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Abstract In recent years, Markov decision processes (MDPs) and partially obser-
able Markov decision processes (POMDPs) have found important applications to
medical decision making in the context of prevention, screening, and treatment of
diseases. In this chapter, we provide a review of state-of-the-art models and meth-
ods that have been applied to chronic diseases. We provide a thorough tutorial about
how to formulate and solve these MDPs and POMDPs emphasizing some of the
challenges specific to chronic diseases. Then, we illustrate important considerations
for model formulation and solution methods through two examples. The first exam-
ple is an MDP model for optimal control of drug treatment decisions for controlling
the risk of heart disease and stroke in patients with type 2 diabetes. The second
example is a POMDP model for optimal design of biomarker-based screening poli-
cies in the context of prostate cancer. We end the chapter with a discussions of the
challenges of using MDPs and POMDPs for medical contexts and describe some
important future directions for research.

1 Introduction

Chronic diseases are the leading cause of death and disablement in many countries.
Although these diseases cannot be cured, they can be controlled by screening and
treatment. Clinicians are tasked with deciding which screening and treatment op-
tions are most beneficial for a patient. These decisions are made sequentially over
long periods of a patient’s life and are made in an uncertain environment. Although
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clinicians can observe a patient’s current health or test results, there is uncertainty in
the future progression of the disease, the effect of treatment on the patient, and even
the correctness of test results. Medical decisions have grown even more complicated
due to the aging patient population. Older patients often have multiple chronic con-
ditions, and treatment for one condition may worsen another. Health care providers
have recognized these growing problems and have responded with increased expen-
ditures on data collection and tracking systems. With the growth in medical data
comes the need for analytical methodology to convert these data into information.
Recently, operations research methods have proven to be powerful tools to analyze
these data to guide screening and treatment decisions.

Markov decisions processes (MDPs) are increasingly being used in the analysis
of medical decisions, especially chronic disease screening and treatment decisions.
Both screening and treatment decisions are characterized by large state spaces that
define the severity of the disease, patient-specific clinical risk factors, and med-
ication histories, and these decisions have uncertain outcomes due to differences
among patients such as genetic, environmental, and dietary factors. The framework
of MDPs lends itself well to these decisions since they are made sequentially over
time in a fundamentally stochastic environment. Further, partially observable MDPs
(POMDPs) are useful for studying systems in which the true state of the system is
not known exactly, which is usually the case when screening for a chronic disease.

Modeling screening and treatment decisions using MDPs is not without its chal-
lenges. These clinical decisions take place over long periods (sometimes decades)
under constraints due to medication conflicts, clinical practice requirements, or bud-
get constraints. Furthermore, the influence of patient’s treatment and screening his-
tory on future decisions leaves these models subject to the curse of dimensionality
due to dramatic increase in the size of the state space that can be caused by this his-
tory dependence. As a result, optimization of the stochastic and sequential decision
making process gives rise to computationally-intensive problems that are difficult to
solve, even with state-of-the-art algorithms and computing resources. Fortunately,
many of these problems have promising structural properties that can be exploited
to achieve meaningful theoretical insights and lead to efficient exact and/or approx-
imation methods.

The remainder of this chapter is organized as follows: in Section 2, we discuss
some applications of MDPs to chronic diseases. In Section 3, we discuss how to
formulate an MDP/POMDP model in the context of chronic disease and solution
methods that can be used to determine optimal policies for these models. In Sec-
tions 4 and 5, we give in-depth descriptions of an MDP used for the treatment of
type 2 diabetes and a POMDP model used for screening of prostate cancer. We end
the chapter with discussion of the open challenges that need to be addressed when
using MDP/POMDP models for chronic diseases in Section 6 and some concluding
remarks in Section 7.
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2 Background on Chronic Disease Modeling

Surveys of operations research applications in healthcare can be found in [1, 2, 3].
Many of the examples are in the context of healthcare operations management,
which has been an important application area for decades. In contrast to operations
management, the study of disease screening and treatment policies has a shorter
history and is confined to a relatively small, but fast growing, number of topic areas
including liver and kidney transplant decisions [4, 5, 6, 7, 8, 9, 10], breast cancer
screening [11, 12], intensity modulated radiation therapy [13, 14, 15] and brachy-
therapy [16] for cancer treatment, the treatment of HIV [17], and public policy de-
cisions related to the transmission of communicable diseases [18, 19].

MDPs can be used to study sequential decisions made in uncertain environments,
which is why they are so powerful for the analysis of chronic disease screening and
treatment. Before describing how these models are formulated, we provide some
motivation for the study of MDPs in the context of chronic diseases by giving the
following examples of clinically-relevant questions that have been answered:

• At what point should a patient with HIV initiate highly active antiretroviral ther-
apy (HAART)?
Human Immunodeficiency Virus (HIV) is a virus that attacks the CD4 white
blood cells to the point the body can no longer protect itself against infections
and disease. Acquired Immune Deficiency Syndrome (AIDS) is caused by HIV
and eventually leads to death. Once someone acquires HIV, the virus will remain
in the body for the remainder of that person’s life. Highly active antiretroviral
therapy (HAART) prevents the virus from multiplying and is the standard treat-
ment for HIV patients. However, it was debated whether to “hit early, hit hard”
with HAART, as was the treatment model in the late 1990s, or to wait until the
CD4 count falls between 200 and 350 as suggested by more recent guidelines.
The authors of [17] used an infinite-horizon MDP with the objective of maximiz-
ing a patient’s total expected lifetime or quality-adjusted lifetime to answer this
open question. The states of the MDP were defined by a patient’s CD4 count,
and at each monthly decision epoch, the decision was to “initiate HAART” or
“wait to initiate HAART”. The authors proved that there exists a control-limit
policy, which initiated therapy if and only if the CD4 count falls below a certain
threshold. The optimal policy suggested that HAART should be initiated earlier
supporting the “hit early, hit hard” approach to HIV treatment.

• When should women receive mammograms to screen for breast cancer?
Breast cancer is the second leading cause of cancer death for women in the United
States. Detecting breast cancer in its early stages allows for treatment and de-
creases the risk of a breast cancer mortality. A mammogram is an x-ray image
of the breast that can be used to detect breast cancer before a woman develops
symptoms. If a mammogram shows a suspicious area, a biopsy can be performed
to determine if the abnormality is cancer. While these tests are useful in deter-
mining if a patient has cancer, they are not perfect. Mammograms can lead to ra-
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diation exposure and pain, and biopsies are an invasive procedure associated with
pain and anxiety. Further, mammograms can give false negative and false posi-
tive results. There are significant differences between the guidelines published by
health organizations within the U.S. and worldwide. The authors of [20] created a
finite-horizon POMDP model to determine personalized mammography screen-
ing policies that depend on a woman’s personal risk factors and past screening
results. The unobservable states represent which stage of cancer the patient has -
no cancer, noninvasive cancer, invasive cancer, invasive cancer under treatment,
or death. The actions of this POMDP are “wait” and “mammography”. If the
action chosen is mammography, the decision maker can observe a positive or
negative mammogram result. If the action is to wait, the patient can give a self-
detection result that is either positive or negative. If a mammogram is positive,
the patient will get a biopsy, and if a self-detection is positive, the patient will get
a mammogram. With these observations in mind, the decision maker can update
her belief state which describes the probability that a patient is in any given state
given the history of mammogram results. The authors find that a control-limit
policy exists that depends on the risk of noninvasive and invasive cancers and
that a patient’s screening history may affect the decision of whether to perform a
mammography or not.

