime with respect to a fixed session length
matters a great deal to hospital administrators (since hos-
pitals bear the extra cost of staffing ORs), but it may not
affect physicians’ rewards. Similarly, if the same surgeon
performs all procedures in an OR on a given day, patients
are typically asked to arrive early and the waiting costs are
largely borne by patients. Anesthesiologists care about dis-
crepancy between planned and actual start times, which can
affect their remuneration, and introduce variability in the
length of their workday.

Assuming linear costs, with cw, cs and c� denoting per
unit costs of waiting, idling and tardiness, the OR manager’s
problem can be formulated as follows:

min
x

{
n∑

i=1

cw
i E[Wi] +

n∑
i=1

cs
i E[Si] + c�E[L]

}
, (4)

where the expectations are over Z. Even though a model-
based solution can substantially improve the procedure for
setting start times (see Denton and Gupta (2003) for de-
tails), it is often difficult for OR managers to get buy-in
from surgeons. In effect, this is a problem of arriving at an
agreement over what should be the relative magnitude of
waiting, idling and tardiness costs. It is not uncommon for
accomplished surgeons to command their own OR with on-

demand access. This is an expensive option for the health
care system, but allows surgeons to optimize the use of their
time. Similar problems arise when addressing related ques-
tions such as what should be the session length and how
many surgeries should be scheduled for each session length.
These choices also affect other decisions such as staffing of
patient-intake and recovery areas and hospital wards.

Incentive misalignment induced problems can also arise
in revenue-based models. Physicians are paid according to
a variety of different formulae. Some are on salary, some
are paid on a fee-for-service basis with negotiated fees for
each service, and some others are compensated on the basis
of the value of work performed (called the Relative Value
Unit (RVU)). Health service networks also use a combina-
tion of guaranteed and production-level (or RVU) based
compensation. These compensation schemes affect physi-
cian behavior and it is important to accurately model such
behavior when designing appointment systems.

4. The state of the art

In this section, we examine the Health Services Research
and IE/OR literature on appointment systems. Previous
surveys of IE/OR studies on health care applications can
be found in Pierskalla and Brailer (1994) and Lagergren
(1998). A review of the literature on outpatient appointment
systems can be found in Cayirli and Veral (2003), whereas
Magerlein and Martin (1978) and Blake and Carter (1997)
summarize articles on surgery scheduling.

Studies on the appointment scheduling problem can be
categorized based on several criteria. The most straightfor-
ward classification is by the type of problem considered, i.e.,
outpatient or surgery scheduling. Since these problem types
generally have different features, many previous review ar-
ticles have used this approach. Alternatively, we can use the
mapping of the actual arrival process to the arrival pro-
cess used in appointment system design to classify appoint-
ment scheduling problems. When the mapped process is a
single batch arrival process, such problems are referred to
as static scheduling problems. This contrasts with dynamic
problems that typically assume a unit arrival process. Simi-
larly, we can classify studies based on what type of waiting
cost is included in the objective function. Most studies con-
sider either the direct waiting cost, or the indirect waiting
cost, but not both. Finally, articles on appointment schedul-
ing can be classified on the basis of the solution approach
used. Commonly used approaches fall into four categories:
heuristics, simulation, queueing theory, and optimization
(deterministic and stochastic). Heuristics are compared ei-
ther in empirical studies or via computer simulation. The
empirical approach is more common in the health services
research literature than in the IE/OR literature.

Our goal is not to provide a comprehensive review
of the literature, since that has been accomplished else-
where. Rather, we focus on discussing major themes in the
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literature based on the complicating factors discussed in
Section 3. It turns out that depending on the aspect of the
problem being modeled, and assumptions concerning in-
put parameters, the mathematical formulation of problems
arising in outpatient scheduling and in surgery scheduling
can be quite similar. Another advantage of this approach
is that it uncovers the combinations of factors that have
not been addressed in the literature. We have left out cer-
tain types of problems from this review, e.g., advance and
external resource scheduling problems that arise in surgery
scheduling environments. Such problems are related to but
are not central to the theme of appointment scheduling.
Moreover, the ensuing literature review does not deal with
cancelations and no-shows. We discuss those in Section 5.2.

We categorize the literature into the following three
themes.

Theme A: Single batch arrival process, random service
times, no patient or provider preferences, and a cost-
based formulation that includes only the direct wait-
ing cost.

Theme B: Unit or periodic arrival process, random service
times, no patient or provider preferences, and a cost-
based formulation that includes only direct waiting
cost.

Theme C: Unit arrival process, deterministic service times,
patient and provider preferences, indirect waiting
times, and a revenue-based (or cost-based) formu-
lation.

We will next discuss major contributions within each theme
one by one. In addition, we will describe relevant work in
other application areas that has a bearing on appointment
scheduling. Opportunities for future research are described
in Section 5.

4.1. Theme A

A large number of articles in Theme A deal with a block
schedule. In this case, the scheduler is given a session of
length t , which is divided into k blocks of usually equal
length (each equal to t/k). There are n patients who need to
be scheduled during the session. The decision variables are
the njs, the number of patients who should be asked to arrive
at the start of each block. Note that

∑k
j=1 nj = n. There

could be a fixed number of service providers, or the number
of service providers could change over time. Patients are
punctual, do not balk, and receive service in a First-In First-
Out (FIFO) manner. The number of patients waiting at the
start of a block equals the sum of backlogged patients from
previous blocks and new arrivals scheduled for the current
block. Service providers idle if all patients assigned to a
block are served before the block ends.

A variety of block scheduling regimes have been pro-
posed and studied. On one end of the spectrum, we have a
single-block schedule. In this case, k = 1 and all n patients

are asked to arrive at the start of the session. Clearly, this
minimizes service providers’ idleness at the expense of pa-
tient waiting. At the other end of this spectrum, we have in-
dividual appointments (also called sequential block), where
k = n. Between these two extremes exist a number of pos-
sibilities. In a multiple-block schedule, k < n and nj = n/k
for all j, whereas in the modified-block schedule, n1 > 1
patients arrive at the start of the session followed by multi-
ple or individual arrivals at regular intervals, i.e., nj is either
(n − n1)/(k − 1) or 1 for all j ≥ 2. Finally, in a variable-sized
multiple-block schedule, each nj may be different.

Several papers in Theme A compare different block-
scheduling policies. We begin with a review of empirical
studies. Such studies appear in health services research jour-
nals. In some protocols a “catch-up” time is allowed for
the physician at the end of each block (Heaney et al., 1991;
Penneys, 2000; Chung 2002). For each choice of the number
of blocks and the target number of patients to be scheduled
in each block, core metrics are estimated from clinic data
and compared. These metrics are patients’ waiting times
physicians’ idle times, and time to clinic completion (also
called makespan). Recall that these models do not consider
patient choice, different urgency levels and the amount of
patient indirect wait. Also, the actual number of arrivals in
a block is random and may be less than the target on certain
days of clinic operations.

Penneys (2000) compares the hourly block scheduling to
the sequential scheduling rule in two clinics, each operating
under a different rule, using observed data. He reports that
in comparison with sequential scheduling, block scheduling
results in the physician being significantly more likely to en-
ter the exam room earlier, increased patient-free time during
the day, and the clinic finishing on average 35 minutes ear-
lier, whereas the mean patient wait times remain compara-
ble between the two scheduling rules. Chung (2002) claims
that the modified block scheduling approach has improved
the bottom line of his practice by 15%. The success of this
approach requires leaving physician catch-up time at the
end of each hour in order to keep average patient waiting
times low (see also Heaney et al. (1991) and Dexter (1999)).

In the IE/OR literature computer simulation is often
used to study the effectiveness of different heuristics. For
example, Bailey (1952, 1954), Welch and Bailey (1952) and
Welch (1964) use simulation to study a modified block pro-
tocol in which n1 = m and nj = 1, ∀ j ≥ 2. Moreover, the
last n − m appointment times are spaced by the mean ser-
vice duration. Heuristics for assigning individual appoint-
ment times to patients have also been explored. For exam-
ple, Charnetski (1984) considered a heuristic that assigns
a service time allowance of µi + hσi to patient i, where µi
and σi denote the mean and standard deviation of the time
needed to serve the ith patient. He experimented with differ-
ent values of h using a simulation model while assuming that
service durations are Normally distributed. Similarly, Ho
and Lau (1992) and Robinson and Chen (2003) have used
simulation-based techniques to compare the performance
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of a variety of heuristic appointment rules. Robinson and
Chen (2003) provide an excellent review of heuristics that
have been recommended for the class of problems included
in Theme A.

White and Pike (1964) use the usual block schedule
(k blocks with nj = n/k) and Soriano (1966) compares
individual and block scheduling rules with the practice
of scheduling two patients at a time, when service dura-
tions are identical and gamma distributed. These studies
use analytical methods, rather than simulation, to esti-
mate performance metrics. In the two-at-a-time system, the
scheduled time between appointments is twice the mean
length of a single appointment. Soriano argues that the
two-at-a-time system outperforms other block-booking ap-
proaches. Other similar studies include Villegas (1967) and
Rising et al. (1973). Fries and Marathe (1981) use a dy-
namic programming approach to determine the optimal
variable-sized multiple-block schedule. (The bulk of Fries
and Marathe (1981) concerns Theme A, but the authors
also discuss how their approach can be used to obtain nu-
merical solutions when the number of patients who need
to be scheduled is unknown.) Liao et al. (1993) allow both
static and dynamic choice of nj over the course of the day as
service times are revealed for each block. Liu and Liu (1998)
further generalize the approach by allowing doctors to be
tardy. This results in a random (but non-decreasing) number
of servers being available at the start of each block. Vanden
Bosch and Dietz (2000) model patient-class-dependent ser-
vice times. By and large, the generalizations mentioned
above lead to models for which complete analytical solu-
tions are not possible. Therefore, authors propose combina-
tions of simulation, heuristics and approximate solutions.