• When should a patient with end-stage liver disease accept a living-donor trans-
plant? For patients with end-stage liver diseases such as primary biliary cirrho-
sis, hepatitis C, and acute failure (fulminants) disease, organ transplantation is the
only treatment option. Provided that a patient with end-stage liver disease has a
willing living donor, it might seem the patient should receive a transplant as soon
as possible. However, depending on the quality of the match with the donor and
the current health of the patient, this decision might give a lower expected total
lifetime for the patient compared with the decision to wait. To analyze this situ-
ation, the authors of [4] create an infinite-horizon MDP model in which the state
space is represented by a patient’s “Model For End-Stage Liver Disease”(MELD)
score. The MELD score quantifies the severity of end-stage liver disease based
on laboratory results and is used for the purpose of transplant decisions. Higher
MELD scores are associated with more severe liver disease. At each daily deci-
sion epoch, the actions are “transplant” and “wait”. If the decision is to wait,
the patient will receive a reward of one life day and then progress probabilis-
tically among the health states or die. Once the decision to transplant is made,
the patient transitions into an absorbing state and receives a reward correspond-
ing to the expected life days associated with the health of the patient at the time
of the transplantation and the quality of the match with the donor. The authors
prove that the optimal policy has a control-limit structure in which the patient
will only accept a liver of a given quality if her MELD score is worse than the
control-limit. For example, a MELD score of 20 is the control-limit given that
the quality of the match has a score of 4. Therefore, a patient with a MELD score
of 25 should accept this liver to transplant while a patient with a MELD score of
15 should wait to transplant.
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These examples illustrate some treatment and screening decisions that can be
analyzed using MDPs. More examples of MDPs used in medicine can be found in
the reviews by [21, 22]. This chapter differs from these previous reviews in that we
provide an in-depth discussion of how to formulate MDP models for chronic disease
screening and treatment problems. We also provide detailed examples that illustrate
MDP model formulation, validation, solutions, and interpretation of results. Finally
we compare and constrast perfectly observable and imperfectly observable contexts.
With this motivation, we will proceed to more formally describe how MDPs can be
formulated to generate insights for screening or treating a chronic disease.

3 Modeling Framework for Chronic Diseases

The remainder of this chapter will focus on the modeling framework for MDPs
specifically in the context of screening and treatment applications. This section will
provide a tutorial on how to formulate, solve, and validate these models. In the
following sections, we will provide several examples to illustrate the development
of the formulation and potential challenges faced by researchers.

3.1 MDP and POMDP Model Formulation

To build an MDP model of a chronic disease treatment process, one must define the
decision epochs/ time horizon, state space, action space, transition probabilities,
and rewards as they relate to the specific disease and screening/treatment options
being considered.

Decision Epochs / Time Horizon: Treatment and screening decisions are made
at each decision epoch. The length of time between decision epochs for a chronic
disease model usually corresponds to the time between treatment and/or screening
decisions made by the clinician. For instance, in the case of liver transplantation,
decisions about whether to transplant or not could be made daily, while in the case
of type 2 diabetes, decisions about which medications to initiate are more likely to
be made less frequently (e.g. every 6 or 12 months based on clinical guidelines). De-
termining the ideal time interval requires some understanding of the disease context
and clinical practice.

Another modeling choice is whether to consider a finite-horizon formulation, in
which there are a finite number of decision epochs, or an infinite-horizon formula-
tion. While the patient will die in a finite amount of time, some researchers use an
infinite-horizon approach for treatment decisions when the time between epochs is
short relative to the length of the horizon over which decisions are made. For ex-
ample, in organ transplantation, if the decision epochs are daily, it may be suitable
to model use an infinite-horizon. Usually infinite-horizon problems are associated
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with an absorbing state that is reached with probability 1, such as a post-treatment
absorbing state. Moreover, infinite-horizon models are often stationary, i.e., model
parameters do not vary over time.

State Space: The state space of the model represents the information that would
be useful to a clinician when making decisions regarding a patient. A state vector
typically includes the patient’s health status, demographic information, and relevant
medical history.

A patient’s health status is usually defined by a number of clinical risk factors
or a risk score that can be used by clinicians to predict the severity of a disease or
the likelihood of developing a disease. For example, when determining whether or
not to transplant a liver, clinicians consider a patient’s MELD score which depends
on a number of laboratory values that are useful in determining the severity of liver
disease. While MELD scores are integer-valued, other metabolic risk factors, such
as body mass index (BMI), are continuous. Most MDP models used for medical de-
cisions discretize the true continuous state space to reduce the computation needed
to solve the model. A finer discretization may be more representative of the true
continuous state space, but it also increases the size of the state space and there-
fore the computation required to solve the model. Further, a finer discretization will
decrease the number of observed transitions for some state-action pairs introducing
more sampling error into the estimates of the transition probabilities. [23] provides
a discussion of the trade-off between the model error introduced with a more coarse
discretization and the sampling error that is associated with a finer discretization.

A patient’s demographic information can be important for defining the state space
of a model. The dynamics of some diseases vary depending on the demographics of
the patient such as age and race. For example, [11] considers age because older
women are at higher risk for developing breast cancer, but breast cancer is less
aggressive in these women. These dynamics may be important in determining the
optimal treatment or screening policies, but incorporating this information might
require formulation and validation of unique models for these different populations.

Information about a patient’s medical history, such as medication history or his-
tory of adverse events, may affect treatment decisions. For example, once a patient
has had one heart attack, she is at increased risk to have a second heart attack. Al-
though this history is important, MDP models require that the transitions among
states must maintain the Markov property, i.e, the next state may only depend on the
current state and the action taken. To maintain this property, it is necessary to in-
corporate any necessary history of the patient into the state definition. For example,
the state definition may include which medications a patient has already initiated or
how many adverse events the patient has already had.

In most MDP models of chronic disease, there is an absorbing state representing
major complication and/or death. In some models, there are separate death states
depending on the cause of death (e.g. death from a heart attack, death from other
causes). It may be necessary to use more than one absorbing state when absorbing
states that are reachable from a given health state vary or when rewards vary depend-
ing on the absorbing state that is reached. Defining the state space is closely tied to
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what sources exist to estimate transition probabilities, such as statistical survival
models or patient data.

POMDPs are a generalization of MDPs in which the decision maker does not
know the state of the system with certainty. This generalization is particularly useful
within the context of chronic disease, because often clinicians cannot be 100% sure
of the health state of their patients. While screening and diagnostic tests provide
valuable information, these tests sometimes give false positive and false negative
test results which leaves the true health state of the patient uncertain. In a POMDP,
the state space is defined by a core process and an observation process (also referred
to as a message process). With respect to chronic diseases, the core process corre-
sponds to the true health of a patient, such as cancer-free, has non-invasive cancer,
has invasive cancer, in treatment, or dead. To a clinician, the first three states are un-
observable, meaning that the clinician cannot know with certainty the true state of
the patient. The observation process corresponds to observable test results, such as a
mammogram. The core process and the observation process are tied together prob-
abilistically through an information matrix with elements that define probabilities
of a particular observation given a particular core state. For example, the decision
maker may know the true and false positive and negative rates of a biopsy based on
clinical studies. Using Bayesian updating, the relationship between the core and ob-
servation processes and the observed test result can be used to create a belief state.
The belief state is a probability distribution describing the believed true state of the
system based on the decision maker’s past observations. For additional details spe-
cific to POMDPs, the reader is referred to [24, 25].

Action Space: To identify the action space of the MDP, one must identify which
screening or treatment options to consider. In the case where there is a clear “best”
treatment option, the action space might be only two actions: treat the patient with
the best therapy or wait. These are typically referred to as optimal stopping-time
problems in the literature, because the decision maker aims to choose the optimal
time to stop the process and enter the absorbing post-treatment state. For instance,
deciding when to transplant an organ is usually a stopping-time problem with the
action space being transplant or wait to transplant.