Another line of research uses optimization models for
determining appointment start times for individual ap-
pointments, such as those encountered in elective surgery
scheduling. This is in contrast to the multiple-block
scheduling described above in which block lengths were
predetermined and the scheduler chose the number of pa-
tients who should arrive at the start of a block. Here, the
number of patients in each block is fixed (equal to one),
but the length of each appointment interval is chosen opti-
mally. These formulations use an objective function similar
to Equation (4) of Section 3.4. In this genre of work, Weiss
(1990) and Robinson et al. (1996) deal with two and three-
patient problems, respectively, which can be solved rela-
tively easily owing to the low dimensionality of the prob-
lem. The problem of choosing planned surgery durations
is mathematically similar to the problem of setting planned
lead times in production systems when production times are
random (see Yano (1987) for an instance of this problem
and relevant literature).

Wang (1993) considers the case in which patient service
durations are exponentially distributed and shows that for
this special case the probability density function for patient
waiting times is phase-type. He then exploits the computa-
tional advantages associated with phase-type distributions

to find the optimal appointment times. Through numerical
examples, he shows that optimal patient allowances have
a dome shape, i.e., the optimal appointment lengths are
smaller at the start and end of day and longer in the middle
of the day. Denton and Gupta (2003) find that this dome-
shaped result holds for arbitrarily distributed patient service
times. However, the actual shape is strongly affected by the
relative magnitudes of per-unit costs of waiting, idling and
tardiness. Following these structural results, Robinson and
Chen (2003) have suggested heuristics in which the time
allotted to a service depends on, among other factors, the
relative position of the service in the schedule.

4.2. Theme B

Unit or periodic arrival processes are typically considered
within the framework of queueing systems. In a typical set-
ting, patients are scheduled to arrive at the clinic at equal
(fixed) intervals and the length of this interval is the deci-
sion variable. A patient’s physical arrival and request for
appointment are not differentiated, with the result that all
waiting is direct waiting. That is, virtual or indirect wait is
not modeled in these studies. Service times are random and
come from a common probability distribution. Unless the
service provider(s) is (are) idle at the time of patient arrival,
patients wait for service in a common queue and the service
protocol is FIFO. A cost-based optimization problem is for-
mulated with the goal of minimizing the sum of expected
patient waiting cost and the expected service-provider idling
costs.

Unit arrivals with m servers give rise to queues of the type
D/G/m. When a batch of arrivals occur at an arrival epoch,
we obtain DB/G/m queues with B being the batch size. It
is clear that these models are quite similar to the individ-
ual and multiple-block scheduling protocols discussed in
the previous section. In fact, when arrivals are scheduled,
and a transient analysis is carried out (this implies a fi-
nite number of arrivals, n), the arrival processes in these
models are identical to those described in Theme A. That
is, they reduce to a single batch arrival process since the
total number of patients to be scheduled is known. How-
ever, meaningful analysis invariably requires steady-state
assumptions. In that case, n is infinite and the two types of
models diverge. The models also diverge when arrivals are
not scheduled and occur at random time epochs. Examples
of such formulations can be found in Mercer (1960, 1973),
Jansson (1966), Sabria and Daganzo (1989) and Brahimi
and Worthington (1991). We briefly discuss each of these
studies next.

Mercer (1960, 1973) does not optimize the appointment
system, but presents a queueing-based performance anal-
ysis when patients may arrive late, or may not arrive at
all. Jansson (1966) considers the problem of choosing the
optimal patient arrival interval and the initial number in
the queue at the start of operations to minimize total cost.
The article provides analysis of costs incurred in both the
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transient and the steady state when service times are ex-
ponentially distributed. Sabria and Daganzo (1989) relax a
key assumption in Mercer’s work. Mercer assumes that ar-
rivals always occur in the prescribed order. A customer who
fails to arrive by the end of his/her arrival interval balks.
Sabria and Daganzo (1989) allow out-of-sequence arrivals.
However, customers are served in the planned sequence,
which can cause some customers to wait while the server
idles. Brahimi and Worthington (1991) report the appli-
cation of transient analysis of queueing systems to actual
outpatient appointment scheduling problems. The arrivals
can be scheduled or random and service times are approxi-
mated by discrete distributions. They argue that the use of
analytical techniques can substantially reduce waiting time
without increasing server idleness when compared with the
current state of the practice.

As mentioned before, queueing models with random ar-
rivals also diverge from Theme A. A common problem ad-
dressed by such models is the problem of allocating medical
service capacity among distinct demand themes. Klassen
and Rohleder (1996) study the impact of different schedul-
ing rules in simulation experiments when the scheduling
environment differs along two dimensions: the mean ser-
vice time and the potential number of urgent calls. They
identify scenarios under which certain rules perform bet-
ter than others. Gerchak et al. (1996) consider the prob-
lem of reserving surgical capacity for emergency cases on a
daily basis when the same operating rooms are also used for
elective surgeries and surgery durations are random. They
assume surgery durations to be independent and identi-
cally distributed and formulate the problem as a stochas-
tic dynamic program. They show that the optimal amount
of capacity to reserve for emergencies is a function of the
amount of backlog (queue) for deferrable surgeries. Specif-
ically, less capacity is reserved for emergency arrivals when
the queue of patients waiting for deferrable surgeries is
longer. They also develop a fast algorithm for finding the
optimal number of deferrable surgeries to schedule on any
given day.