For some diseases, it is not clear which therapy is the best or different therapies
may be used together to treat the patient. In these cases, the action space can grow
quite large because of the combinatorial nature of the actions. For example, if M =
{m1,m2, ...,mn} is a set of different drugs that can be used in any combination to
treat a patient, the action space becomes 2M (the power set of M) and the size of the
action space grows exponentially in the number of treatments considered.

In a POMDP model, the decision maker can take actions to gain information
about the state of the system. For example, screening decisions can be modeled us-
ing POMDP models where the action space might represent the different types of
screening tests available. Performing a screening test may not change the natural
progression of the disease, but it can provide the decision maker with valuable in-
formation about the true health state of the patient, which in turn may be used to
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decide whether to do more invasive testing such as biopsy or radiologic imaging.

Transition Probabilities: The transition probabilities in a MDP model of chronic
disease usually describes the progression of the disease with and without treatment,
the probability of an adverse event, and the probability of death. To describe the
progression of a disease, a key step is to build a natural history model. The natural
history model describes how the disease progresses under no treatment. Creating
this model can be challenging because medical records will only contain data about
patients who have been diagnosed and treated for the disease. To build a natural
history model, one can use longitudinal data to estimate the effects of treatment
by observing measurements of risk factors before and after a patient starts the treat-
ment. In this way, one could estimate how the disease would progress if no treatment
was given to a patient. It is important to note that measures such as this can be af-
fected by bias associated with patterns that influence which patients are referred for
treatment. For example, patients who initiate blood pressure lowering medications
would typically have higher than normal blood pressure and may exhibit greater
relative reduction in blood pressure than the general population.

When there is a clear “best” therapy, as is the case in optimal stopping-time
problems, the modeler is not concerned with the effect of treatment on the transi-
tion probabilities. Upon initiating treatment, the patient will transition to an absorb-
ing state representing post-treatment with probability 1. In other cases, the modeler
must consider how treatment affects the transition probabilities. Presumably, initiat-
ing treatment will lower the probability of having an adverse event or dying from the
disease. A recent proliferation of statistical models for estimating the risk of chronic
disease complications can provide these inputs for MDPs. For instance, statistical
models for type 2 diabetes include: the Framingham model [26, 27, 28], the UKPDS
model [29, 30, 31, 32], and the ACC/AHA pooled risk calculator [33]. These mod-
els predict the probability of diabetes complications such as cardiovascular events
(stroke and coronary heart disease), kidney failure, and blindness. Inputs include
gender, race, family history, and metabolic factors like cholesterol, blood pressure,
and blood glucose. Treatment can affect some of the inputs to these models and
therefore can affect the transition probability to an adverse event state.

Another key input to an MDP model is the probability associated with transition-
ing to the death state. The probability of death caused by something other than the
disease of interest is called all other cause mortality. All other cause mortality can
have a large impact on treatment decisions. As all other cause mortality increases,
treatment decisions become less beneficial since the probability of dying from the
particular disease of focus for the MDP is not as likely. This is particularly impor-
tant for chronic diseases that progress slowly. For example, the American Urology
Association recommends not screening men for prostate cancer after age 75 because
men who have not been diagnosed with prostate cancer by this age are not likely to
die from this slowly progressing disease. Estimates for all other cause mortality can
typically be found using mortality tables from the Centers for Disease Control and
Prevention (CDC).
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Rewards: The rewards and costs in a chronic disease MDP model may be associated
with the economic and health implications associated with treatment and screen-
ing policies. To determine the relevant rewards and costs, one must identify the
perspective of the decision maker: patient, third-party payer (e.g. Blue Cross Blue
Shield, Medicare), or a societal perspective that combines these different perspec-
tives. Treating or screening a patient for a chronic disease will offer some reward to
the patient, such as a potentially longer life. However, these benefits come at some
“cost” to the patient, whether it be a reduction in quality of life, such as side effects
due to medication or discomfort due to a screening test, or a financial cost, such
as medication or hospitalization expenses. Health services researchers typically use
quality-adjusted life years (QALYs) to quantify the quality of a year of life with the
discomfort due to medical interventions. A QALY of 1 represents a patient in perfect
health with no disutility due to medical interventions and side effects of treatment.
As the patient’s quality of life decreases, whether from medication side effects or
disablement from a disease, the patient’s QALY value will tend towards zero. (The
reader is referred to [34] for a review of QALYs and other quality of life measures.)
Some MDP models are only concerned with maximizing a patient’s QALYs. Other
models take a societal perspective and attempt to balance the health benefits of treat-
ment with the corresponding monetary costs of medical interventions. To balance
these competing objectives, a common approach is to use a willingness to pay fac-
tor, which assigns a monetary value to a QALY. Values of $50,000 and $100,000
per QALY have commonly been used in the literature; however, the exact value to
use is often debated [35].

MDPs are rather data-intensive due to the need for transition probabilities and
rewards for each state-action pair. However, after gleaning these inputs from the
literature or longitudinal patient data, solving these MDPs can generate meaningful
insights into how and when to screen for and treat chronic diseases.

3.2 Solution Methods and Structural Properties

Various algorithms have been developed for the use of solving MDPs and POMDP.
The appropriate method for solving an MDP depends on whether the MDP is for-
mulated as an infinite-horizon or finite-horizon problem and the size of the state and
action spaces. Methods such as policy iteration, value iteration, and linear program-
ming have been used to solve infinite-horizon problems, while backwards induction
is typically used to solve finite-horizon problems. One problem with MDP formu-
lations is that they are subject to the curse of dimensionality. This is seen in MDPs
for chronic disease where the size of the state space grows exponentially with the
number of health risk factors defining the state. To circumvent this problem, ap-
proximation algorithms can be used. There has been a great amount of research
on approximate dynamic programming in general, but these approaches tend to be
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highly context dependent and very little work has been done in the context of chronic
disease. [36, 37] provide a thorough review of approximation methods of MDPs.

Many MDP models for chronic diseases have certain structural properties that
can be exploited for computational gains. One such property is the increasing failure
rate (IFR) property describing the transition probability matrices. In the context of
chronic diseases, the IFR property means that the worse the health status of the
patient is, the more likely that the health status will become even worse. Usually
this ordering naturally follows the severity of the chronic disease, with the ordering
of the states defined by a patient’s health status. For certain optimal stopping-time
problems, it has been shown that the IFR property together with some additional
(and nonrestrictive) conditions guarantees an optimal threshold policy (see Chapter
4 of [38]). These conditions have be used in the context of HIV [17], liver disease
[4], and type 2 diabetes [39] to prove the existence of an optimal control-limit policy.
A control-limit policy is one in which one action is used for all states below a certain
value (e.g. wait to transplant if the MELD score is below 25) and another action for
all states above a certain value (e.g. transplant if the MELD score is at least 25).
Proving the existence of a control-limit policy can decrease the computational effort
required to solve the MDP model, since the value function does not need to be
explicitly calculated for every state/action pair.