Models with unit arrivals are used to carry out policy
parameter optimization assuming a threshold policy for ca-
pacity reservation. Notwithstanding the fact that a thresh-
old policy is not optimal (see Gerchak et al. (1996) for de-
tails), these articles assume a threshold policy and propose
models for performance evaluation. Specifically, the goal is
to either study the impact of a given Ni or to compute opti-
mal values of Nis, where Ni is the threshold level for class-i
customers. A class-i customer is served if and only if fewer
than Ni servers are occupied. Taylor and Templeton (1980)
and Schaack and Larson (1986) use queueing models to ob-
tain performance measures such as average utilization and
overflow rates for a given set of threshold levels. Kolesar
(1970) and Esogbue and Singh (1976) focus on the problem
of finding the optimal threshold levels under a linear cost
structure. Patient and provider preferences are not modeled
in these studies.

4.3. Theme C

Gupta and Wang (2008) model a primary care clinic’s prob-
lem of choosing which appointment requests to accept to
maximize its revenue as a Markov Decision Process (MDP).
(An equivalent formulation can be obtained in a cost-based
setting as well.) They also model patient choices and show
that when the clinic is served by a single physician, the op-
timal booking policy is a threshold policy under a normal-
form patient-choice model. The class of normal-form choice
models is large, intuitively appealing, and includes all of
the commonly used models of discrete choice found in
the IE/OR and Economics literatures. Membership in the
normal-form class requires that the probability that a pa-
tient will select a particular available slot does not decrease
when fewer other slots are available.

When the clinic has multiple doctors, patients may choose
a more convenient time with a doctor other than their
PCP. This makes the optimal policy more complicated be-
cause patient–PCP mismatch lowers physician and clinic
revenues (O’Hare and Corlett, 2004). However, Gupta and
Wang show that for each physician, there exist computable
upper limits on the number of appointments that a clinic
should book. These limits depend on: (i) the total number of
booked slots in the clinic at the time of call; (ii) the number
of booked slots of the physician with whom an appoint-
ment is requested; and (iii) on whether or not the requested
appointment results in a patient–PCP mismatch. They use
the bounds to develop heuristics for appointment booking
control, which are tested and found to perform very well in
simulation experiments based on real clinic data.

4.4. Related work

The problem of allocating service capacity among several
competing customer classes, who arrive randomly over a
period of time, has been studied in diverse applications in-
cluding airlines, hotels and car rentals. In particular, airline
Revenue Management (RM) has been studied particularly
well; see McGill and Van Ryzin (1999) and Talluri and Van
Ryzin (2004b) for detailed reviews.

Whereas capacity reservation is also an important as-
pect of health care access management, there are impor-
tant differences that make it difficult to simply “tweak”
existing models to fit the needs of the health care indus-
try. For example, of the various models suggested for air-
line RM, comparisons with the Expected Marginal Seat
Revenue (EMSR) model (see, Belobaba (1989)) help to
highlight the complexity of the health care scenario. In
the two fare-class EMSR model, the optimal policy re-
serves a certain number of seats exclusively for higher fare-
class customers. The lower fare-class customers are not al-
lowed to book once a certain number of seats (equal to the
booking limit) have been sold. The consumers’ trade-off
is between buying a cheaper and inflexible ticket versus a
more expensive ticket with greater flexibility. In the health
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care applications, the patients’ choice function has more
elements. A patient chooses a particular service provider
(which determines service quality and clinic revenue), a par-
ticular day of week (service delay) and a particular appoint-
ment time (convenience). Prices are not used to control ac-
cess to clinic capacity. Instead, clinics and physicians place
restrictions on the availability of different slots to different
types of patients. These features and the need to accommo-
date urgent demand make access control more difficult in
health care applications; see Talluri and Van Ryzin (2004a)
for recent efforts to model consumer choice in airline RM
models.

Another important aspect of health services is the ne-
cessity to take care of urgent demand. In a typical service
industry setting, if a particular demand cannot be satisfied,
there is an economic penalty to the service provider and it
is reasonable to assume that excess demand is lost, possibly
served by other service providers. In the health care setting,
more urgent demand must be satisfied. As mentioned ear-
lier, capacity is often soft and service providers can vary
available capacity to a certain degree by working faster,
double booking and working extra hours. However, there
are limits to how much extra capacity can be made avail-
able by using such approaches. At the same time, the need
to respect patient choices puts limits on the extent to which
capacity can be pooled to take care of peak demand. Many
service providers belong to large health care networks with
urgent and emergency care facilities. These arrangements
help to take care of unplanned and high-priority demand,
but the costs to the health network are higher. All these
features make appointment scheduling more challenging in
the health care setting.

Many decades of research has been devoted to the prob-
lem of scheduling a finite number of jobs on one or more
parallel or sequential machines (see Leung (2004) for a
collection of recent articles). Variations include sequence-
dependent changeover times, resource-use constraints, and
both earliness and tardiness penalties. The vast majority of
this literature considers deterministic scheduling problems,
although in recent years, stochastic versions of these prob-
lems have also attracted interest. While this literature has
some elements in common with the problem of appoint-
ments scheduling, there are key differences in the charac-
teristics of the two problem scenarios. For example, in job
scheduling problems, the jobs (raw material kits) are as-
sumed to be available at the time of choosing a processing
schedule, or in some cases at a known release time. The
release (equivalently appointment) time itself is normally
not considered a decision variable in such problems. Fur-
thermore, the nature of performance measures is typically
quite different between appointment scheduling and ma-
chine scheduling problems. For instance, jobs do not accrue
a waiting cost while they wait to be processed unless they
are tardy with respect to a due date. Also, machine capacity
is typically assumed fixed, and it can neither speed up, nor
work on two jobs in parallel when demand is high.