POMDPS are generally much more challenging to solve than MDPs. Early
methodological studies focused on exact methods that exploit the fact that the opti-
mal value function for a POMDP is convex, and in the finite-horizon case it is piece-
wise linear and expressible using a finite set of supporting hyperplanes. The first
exact method was provided by [40]. The authors proposed an iterative approach to
generate supporting hyperplanes at each decision epoch. Due to exponential growth
in the number of hyperplanes with respect to the number of decision epochs and
observations and the fact that many of the hyperplanes are dominated, the authors
further proposed an approach to reduce the number of hyperplanes to a minimal set
using a linear programming formulation to identify dominated hyperplanes. Many
authors have built on this early approach by developing more efficient ways of prun-
ing unnecessary hyperplanes, including incremental pruning [41] and the witness
method [42]. Exact methods are generally limited to small POMDPs. A well-known
approximation approach for moderate-sized POMDPs is based on discretizing the
continuous belief state to obtain an approximate finite state MDP. One of the first
proposed approaches was the fixed-grid algorithm proposed by [43]. Many enhance-
ments, including variable grid based approaches have built on this early idea. The
reader is referred to [44] for discussion of finite grid based approaches. Grid based
methods are limited in their applicability to large-scale POMDPs. For this reason, it
is often necessary to develop approximation methods tailored to particular applica-
tions.
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3.3 Model Validation

Once an MDP has been solved, it is critical to determine whether the results of the
model are valid. Below are some common ways to validate MDP models for chronic
diseases.

Expert Opinion: After the MDP has been solved, one can seek the opinion of an
expert in the field, such as a clinician or a health services researcher, to determine if
the results of the model are realistic. This form of validation is not very strong since
it is subjective. Some experts may have differing opinions of whether the model re-
sults are actually valid. However, this form of validation is probably the easiest to
use and can be a first step in validating the model before turning to more objective
procedures.

Independent Study: To validate an MDP, one could compare the results to a model
developed independently. For instance, an alternative stochastic model could be
compared to the MDP using a reference policy (e.g. an existing screening or treat-
ment guideline.)

Retrospective validation: Retrospective validation compares the results of the
MDP to past observed outcomes of an existing patient cohort. If this method of
validation is used, one should use a different cohort for calibration of the model
and for validation of the model. Using the same cohort to calibrate and validate the
model could lead to optimism bias.

Prospective Validation: Prospective validation, the gold standard of validation, in-
volves using the model to predict outcomes and comparing the predictions to the
actual outcomes. This form of validation is considered very strong, because there
is no contamination between data used to calibrate the model and the data used to
validate it. However, the outcomes of interest in chronic disease modeling are long-
term, which can lead to long periods of time between the obtainment of the results
and the validation of the model. As a result, this form of validation is almost never
done.

Validating the model is an important step to ensure that the results from the
model are useful to clinicians. If the model cannot be validated, the modeler should
carefully consider whether the assumptions of the model are justified, if the model
parameters are accurate and generalizable to other patient populations, and if the
model was implemented without errors. Sensitivity analysis often plays an impor-
tant role in addressing concerns about inaccuracy of model parameters.
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4 MDP Model for Cardiovascular Risk Control in Patients with
Type 2 Diabetes

Advances in medical treatments have extended the average lifespan of individuals
and transformed many diseases from life threatening in the near term to chronic con-
ditions in need of long-term management. Diabetes is a good example. With 9.3%
of the U.S. population estimated to have diabetes, it is recognized as a leading cause
of mortality and morbidity. The disease is associated with many serious complica-
tions such as coronary heart disease (CHD), stroke, blindness, kidney disease, limb
amputation, and neurological disorders.

Patients with diabetes are at much higher risk of stroke and CHD events than
those without diabetes. The risk of having one of these adverse events is affected
by a number of risk factors including gender, race, height, weight, glucose, total
cholesterol, high density lipids (HDL - often referred to as “good cholesterol”), and
blood pressure (systolic and diastolic). Several medications now exist that can con-
trol cholesterol and blood pressure for patients with type 2 diabetes. However, there
is considerable disagreement in the health care community about how best to use
these medications [45, 46, 47]. Risk models exist to predict an individual patient’s
probability of complications related to diabetes [27, 28, 29, 30]; but alone they
cannot provide optimal treatment decisions. Further, these risk models often give
conflicting estimates of patient’s risk, which adds another challenge to the decision-
making process.

Historically, guidelines for the treatment of cholesterol and blood pressure have
been “one size fits all” guidelines that do not account for the different risk pro-
files of the heterogeneous population. The guidelines for cholesterol treatment and
the guidelines for blood pressure treatment in the United States were created by
two independent committees. This artificial separation of guidelines for treating
risk factors that both influence the risk of CHD and stroke could potentially lead
to over-treatment of patients and increases in medical costs. These issues provide
great motivation for an MDP approach to treatment planning that combines deci-
sions for cholesterol and blood pressure control.

Recently, MDPs have been used to study the optimal treatment of patients with
type 2 diabetes. [39] and [48] analyze the optimal time to initiate statins, the most
common drug for managing cholesterol. [49] extends this work to study the effect of
imperfect adherence on the optimal policy. [50] uses an MDP to determine the opti-
mal simultaneous management of blood pressure and cholesterol. For the remainder
of this section, we use the model in [50] as an example of model formulation, the
effect of model parameters, and the how the optimal compares to the guidelines.
Additionally, we provide new results based on more recent data including a new
risk model [33].
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4.1 MDP Model Formulation

In this MDP model, patients with type 2 diabetes progress between states defined
by blood pressure and cholesterol levels. At every decision epoch, a clinician ob-
serves the patient’s risk factors (i.e. cholesterol and blood pressure levels) and de-
cides which medications (if any) to prescribe to the patient. This model takes a so-
cietal perspective and uses a bi-criteria objective, which balances the goal of having
a low discounted medication cost with the goal of primary prevention (i.e. delaying
the first occurrence of a CHD event or a stroke). Figure 1 gives a schematic repre-
sentation of this decision process.

Fig. 1 The treatment decision process for managing cholesterol and blood pressure for patients
with type 2 diabetes.

Decision Epochs / Time Horizon: The decision of which medications to initiate is
revisited periodically within a finite horizon with N (yearly) decision epochs, with
non-stationary rewards and transition probabilities. The set of decision epochs is
T = {0,1,2, ...,N}. An infinite-horizon approximation is used beyond epoch N in
which treatment is held constant. This formulation is consistent with regular an-
nual primary care visits for most adults. An infinite-horizon approach is used after
a certain number of epochs, such as N = 100, because physicians will not typically
prescribe new medications to patients after they have reached a certain age.

State Space: The state space is made up of living states and absorbing states. The
set of living states is denoted SL and the states in this set are defined by a number
of factors that characterize a patient’s level of cardiovascular risk. Some of these
factors, such as metabolic levels and medication status, change over time. Because
changes in these values affect the cardiovascular risk, it is important to incorpo-
rate these values into the state space. Other relevant information such as race and
gender, is incorporated into the model through the transition probability and reward
parameters.
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When considering R metabolic factors and M medications, a living state is rep-
resented by a vector s = {s1, ...,sR,sR+1, ...,sR+M} ∈ SL . In this model, the first R
components of s correspond to measurements of a patient’s total cholesterol, HDL,
and systolic blood pressure, and the next M components correspond to the medica-
tion status of the patient.

In practice, measurements of cholesterol and blood pressure are continuous. To
create a discrete state space, these continuous values are discretized according to
clinically-relevant thresholds and then labeled low (L), medium (M), high (H), and
very high (V). For metabolic risk factor k, we have sk ∈ {L,M,H,V}.

As stated in Section 3, MDPs must maintain the Markov property, and thus any
necessary information from the past must be incorporated into the state space. In
this model, it is necessary to know whether a patient is already on a medication or
not, and therefore this information must be added to the state space. Consider the
jth medication: if sR+ j = 0, the patient is not using medication j and if sR+ j = 1,
the patient is using medication j. Notice that, in this model, the size of the living
state space is |SL | = 4R · 2M and therefore the size of the living state space grows
exponentially in R and M. Also, if a finer discretization of the metabolic risk factors
was used, this growth would be even faster.