Dynamic demand arrivals are typically not modeled in
the machine scheduling context. Instead, the vast majority
of work on machine scheduling assumes that the number of
jobs to be scheduled is known. This amounts to the assump-
tion of a single batch arrival process in the terminology
introduced earlier in this paper. Thus, at best the machine
scheduling literature is relevant for a subset of problems
encountered in the health care setting. Finally, even though
a certain pairing of jobs and machines may be preferred on
account of setup and processing time efficiencies, jobs do
not exercise their choice in this matter. This minimizes the
possibility of independent and competing incentives which
patients and providers often have in the health care set-
ting. On account of these differences, research on machine
scheduling does not translate directly to the health care
setting. In fact, it is the authors’ hope that this paper will
encourage new modeling effort to address the specific needs
of the health care industry.

5. Open challenges

In this section we describe a series of open research prob-
lems that either relate directly to the choice of access rules,
appointment start times and response to unplanned de-
viations, or indirectly affect the efficiency of appointment
systems.

5.1. Indirect patient waiting

The vast majority of the literature we reviewed earlier in
this article considers direct waiting and seeks to achieve a
satisfactory balance between patients’ direct waiting and
providers’ utilization during a service session. In reality,
appointment systems affect both direct and indirect wait-
ing times. However, modeling indirect waiting is challeng-
ing for a variety of reasons. First, unlike direct waiting for
which the end of the session is a natural termination of
the planning horizon, indirect waiting problems are more
realistically modeled as infinite-horizon problems. Second,
since patients attempt to find a suitable appointment time
with one of several desired service providers over one of
several future days that might be acceptable, the scheduling
decisions made on a certain day for a particular physician
are coupled with those of other days and other physicians.
There is no obvious decomposition that can be applied to
simplify the problem in a manner analogous to the airline
seat booking control problems (Lautenbacher and Stid-
ham, 1999). Furthermore, admission control models for
queues (see, e.g., Stidham and Muckstadt (1985)) are also
inappropriate because upon admission, customers are not
necessarily served in the order of arrival at the earliest time
that the server becomes available. Rather patients pick an
appointment with a particular provider at a particular time
in the future. Finally, an additional complicating factor is
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the set of access constraints imposed by provider prefer-
ences for the sequence and mix of cases each day.

It would be valuable to develop access planning models
that consider both aspects of patients’ waiting in surgery
and specialty care appointments scheduling. (Note that di-
rect wait is not a serious problem for many primary care
clinics because most services can be completed in a stan-
dard appointment length. Clinics that overbook to mitigate
the impact of cancelations and no-shows are an exception
to this rule. We discuss such issues in Section 5.2.) How-
ever, modeling both types of waiting times can be a difficult
problem. For example, with a unit arrival process, the re-
quired model needs to consider two time scales: one for re-
quests for appointments that arrive continuously over time,
and another for available future sessions (daily or weekly)
that are updated periodically. At the end of each planning
period, the expired session falls off from one end of the
appointment book (typically between 90 to 180 days) and
a new session appears at the other end. The presence of
different time scales makes such problems difficult to solve
analytically.

One possible approach might be to develop two separate
but linked models, not unlike the two-step sequential ap-
proach used by some hospitals to schedule surgeries. The
first model would use a day (or week) as a unit of time and
determine aggregate amounts of capacity to make available
(at the subspecialty level) for each future period in the ap-
pointment book based on the current state of appointments
and an estimate of direct waiting times generated by the
realized mix of booked appointments. The second model
would determine the optimal sequence and appointment
start times after accounting for each new request that is ac-
cepted for each future service-provider/OR session. A new
estimate of direct waiting times will be developed, which
will allow the first model to be updated at regular intervals.
Although the implied decomposition, and the sequential
determination of start times, is not necessarily optimal, a
version of this approach is already used by some service
providers. Thus, in addition to being tractable, the results
of this approach may be relatively easy to implement.

5.2. Late cancelations and no-shows

The medical and IE/OR literature on late cancelations and
no-shows (hereafter referred to as no-shows) falls into the
following four categories: (i) articles that focus on esti-
mating no-show rates and identifying correlations between
no-show rates and patient characteristics (e.g., Dove and
Schneider (1981)); (ii) articles that use clinic data to doc-
ument the time and money effects of no-shows in outpa-
tient clinics (e.g., Moore et al. (2001)); (iii) articles that
use models to estimate the effects of no-shows (e.g., Bai-
ley (1952) and Ho and Lau (1992)); and (iv) articles that
study the use of overbooking to mitigate the impact of
no-shows (e.g., Kim and Giachetti (2006) and LaGanga
and Lawrence (2007)). Health care management journals

also contain a variety of suggestions for reducing no-shows,
e.g., sending postcard reminders to patients. However, these
approaches do not remove the fundamental obstacles faced
by patients who miss appointments. Examples include lack
of transportation, day care and inability to get time off from
work without losing pay.

Evidence suggests that absentee patients tend to be
younger, male, of lower socioeconomic status (with either
state medical assistance or no insurance), divorced or wid-
owed and have a record of missed appointments (Moore
et al. (2001) and Lacy et al. (2004)). Whereas the vast ma-
jority of articles examine clinical data to study correlations
between no-show rates and patient characteristics, Lacy
et al. (2004) report a study in which they interview patients
to identify reasons why patients miss appointments. They
identify three major reasons for no-shows—discomfort ex-
perienced during the appointment, patient perception that
the health care system disrespects their time and beliefs, and
patient misconceptions about the consequence of missed
appointments. Discomfort can be caused by diagnostic
tests, blood draws, needles and the fear of bad news. Per-
ceptions about disrespect are caused by long indirect and
direct waiting times and the need to get one or more refer-
rals before being able to access the right service provider
such as a specialist. Finally, patients often underestimate
the consequences of missing a medical appointment believ-
ing that the time would be used by the busy service provider
to catch up during the day.

For the setting described in Theme A of Section 4, it is
possible to include the effect of no-shows on system costs
and optimal appointment lengths by modifying the pro-
cedure time distributions. Procedure times are either zero
with the no-show probability, or a positive random vari-
able otherwise. However, this approach is not suitable for
Themes B and C because the number of patients who would
need to be scheduled in a session length is unknown at the
time of booking an appointment. Therefore, for such cases,
especially in outpatient clinic settings with predetermined
appointment lengths, IE/OR literature has focused on iden-
tifying the optimal overbooking rules.

Kim and Giachetti (2006) model a session of a clinic,
and estimate no-show rates, unit costs of unfilled appoint-
ment slots, patient direct wait, and provider overtime, and
the probability that the clinic would be able to fill slots
in excess of its nominal capacity. They use these data to
calculate the total cost for different values of overbook-
ing levels and identify the optimal overbooking level. They
also compare their model to a simpler one in which the
number of overbooked appointments equals the expected
number of no-shows. They report that their method results
in significantly higher revenue. Kim and Giachetti (2006)
do not model each appointment individually. In reality, pa-
tient waiting times and provider overtime are affected by
the times when overbooked patients are scheduled to arrive
and the appointment times of patients who do not show up.
This feature of health care appointments is also what sets
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the underlying overbooking problem apart from its analog
in the transportation setting; see Zhao and Zheng (2001)
for an example of the latter.

LaGanga and Lawrence (2007) carry out a computer sim-
ulation study to estimate the provider overtime and patient
waiting time. They do model individual patient appoint-
ment times but their model concerns a single provider with
deterministic service times, fixed no-show rate and a tar-
get overbooking level that equals the ratio of the number
of appointment slots and the mean show-up rate. They
argue that overbooking can lead to greater throughput
without significantly higher waiting times and clinic finish
times.

There are opportunities for making a significant contri-
bution to this topic in future studies. For example, although
evidence suggests that longer direct waiting times are a key
reason why patients tend to miss appointments, none of
the overbooking models have considered a linkage between
suggested overbooking targets and the possible increase in
no-show rates that could be caused by greater direct waiting
times. Similarly, overbooking in multiple provider settings
and the benefits of decreased indirect waiting times (because
more patients are scheduled per session) are not considered.
The interaction between no-shows and walk-ins presents
another opportunity for future contributions. Since walk-
ins occur at random time epochs and a patient is not deemed
a no-show until several minutes past the scheduled appoint-
ment time (the authors have encountered a threshold of 10
minutes in several clinics), managing both walk-ins and no-
shows is a particularly difficult challenge.

5.3. Patient-specific resource allocation

The third class of problems involves patient-specific re-
source allocation. Patients that have the same diagnoses can
nevertheless have significantly different resource require-
ments. In fact, the length of a surgical procedure is corre-
lated with a variety of known patient characteristics. For
example, the time it takes to perform an endoscopy pro-
cedure depends on factors such as the presence of polyps;
the discovery of one or more polyps requires a biopsy which
lengthens the procedure time. Age is a significant risk factor
for colon cancer; thus it is correlated with longer procedure
times.

There are opportunities for patient-specific resource al-
location in specialty services as well. For example, chronic
diseases such as arthritis and diabetes tend to have their
onset later in life, and both are also influenced by gen-
der. Therefore, resource planning at a tertiary care facility,
where patients travel significant distances to receive health
services, may benefit from considering the attributes of the
population of patients whose visits are scheduled in a partic-
ular future week. A higher than average age, or an atypical
mix of male versus female patients would affect the optimal
balance of resources that should be planned.

How can patient-specific information be used to improve
resource allocation decisions? We propose future research
focusing on: (i) the discovery of risk factors such as age,
gender, body mass index and co-morbidities (multiple
complicating diagnoses that might influence the medical
outcomes for each individual patient), followed by cluster-
ing of patients into different classes based on anticipated
capacity utilization and urgency; and (ii) the development
of multi-class scheduling and capacity reservation models
that account for the variability among classes in patients’
needs and resource requirements. The development of such
models offers the potential to reduce waiting time and
simultaneously increase patient throughput and provider
utilization.