The model also has a set of absorbing states SD . These state vectors take on val-
ues that represent having a CHD event (dC), having a stroke (dS), or dying from a
cause other than CHD or stroke (dO). The set of all absorbing states will be repre-
sented as SD = {dC,dS,dO}. Because primary prevention is the goal of the model,
dS and dCHD are treated as absorbing states and no rewards are accrued after enter-
ing these states.

Action Space: Initiating a cholesterol or blood pressure lowering medication is
assumed to be a irreversible decision, which is consistent with the clinical practice
in which the intention is for the patient to remain on the medication permanently.
For each medication j, at each decision epoch, we either initiate this medication (I j)
or wait at least one period to initiate the medication (Wj). Therefore, for a living
state, the action space is represented by

A(s) = A1(s)× ...×AM(s) ∀s ∈ SL

where M is the total number of medications considered and

A j(s) =

{
{I j,Wj} if sR+ j = 0 and s ∈ SL ,

{Wj} if sR+ j = 1 and s ∈ SL

This simply means that there is a choice of whether to start medication j or not,
provided that the patient is not already on medication j. Initiating a medication is
assumed to have a proportional change on each metabolic factor. Cholesterol medi-
cations are designed to lower total cholesterol and raise HDL, while blood pressure
medications lower systolic blood pressure. It is assumed that cholesterol medica-
tions have negligible effect on blood pressure and vice versa since there is no evi-
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dence to the contrary. The estimates of the effects of these drugs on the metabolic
values were obtained from [50].

Transition Probabilities There are four types of probabilities in this MDP: the
probability of non-diabetes-related death, probability of a CHD event, probability
of a stroke, and the transition probabilities among living states. The estimates of
these probabilities come from the literature and can be calculated from longitudinal
patient data.

At epoch t ∈ T , a non-diabetes-related death occurs with fixed probability pO
t

for every state s ∈ SL . The probability pO
t depends only on a patient’s age and de-

mographic information and can be estimated from mortality tables such as [51].
Note that we assume that pO

t is independent of the risk factors for type 2 diabetes.
Otherwise, if the patient is in state s ∈ SL , a CHD or stroke event occurs with
probability pC

t (s,at) and pS
t (s,at), respectively. These probabilities depend on the

patient’s age, metabolic state, current and initiated medications, as well as other at-
tributes that affect risk such as race and gender. Estimates of these values can be
obtained from risk models such as the Framingham model [26, 27, 28], the UKPDS
model [31, 32], and the ACC/AHA Pooled ASCVD risk calculator [33]. These mod-
els fit risk equations to observational data for large cohorts of patients followed over
many years to predict the probability of having an event within a certain time frame.
Some models take the length of the time frame as an input to the equation, which
gives an easy way to calculate the probability that corresponds to the time between
epochs of the model. However, some models only give 10-year probabilities which
must be adjusted to a 1-year probability to be used as an input to the MDP model.
[52] provides a discussion of converting the time-interval of transition probabilities
to an adverse event or death state under the assumption that the rate of these events
is constant. This assumption likely leads to some degree of over-estimation of the
yearly transition probability, since the model suggests that as a patient ages, they are
more likely to have an adverse event.

If the patient was in state s ∈ SL and did not enter an absorbing state, she will
transition probabilistically among the living states, entering state s′ ∈ SL with prob-
ability p(s′|s), which is given by

p(s′|s) =
(
Π

R
r=1 p(s′r|sr)

)(
Π

M
m=11(s′R+m|sR+m,at)

)
∀s,s′ ∈ SL (1)

The first product in (1) indicates the probability of having the metabolic levels of
state s′ given the patient had the metabolic levels of state s. This model assumes
that HDL, total cholesterol, and blood pressure progress independently so that the
transition probability of all metabolic factors is simply the product of the transition
probabilities within each metabolic factor. For a given metabolic factor, one can
estimate the transition probabilities from a longitudinal patient data set. After seg-
menting the continuous values of the factor into discrete groups, one can count the
total number of transitions from each group to every other group for the metabolic
factor of interest. Dividing through by the total number of transitions out of the given
group gives the transition probability. The model used in [50] estimated transition
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probabilities from observational patient data from the Mayo Electronic Records and
Diabetes Electronic Management System. Note that relaxing the independence as-
sumption of the progression of the metabolic factors would decrease the number of
observed samples and therefore the method described above would not be desirable
due to large sampling error. This is what motivates the independences assumption,
which is supported by relatively low correlation between these risk factors.

In (1), the product of the indicator functions, 1{s′R+m|sR+m,at} is used to dis-
tinguish between feasible transitions where 1{s′R+m|sR+m,at} = 1 if the transition
from the medications used in state s to the medications used in state s′ is valid given
the actions taken in time t and 0 otherwise. For example, if a patient in state s was
not on statins and the decision maker did not prescribe statins, then a transition to
state s′ in which statins are used is not possible. Since this is not a valid transition,
the transition probability will be 0.

The complete set of transition probabilities are summarized in the following
equation:

pt(j|s,at) =



[1− pS
t (s,at)− pC

t (s,at)− p0
t ] · p(j|s) if s, j ∈ SL

pS
t (s,at) if j = dS and s ∈ SL

pCHD
t (s,at) if j = dC and s ∈ SL

pO
t if j = dO and s ∈ SL

1 if s = j ∈ SD

0 otherwise

Rewards: As mentioned above, this model has a bi-criteria objective of maximizing
the life years before the first CHD event or stroke while minimizing the discounted
medication costs. To balance these competing objectives, we weight a life year (LY)
by the willingness to pay factor, β . At epoch t, if the patient is in a living state, one
life year is accrued with to give a reward of rat (s) = β . The decision maker also
incurs a cost cat (s) which is the total yearly cost of the current medications of the
patient in state s as well as any medications initiated by the selected action at at
epoch t. In other words, the patient continues to accumulate rewards until she incurs
a cardiovascular event or dies from other causes.

Solution Method: For a patient in state s in epoch t, let Vt(s) denote the patient’s
maximum total expected dollar reward prior to her first CHD or stroke event or
death. The following recursion defines the optimal action in each state based on the
optimal value function V ∗t (s):

V ∗t (s) = max
at∈A(s)

{
rat

t (s)− cat
t (s)+α ∑

j∈S
pt(j|s,at)V ∗t+1(j)

}
(2)

and

a∗t (s) = argmax
at∈A(s)

{
rat

t (s)− cat
t (s)+α ∑

j∈S
pt(j|s,at)V ∗t+1(j)

}
(3)
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where α ∈ [0,1) is the discount factor corresponding to the length between epochs,
which is commonly set to 0.97 in health economic evaluations involving monetary
costs (see Chapter 7 of [53] for justification). Much lower discount rates are typi-
cally used for life years; in some cases, α = 1 is used. V ∗N+1(s) is assumed to be
the expected discounted dollar reward accrued from period N+1 if the patient were
to remain on the same medications given by state s. Using V ∗N+1(s) as a boundary
condition, backward induction can be used to solve the MDP for the optimal deci-
sions for each state and epoch. First, evaluate (2) at t = N and proceed backwards
until t = 1. The actions a∗t (s) that define the optimal policy are found by solving (3).
Then, one can compare the optimal value function V ∗1 to the value function V π

1 for
any given policy π , which is of special interest when π is a common guideline used
for cholesterol and blood pressure management.

4.2 Results: Comparison of Optimal Policies Versus Published
Guidelines

In this section, we compare results for MDP-based policies with published treatment
guidelines. In the United States, the guidelines for treatment of blood pressure and
cholesterol are published by two independent committees. The Joint National Com-
mittee (JNC) is responsible for the American blood pressure guideline, while the
Adult Treatment Panel (ATP) is responsible for the cholesterol guidelines. These
guidelines have historically been “one size fits all” for diabetes patients and have
not taken into account the individual risk profile of a patient. The action space of
the model is consistent with the medications that these panels recommend. In this
model, we consider statins and fibrates for cholesterol medications, and we consider
the following blood pressure medications: thiazides, ACE-inhibitors, beta-blockers,
and calcium-channel blockers.

The model in [50] used retrospective validation by comparing the results of the
MDP with the outcomes of the patient cohort in the Framingham Heart Study (FHS)
[54]. The different outcomes are shown in Table 1. Most of the FHS diabetes patients
were diagnosed after age 40 and so these patients provide a lower bound for the
outcomes of patients diagnosed at age 40. The overall patient population of the FHS
likely provide an upper bound on the outcomes of diabetic patients.

MDP Model/ Patient Cohort LYs Before First Event (after age 50)
FHS: Diabetes Patients 14.2 (12.3 - 16.1)
FHS: Overall 21.2 (20.5 - 22.0)
Mason et. al (2014), MDP: No Treatment 18.9
Mason et. al (2014), MDP: U.S. Guideline 21.2

Table 1 Comparison of the expected LYs until the first event after age 50 from the MDP model
presented with the model presented in [50] and the Framingham Heart Study (FHS). Confidence
intervals are shown for the FHS.
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Differences between the FHS and this model could be due to imperfect adherence
to guidelines, all other cause mortality, and differences in the underlying risk of the
patient population. For example, the risk associated with heart disease and stroke has
decreased significantly since the start of the Framingham study in 1948. Differences
between the results we present below and those in the earlier model differ because
we have updated the model with data, such as all other cause mortality, that has been
released since the publication of [50].

Fig. 2 Comparison of the expected life years until first event and discounted medication costs for
optimal treatment policies and U.S. guidelines under different risk model assumptions.

Figure 2 shows the optimal trade-off curve between the expected life years be-
fore the first event and the expected discounted medication costs. To obtain each
curve, first we specified a risk model to estimate pS

t and pCHD
t . Then, we solved the

corresponding MDP with different values of the willingness to pay factor, β . The
labeled points on the vertical axis correspond to a β value of $0/LY and the optimal
policy is to never initiate treatment. As the value of β increases, more medications
tend to be initiated leading to increases in life years.

The U.S. guidelines are also shown on the graph. At the time of publication of
[50], JNC 7 [55] and ATP III [56] were the guidelines in the United States. We used
policy evaluation to determine how well these guidelines performed. Under each
risk model assumption, the optimal policy can increase the expected time until the
first event for the same medication cost used in the U.S. guidelines. Alternatively,
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the same life years until the first event that are achieved using these guidelines could
be achieved at much lower cost with the optimal policy.

Figure 3 shows the optimal initiation of statins under different assumptions of the
underlying risk model. The different risk models are functions of the patient’s age,
systolic blood pressure, HDL, and total cholesterol. The structure of these functions
affects the optimal decisions associated with state.

Fig. 3 A comparison of the optimal statin initiation actions under different risk model assumptions
for β = $50,000 per life year for selected blood pressure and cholesterol states. Black boxes indicate
that the optimal decision is to initiate statins for this state and a white box indicates that the optimal
decision is to wait to initiate statins. L/H/L is the healthiest state shown and L/L/H is the least
healthy state shown.

Figure 2 shows that coordinating the treatment of blood pressure and cholesterol
could be beneficial for patients with type 2 diabetes under each of the three risk
model assumptions. Because the underlying risk of complications is a function of
both cholesterol and blood pressure, treating each risk factor separately, as recom-
mended by the U.S. guidelines, could lead to higher cost and lower age of a first
complication. This is supported by the outcomes of the U.S. guidelines which give
high expected LYs and high discounted medication costs. This work shows that the
optimal coordinated treatment of blood pressure and cholesterol depends on the un-
derlying risk of the patient. However, as mentioned above, the risk models used to
determine the probability of a complication often conflict with each other. For this
reason, it would be beneficial to develop MDP methodology that provides policies
that perform well despite disparities between the assumed risk model and the true
underlying risk.
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5 POMDP for Prostate Cancer Screening

Diagnosing chronic diseases is a challenge because most medical tests have some
chance of false positive or false negative results. The former occurs when a test in-
dicates a disease is present, when in fact it is not; the latter indicates a disease is not
present, when in fact it is present. Successful diagnosis is critical to starting treat-
ment early, and many chronic diseases, if detected early, have excellent outcomes.
Prostate cancer is a good example. It is the most common cancer (excluding skin
cancer) that affects men in many countries. It is estimated that one in every seven
U.S. men will be diagnosed with prostate cancer during his lifetime. Diagnosis is of-
ten based in part on a Prostate Specific Antigen (PSA) test that measures the amount
of PSA in the blood. PSA varies from near zero to potentially high values (e.g. > 20
ng/ml). Men with prostate cancer often have elevated levels of PSA, but this can
also be caused by other non-cancerous conditions. A commonly used threshold for
asserting that a biopsy is warranted is 4ng/ml; however, this is subjective and it is
has been observed to be associated with high false positive and false negative out-
comes in the biopsy referral process. Figure 4 illustrates the imperfect nature of
PSA testing using a receiver operating characteristic (ROC) curve. An ROC curve
is generated by computing the true positive rate (also called sensitivity of the test)
and one minus the false positive rate (also called specificity of the test) for various
choices of the test threshold. Thus, the curve in Figure 4 illustrates that, as the PSA
threshold for biopsy increases, the true positive rate of biopsy referral based on the
PSA test increases and the false positive rate decreases (a perfect test would have a
true positive rate of one a false positive rate of zero). Different points on the curve
correspond to different choices of the threshold at which to recommend biopsy.
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Fig. 4 Receiver operating characteristic (ROC) curve illustrating the imperfect nature of PSA tests
for diagnosing prostate cancer.
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Given the invasive nature of prostate biopsies, the optimal threshold at which to
recommend biopsy is debated. Moreover, the decision for when to biopsy must con-
sider the fact that screening tests are often done multiple times over an individual’s
lifetime. An example of a screening process is illustrated in Figure 5 where the pa-
tient receives routine PSA tests at regular intervals (often every year or every two
years). If the PSA test result is over the biopsy threshold then the patient is typically
referred for biopsy, and if the biopsy indicates cancer then the patient is referred for
treatment. In practice, some clinicians consider the history of PSA test results for
a patient, such as the rate of change with respect to time (often referred to as PSA
velocity) because PSA is expected to increase with respect to tumor volume.

Fig. 5 Illustration of the typical stages of prostate cancer screening and treatment including PSA
screening, biopsy, and treatment.
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In this section, we present a POMDP model that uses an alternative approach for
making screening decisions based on a patient’s PSA history. In the model formula-
tion that follows, Bayesian updating is used to estimate the probability that a patient
has prostate cancer based on the complete history of PSA results. These probabili-
ties are in turn used to decide when to perform a PSA test, and when to perform a
biopsy. The model and the summary results we present are based on work presented
in [57, 58] which together provide a complete description of the POMDP model,
theoretical analysis of properties of the optimal policies, and a more complete de-
scription of the model parameters, results, and conclusions that can be drawn from
the model.