5.4. Patient preferences

The fourth class of problems concerns patient choices. Vir-
tually all IE/OR models of appointment systems ignore
patient scheduling preferences. In reality, patients do exer-
cise choices available to them. Incorporating patient pref-
erences results in models that are mathematically complex
and computationally challenging. These issues are further
complicated by the fact that patient choice patterns are dif-
ficult to glean from available time-stamp data. Specifically,
computerized data records track the date and time of each
patient’s request for appointment and the date and time of
the appointment. However, the intervening steps are not
recorded. That is, these data do not capture which slots the
patient preferred more than the one (s)he actually picked,
from the set of choices that are offered. Therefore, it is nec-
essary to develop dynamic models of patient preferences
from longitudinal appointment booking data, without in-
creasing the data collection burden. This can be accom-
plished by using heuristic rules to first classify patients into
different choice-based categories and subsequently using
dynamic learning algorithms (assuming non-stationary en-
vironments) to update and refine this classification scheme.
A similar approach can also be used for developing individ-
ualized treatment and wellness programs based on clinical
data and physician inputs.

Knowing volumes and preference characteristics of pa-
tients in each category—e.g., choice with respect to same-
day versus future appointment, an appointment with the
PCP versus another service provider and morning versus af-
ternoon appointment—the clinic can better match capacity
to demand by using strategies such as staggering physicians
working hours, making more slots available in the afternoon
and encouraging subpopulations without a time-of-day
preference to take appointments when the clinic anticipates
smaller demand from other subpopulations. Mathematical
models can also help develop better rules for protecting the
right number of slots for urgent (same-day) requests while
maximizing the clinic’s revenue. Such decision problems can
be modeled within the framework of a MDP model (see
Gupta and Wang (2008) for an example).
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5.5. Incentive-based modeling

The fifth class of problems concerns incentive-based mod-
eling. Much of the previous literature deals with cost-based
models. As we argued in Section 3.4, the burden of these
costs falls unequally upon the health service network, the
service providers (physicians) and the patients, with the
result that it is difficult to find consensus about the rela-
tive weights of different types of costs. An incentive-based
model presents a more natural setting. However, it too
can be mathematically challenging due to the presence of
multiple objectives and the possibility of both cooperative
(bargaining) and non-cooperative approaches to resolving
differences. Whereas the economics and the recent IE/OR
literatures on supply chain management contain many ex-
amples of the use of game-theoretic models to capture
different incentives, there are relatively few examples that
pertain to health care.

Incentive-based models could be used to determine the
lengths of OR block times that should be assigned to each
subspecialty (group practice). A key difficulty that OR man-
agers face when making such decisions, either on a periodic
basis or whenever new OR capacity is added, is that the
true demand for OR time in each subspecialty is unknown.
OR managers can use incentives whereby surgeons, who are
likely to have more accurate demand information, are en-
couraged to report the true demand. OR managers can use
a principal-agent framework with asymmetric information
(examples of this approach can be found in Fudenberg and
Tirole (1991), Salanié (1997), and Bolton and Dewatripont
(2005)) to model the problem of choosing incentives. The
OR managers’ problem is that of finding a menu of OR
block times and corresponding payment functions for each
subspecialty such that it is in the best interest of the sur-
geons to choose the overall best capacity allocation, i.e.,
one that maximizes the combined benefit to the hospital,
the surgeons and the patients.

5.6. Scheduling in highly constrained environments

The sixth class of problems concerns health care delivery
environments that are highly constrained. For example, out-
patient surgery centers must deliver many services in a spe-
cific sequence including patient check-in, nurse intake, sur-
gical preparation, surgery, recovery and check out (Cayirli
and Veral, 2005, 2006). Each step requires availability of
one or more people resources, such as clinical assistants,
nurses, anesthesiologists and surgeons, as well as physical
resources, such as operating rooms, diagnostic devices, sur-
gical tools and other equipment. Good outcomes in surgery
require that a particular sequence of activities be delivered
in a short period of time with minimal waiting at each stage.
However, significant uncertainty in the duration of services
leads to challenging appointment scheduling problems. The
high fixed cost of resources puts pressure on facility man-
agers to schedule high volumes of patients each day, whereas

uncertainty in service duration creates resource-use con-
flicts that are exacerbated by tight schedules. When these
factors are added, the environment is one in which it is
difficult to determine optimal appointment times for the
start of patients’ treatments. The problem is further com-
pounded by the occurrence of patient no-shows, tardiness
of providers and staff absences.

In order to develop effective strategies for dealing with
highly constrained scheduling scenarios, it is often nec-
essary to first quantify the economic impact of different
flexibility enhancing choices assuming that all subsequent
scheduling decisions are made optimally. Such choices
could include redundancy (hospital purchasing multiple
copies of critical equipment), cross-training of staff and in-
vestment in flexible equipment (e.g., multi-functional beds
that can be used for different patient types). The task of
quantifying the benefits of these strategies in highly con-
strained scheduling environments seems well suited for fu-
ture modeling efforts.