5.1 POMDP Model Formulation

In the POMDP model, patients progress through (unobservable) prostate cancer
states and (observable) PSA states. PSA states are treated as discrete, based on
clinically relevant intervals, and estimated using a large observational data set. We
assume that decision epochs occur annually, and the patient’s PSA is measured at
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each epoch and a decision is made about whether to refer the patient for biopsy
or defer the decision until the next epoch. Similar to the MDP model of the previ-
ous section, the POMDP model is also bi-criteria with the objective of maximizing
the quality-adjusted life span minus the cost of screening and treatment for prostate
cancer. To balance these competing objectives, we define the annual rewards as a
quality adjusted life year multiplied by the willingness to pay factor, β . QALYs
are estimated by decrementing a normal life year due to the occurrence of biopsy
(which is painful and has some, though low, probability of serious complications
due to infection), side effects of treatment, and long term complications resulting
from treatment. Costs are based on the cost of PSA tests, biopsies, and subsequent
treatment. If a patient receives a positive biopsy result, he is assumed to be treated
by prostatectomy (surgical removal of the prostate) which is a common form of
treatment. If a patient receives a negative biopsy result, then screening discontinues,
an assumption that is motivated by the fact that most men have at most one biopsy in
their lifetime unless other symptoms arise warranting additional biopsies. Following
is a mathematical description of the model.

Decision Epochs / Time Horizon: PSA screening is performed annually, typically
starting at age 40, and thus the set of decision epochs is T ∈ {40,41,42, · · · ,N},
where N corresponds to a liberal upper bound on when screening is discontinued
due to the risk of treatment being greater than the benefits.

Action Space: The action at epoch t, at ∈ {B,DB,DP}, denotes the decision to per-
form a biopsy (B), defer biopsy and obtain a new PSA test result in epoch t + 1
(DB), or defer the biopsy decision and PSA testing in decision epoch t + 1 (DP).
Combinations of these three actions over the decision horizon determine the PSA
test and biopsy schedule. For instance, a40 = DB, a41 = DP, a42 = DB and a43 = B
imply PSA testing at age 41 and 43, and followed by biopsy at age 43. Note that
decisions are made sequentially and in this model decisions are based on the proba-
bility of prostate cancer at each decision epoch.

State Space: At each decision epoch, a patient is in one of several health states in-
cluding no cancer (NC), prostate cancer present but not detected (C), organ confined
cancer detected (OC), extraprostatic cancer detected (EP), lymph node-positive can-
cer detected (LN), metastasis detected (M), and death from prostate cancer and all
other causes (D). The states NC and C are not directly observable, but the other
health states are assumed to be completely observable. The possible transitions
among states are illustrated in Figure 6.

Observations: At each decision epoch, the patient is observed to be in one of a
discrete set of observable PSA states based on clinically relevant ranges of PSA,
non-metastatic cancer detected and treated (T ), metastasis (M), or death (D). These
observable states are indexed by ot ∈ O = {1,2,3, ...,m,T,M,D}, where the first m
states correspond to PSA states for patients either in state C or state NC (note that
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Fig. 6 POMDP model simplification: aggregating the three non-metastatic prostate cancer stages
after detection into a single core state T . Solid lines denote the transitions related to prostate cancer;
dotted lines denote the action of biopsy and subsequent treatment; dashed lines in (c) denote death
from other causes (for simplicity these are omitted from (a) and (b)).
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the exact state, C or NC, cannot be known with uncertainty).

Transition Probabilities: The transition probability pt(st+1|st ,at) denotes the core
state transition probability from health state st to st+1 at epoch t given action at .
These represent the probability of a change in the patient’s health status from one
decision epoch to the next. By the nature of partially observable problems, such
data is often difficult or impossible to estimate exactly. In the context of prostate
cancer these estimates can be obtained using autopsy studies, in which all all fatali-
ties within a given region, regardless of cause of death, are investigated to determine
the presence and extent of prostate cancer [59]. This provides estimates of the true
incidence of disease that are not biased by the fact that diseases like prostate cancer
may be latent for an extended period of time before diagnosis.

Information Matrix: A unique part of POMDP models, compared to MDP mod-
els, is the set of conditional probabilities that relate the underlying core states (e.g.
C or NC) to the observations (e.g. PSA states). We let ut(ot |st) denote the prob-
ability of observing ot ∈ O given health state st ∈ S. Collectively, these transition
probabilities define the elements of the information matrix, which we denote by Ut .
The estimation of these probabilities requires data that can link the observations to
the cores states. Often this is one of the most difficult to estimate sets of model
parameters, because problems that are ideally modeled as partially observable are
naturally ones in which limited data is available for the underlying core state of the
system. Estimation of the information matrix is often made possible by a systematic
randomized trial that evaluates the presence of disease independent of whether a pa-
tient has symptoms. In the case of prostate cancer, the Prostate Cancer Prevention
Trial (PCPT) had a protocol in which all men were biopsies independent of their
PSA level. Based on data from this trial [60] fit a statistical model that can be used
to estimated the probability a man has a given PSA level conditional on whether or
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not they are in state C or NC.

Belief States: The belief vector is a vector with elements each corresponding to
one of the number of core states. In this model, each element corresponds to the
probability the patient is in the corresponding core state. We denote the vector by
bt = (bt(NC),bt(C),bt(T ),bt(M),bt(D)), where bt ∈ B≡ {bt ∈ℜ5 | ∑i∈S bt(i) =
1,bt(i)≥ 0, i ∈ S}. The optimal policy maps the belief states to the action space.

Rewards: rat (st) is the reward of living for a year given the patient is in health
state st and decision at . The expected reward of living for a year is the average over
possible health states: rat (bt) = ∑st∈S rat (st)bt(st). In this model, the reward is the
product of QALYs and a willingness to pay factor minus the cost of a PSA test,
biopsy or treatment, depending on the action at . The terminal reward at the end of
the horizon, at period N is denoted rN(bt).

The overall objective of the model is to determine the optimal screening policy
that maximizes the product of willingness to pay and QALYs minus the costs of
screening and treatment over the patient’s lifetime. The optimal value function and
the corresponding optimal action for the model can be written as follows

V ∗t (bt)= max
at∈{B,DB,DP}

{
rat (bt)+α ∑

ot+1∈O
V ∗t+1(bt+1)pt(ot+1|bt ,at)

}
,∀bt ∈B, (4)

and the boundary condition at the end of horizon is VN(bt) = rT (bt),∀bt ∈ B. The
optimal decision at epoch t in belief state bt is

a∗t (bt) = argmax
at∈{B,DB,DP}

{
rat (bt)+α ∑

ot+1∈O
V ∗t+1(bt+1)pt(ot+1|bt ,at)

}
,∀bt ∈ B,

where

pt(st+1|bt ,at) = ∑
st+1∈S

ut+1(ot+1|st+1) ∑
st∈S

pt(st+1|st ,at)bt(st),

and α ∈ [0,1) is the previously defined discount factor. Bayesian updating is used to
revise the patient’s belief state over time as PSA observations are obtained. Bayesian
updates are defined by the following transformation of the belief state:

bt+1(st+1) =

ut+1(ot+1|st+1) ∑
st∈S

pt(st+1|st ,at)bt(st)

∑
st+1∈S

ut+1(ot+1|st+1) ∑
st∈S

pt(st+1|st ,at)bt(st)
, (5)

where bt+1(st+1), the component of the belief vector, bt+1, is a function of ot+1,
at , and bt (for simplicity, this dependence is omitted). Thus (5) updates the belief
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state of a patient based on the prior belief state and his most recent observed PSA
interval. The sequence of probabilities {bt , t = 1, · · · ,∞} has been shown to follow
a Markov process [24], and therefore (4) defines a continuous state MDP.

5.2 Results: Optimal Belief-Based Screening Policy

In this section, we present examples based on the above POMDP model (com-
plete details about model parameter estimates and numerical results can be found
in [58]). The data used for parameter estimation in the model consisted of 11,872
patients from Olmsted County, Minnesota. It includes PSA values, biopsy informa-
tion (if any), diagnosis information (if any), and the corresponding ages for patients
recorded from 1983 through 2005. This regional data set includes all patients in
Olmsted County irrespective of their prostate cancer risk. Prostate cancer probabili-
ties conditional on PSA level were estimated from this data set to obtain the informa-
tion matrix, Ut . In the results we present, we assume patients detected with prostate
cancer were treated by radical prostatectomy. To estimate the annual transition prob-
ability from the treatment state, T , to the metastatic cancer state, M, a weighted av-
erage of the metastasis rate of three non-metastatic prostate cancer stages based on
the Mayo Clinic Radical Prostatectomy Registry (MCRPR) were used. The disease
specific transition probability from C to M was based on the metastasis rates re-
ported by [61]. The transition probability from state NC to state C was based on the
prostate cancer incidence rate estimated from an autopsy review study reported in
[62] that provides estimates of prostate cancer prevalence in the general population
in 10-year age intervals. The transition probability from all non-cancer states states
to state D is age specific and was based on the general mortality rate from the Na-
tional Vital Statistics Reports [63] minus the prostate cancer mortality rate from the
[64]. Note that because the National Cancer Institute reports a single prostate can-
cer incidence rate for ages greater than 95 and the National Vital Statistics Reports
[63] reports a single all cause mortality rate for ages greater than 95, we assume
transition probabilities were fixed after the age of 95, i.e., N = 95 in the numerical
experiments. The biopsy detection rate was 0.8 based on a study by [59]. To esti-
mate the reward function we assumed an annual reward of 1 for each epoch minus
disutilities for biopsy and treatment. Since no estimates of disutility exist yet for
prostate biopsy, an estimate based on a bladder cancer study for the occurrence of
surveillance cystoscopy [65] was used. We assumed patients treated by prostatec-
tomy experience disutility due to side effects as reported in [66].

It is well known that POMDPs can be converted into an equivalent completely
observable MDP on the continuous belief states bt [40]. Even so, as noted earlier,
POMDP models are typically much more computationally challenging to solve than
completely observable MDPs, owing to the continuous nature of the belief state
space. However, due to the low dimensionality of the belief state instances of this
POMDP, it can be solved exactly incremental pruning [41].
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The model was validated using a combination of expert opinion, based on feed-
back from practicing urologists, and comparison to independent studies. For the
latter validation, the POMDP model was used to estimate mean lifespan, propor-
tion of men diagnosed with prostate cancer, and prostate cancer mortality. These
results were compared to published estimates from the CDC mortality tables and
from longitudinal studies of diagnosis and mortality rates.

Figure 7 illustrates the optimal prostate cancer screening policy based on the
validated POMDP. Two examples are presented. In the first, only quality-adjusted
life span is considered, and the costs of screening and treatment are not part of
the reward function; this can be viewed as the patient perspective. In the second
example, the reward function defines QALYs, weighted using a societal willingness
to pay of β = $50,000/QALY [35] minus the cost of screening and treatment; as
mentioned earlier, this can be viewed as the societal perspective since it weights
the benefits of additional quality-adjusted lifespan against the cost of screening and
treatment. The belief threshold between the three decisions is illustrated by the lines
in the figure. From the figure, it can be observed that the optimal policy is control-
limit type, a property that can be proven to hold under certain conditions for this
POMDP ([57]). It is also notable that there is a stopping time for screening at age
76 for the patient perspective. For the case of the societal perspective the stopping
age is 71. The five year difference can be attributed to the cost of screening and
treatment in the societal case. Finally, the policies in both examples demonstrates the
optimal belief-based thresholds are age-dependent; as patients age, their probability
of having prostate cancer must be higher in order for a biopsy referral to be optimal
(action B). Moreover, the same is true for the decision to perform a PSA test (action
DB). This is consistent with increasing all other cause mortality and the general
consensus in the medical community that, due to the low mortality rate of prostate
cancer, treatment becomes less beneficial as age increases.
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Fig. 7 Optimal prostate cancer screening policies from the patient perspective (left) and the soci-
etal perspective (right).
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6 Open Challenges in MDPs for Chronic Disease

While MDPs serve as a powerful tool for developing screening and treatment poli-
cies for chronic diseases, there exist open challenges in terms of formulating the
MDPs and implementing the results from MDPs into clinical settings. We reflect on
some of the challenges that were faced in the examples of the previous two sections:

1. Parameter Uncertainty: Many estimates of the parameters used in chronic dis-
ease MDPs are subject to error. Transition probabilities among living states are
usually estimated from observational data and therefore are subject to sampling
error. Transitions to death states and adverse event states are estimated using risk
models found in the literature, but usually there is no “gold standard” model.
Further, estimates of disutilities due to medications are based on patient surveys
and will vary patient-to-patient. As seen in Section 4, MDPs can be sensitive
to changes in the model parameters, which is problematic when the model pa-
rameters cannot be known with certainty. For this reason, it will be important to
develop MDP models that are robust in the sense that they perform well under
a variety of assumptions of the model parameters, while not being overly con-
servative. The reader is referred to [67] and [68] for more about robust dynamic
programming.

2. State Space Size and Transition Probability Estimates: As discussed in Section 3,
the continuously-valued metabolic risk factors are usually discretized to reduce
the size of the state space. While a finer discretization of the state space might
be more representative of the continuous-valued process, this will decrease the
sample size of the transitions available for estimating transition probabilities.
There is a natural trade-off between the fineness of the discretization of the state
space and the error introduced in the transition probabilities due to sampling.
Methods for determining the best discretization of the continuous state-space
would reduce this barrier to formulating MDPs.

3. Adjusting the Time Frame of Event Probabilities: Many risk models provide the
probability of an event or death within a fixed time (e.g. 10 years). While this
information is useful to clinicians, MDP formulation requires converting these
long-term probabilities into transition probabilities between epochs. As men-
tioned in Section 4, these probabilities can be converted under the assumption
that the rate of events is constant, but this may not be realistic in all cases. Deter-
mining a method for converting probabilities under different assumptions about
the rate of events would improve the accuracy of MDP models that use these risk
probabilities.

4. Solution Methods for a Rapidly Growing State Space: Chronic disease MDPs
grow especially large because of the need to incorporate some history-dependence
into the state space. Additionally, future models may incorporate risk factors for
multiple, coexisting conditions which will cause the state space to grow ever
larger. Because MDPs are subject to the curse of dimensionality, these models
can be computationally-intensive to solve exactly. To provide support to clini-
cians in real-time, optimal policies should be able to be solved for quickly. This
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will not be possible in many chronic disease models, in which case fast approxi-
mation algorithms that provide near-optimal solutions will be necessary.

5. Implementation of Optimal Policies: The goal of these MDPs is to guide screen-
ing and treatment decisions made by the clinician. This requires that optimal
policies can be made easily understood to clinicians. However, if the optimal
policies are complicated, this could hinder the ability of the clinician to use the
MDP results. Therefore, methods for designing structured policies that are near-
optimal could potentially improve the likelihood of the policy being implemented
in practice.

Tackling these challenges could make MDPs an even more useful tool for guiding
clinicians and policy-makers in treatment and screening decisions.

7 Conclusions

Screening and treatment decisions for chronic disease are complicated by the long
time periods over which these decisions are made and the uncertainty in the progres-
sion of disease, effects of medication, and correctness of test results. Throughout this
chapter, we discussed a number of challenges that arise when modeling these deci-
sions using MDPs, such as parameter uncertainty and the rapid growth in the size
of the state space. Thus, there are still opportunities to study new application areas
and develop new methodology, such as robust and approximate dynamic program-
ming methods, for solving models in this context. These challenges notwithstand-
ing, MDPs have recently found important applications to chronic disease because
they provide an analytical framework to study the sequential and dynamic decisions
of screening and treating these diseases that develop stochastically over time.
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