5.7. Health system design

The seventh class of problems concerns the design of health
care delivery systems. Health care networks realize that the
demand for different health services are correlated. For ex-
ample, patients with chronic diseases have a need for co-
ordinated packages of care—a patient with diabetes may
need regular access to a PCP along with specialists such
as endocrinologists, cardiologists and neurologists. There-
fore, the health care industry is experimenting with differ-
ent approaches for grouping services and designing multi-
specialty service facilities. In contrast, the extant IE/OR
health care literature has tended to focus separately on each
delivery environment. Therefore, the non-traditional modes
of delivery discussed below have emerged without the ben-
efit of formal models for planning and coordinating access.

Some primary care clinics are experimenting with the in-
troduction of specialists on site, such as a psychiatrist or a
dermatologist. Also, at the primary care level, the concepts
of retail health services and concierge service are emerg-
ing side by side. For example, some service providers cater
only to a limited number of routine diagnoses. Patients can
walk-in and expect short waiting times, but no attempt is
made to ensure that patients can consult the same provider
at each visit. Minute Clinics (www.minuteclinic.com) are
an example of such clinics (see Freudenheim (2006) and
Phelps (2006) for recent news stories). At the other end of
the spectrum, some clinics offer concierge service. Patients
enroll with a PCP and pay a fixed fee up front. In return,
they get fast personalized service from their PCP who also
bills them (or their insurers) for each visit. An example of
this type of clinic is the Park Nicollet Clinic in Minneapolis
(Haeg, 2002).

The development of new technology and less invasive
surgical procedures (e.g., laproscopic surgery) has shifted
a large volume of surgeries from the inpatient to the
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outpatient setting in recent years. Some surgical services
are being offered via a new delivery system called Ambula-
tory Service Centers (ASCs). ASCs perform elective surg-
eries in an outpatient setting that can be completed safely
with minimal supporting resources. More complex surg-
eries that require inpatient care and other supporting ser-
vices (e.g., multi-specialty surgeon teams) are performed at
hospitals. In the UK, certain routine elective procedures,
such as hip and knee replacements without co-morbidities,
are performed at special diagnosis and treatment centers.
Such centers benefit from economies of scale and focus
(Gupta, 2005). The effects of introducing focused treatment
centers on hospitals’ case mix has been studied (Bowers and
Mould, 2005). However, with the availability of different or-
ganizational choices at the primary, specialty and surgical
care settings, network models are needed to determine who
should provide what services, and how to coordinate access
to service providers. Such efforts may require the model-
ing of a region’s population with realistic medical state-
transition models to estimate the demand for services and
the impact of different network design choices.

5.8. Education

The dissemination of IE/OR research to the health care
community is an important challenge that has not been ad-
dressed well. IE/OR models have been successfully used for
improving the efficiency of service systems in many indus-
tries including airlines, hotel chains, car rental agencies and
natural gas and power. However, the same degree of success
has not yet occurred in the health care industry, leading to
lack of awareness and skepticism about the potential bene-
fits of IE/OR methodologies.

Physicians occupy top management positions in many
health care systems. Typically they have undergraduate de-
grees in disciplines such as biology, chemistry and psychol-
ogy. It is much less common for physicians to have training
in mathematics and engineering. Moreover, the research
methodology that health care providers are most familiar
with is the statistical testing of hypotheses through ran-
domized control trials. The methodology of casting deci-
sion problems in mathematical models is neither familiar,
nor well understood. Therefore, there is a need to dissem-
inate engineering research and case studies of successful
implementation of IE/OR methods in high-impact health
care journals. It is also important to develop educational
offerings of IE/OR methods for health care professionals
including short-courses, workshops and course offerings in
medical and graduate programs at academic medical cen-
ters.

6. Concluding remarks

In this paper, we summarized key issues in designing and
managing patient appointment systems for health services.
This was intended to clarify the level of complexity

encountered in the health care environment. We provided
a taxonomy of complicating factors, which made it easier
to summarize the contributions of previous research in this
area. We exposed open research areas and opportunities
for future work.

It is our position that existing models in the manufac-
turing, transportation and logistics areas cannot be easily
“tweaked” to fit the health care environment, and that this,
in part, accounts for the lack of adoption of these models
in the health care setting. In fact, new models are needed to
address health-care-specific issues, such as the soft nature of
capacity, the modeling of patient and provider preferences,
the stochastic and dynamic nature of multi-priority demand
and the need to recover from deviations. Moreover, differ-
ent modes of organizing health services delivery, as well
as technology-led changes in practice norms, provide new
opportunities in the area of health services network design.

Some experts see investments in EMR and HIT infras-
tructure as the key to improving quality and efficiency, and
reducing costs of health care delivery systems (Office of the
National Coordinator for Health Information Technology
2006). These thoughts were echoed by President Bush in
his 2006 State of the Union address, when he said “We
will make wider use of electronic records and other health
information technology to help control costs and reduce
dangerous medical errors” (The Washington Post January
31, 2006). Whereas data availability is necessary for success-
ful calibration of IE/OR models, and EMRs make it easier
to implement algorithms for improving access, HIT on its
own does not offer a complete solution. Analytical tools are
needed to convert data into information, and subsequently,
information into smart decisions. IE/OR models can also
help inform the designers of health care information sys-
tems about what types of data are needed to support future
operational decisions.
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