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Imaging is used to detect bone and lymph node
metastasis

Bone Scan (BS)
• Time-consuming procedure (3− 4 hours)
• Costs $600− $1, 000

Computed Tomography (CT)
• Exposes patient to 60 times more

radiation than an x-ray
• Costs $300− $1, 500
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Significant harms associated with
missing a case of metastatic cancer

Negative health outcomes
due to delays in
chemotherapy

Missed diagnoses subject patients to unnecessary
treatments (e.g., radical prostatectomy) that
cause serious side effects
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Avoidance of imaging in low-risk PCa top
priority for AUA “Choosing Wisely” campaign

Potentially harmful radiation
exposure

Incidental findings that require painful and risky
follow-up procedures (e.g., bone biopsy)

Blocks access to imaging resources for other
patients and unnecessarily increases healthcare
costs
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Conflicting imaging guidelines for PCa staging

European Urological Association (EAU)

American Urological Association (AUA)

National Comprehensive Cancer Network (NCCN)

Briganti’s classification and regression tree
(CART)∗

∗A. Briganti, N. Passoni et al. “When to perform bone scan in newly diagnosed prostate
cancer: External validation of the currently available guidelines and proposal of a novel
risk stratification tool” European Urology, 57 (4), 2010.
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Research objective

To determine which patients should receive a BS
and/or a CT scan and which patients can safely
avoid imaging on the basis of individual risk factors.
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Michigan Urological Surgery
Improvement Collaborative

Physician-led, statewide collaborative

43 urology practices from throughout Michigan
(> 90% of urologists in the state)

Complete preoperative data for men with
newly-diagnosed PCa were retrospectively
reviewed
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Methodology

The methodological approach consists of
Development and validation of predictive models
Correction for the bias due to missing data
Classification modeling for the detection of
metastasis

Data
Collection

Model
Development

Model
Validation

Guideline
Design Implementation

Post
Implementation

Analysis
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Risk Prediction Models for Metastatic
Prostate Cancer

Can we develop predictive models that are-well
calibrated to provide reliable predictions for
newly-diagnosed MUSIC patients?



Predictive modeling

Multivariate logistic regression determines the
probability of a positive BS and CT scan as a function
of several covariates:

Age

Prostate-specific antigen (PSA) (ng/ml)

Clinical tumor stage (e.g., T1a/b/c, T2a/b/c and T3/4)

Gleason score (GS)

Percentage of biopsy positive cores over total number of
cores taken
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Development sample characteristics

For BS:
• March 2012 - June 2013
• 416 patients received BS, 48 (11.5%) were positive

For CT scan:
• March 2012 - September 2013
• 643 patients received CT scan, 62 (9.6%) were

positive

10



Predictors of metastatic disease

BS
Univariable logistic
regression model

CT scan
Univariable logistic
regression model

Variables OR (95% CI) p-value OR (95% CI) p-value
Age at diagnosis (year) 1.04 (1.01− 1.08) 0.01 1.02 (0.99− 1.05) 0.02
ln(PSA+1), ng/mL 2.25 (1.76− 2.88) < 0.0001 2.79 (2.21− 3.54) < 0.0001
Biopsy Gleason score, No. (%)
≤ 3 + 4 Reference Reference
4 + 3 5.04 (0.90− 28.31) 0.07 15.49 (1.84− 130.48) 0.01
8− 10 16.05 (3.82− 67.45) 0.0002 50.69 (6.96− 369.16) < 0.0001

Clinical T stage, No. (%)
T1 Reference Reference
T2 2.64 (1.31− 5.33) 0.007 2.05 (1.09− 3.86) 0.03
T3/4 9.19 (3.51− 24.03) < 0.0001 21.05 (9.52− 46.56) < 0.0001

Positive cores, % 13.32 (4.26− 41.72) < 0.0001 35.08 (12.06− 102.03) < 0.0001
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Statistical validation

Internal validation
Boot strapping using the development sample to
estimate optimism

External validation
Independent datasets were used to validate
the predictive models

s
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Initial cohort Iteration i:
Sample n patients
from initial cohort

Bootstrap
predictive

model

Apparent performance
of the bootstrap

model Pbootstrap(i)

Test performance
of the bootstrap
model, Ptest(i)

Estimate the optimism:
o(i) = Pbootstrap(i)− Ptest(i)
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Using bootstrapping to correct for optimism bias

After m iterations of bootstrapping, we can
estimate the expected optimism:

Optimism =

m∑
i=1

o(i)

m

This optimism estimate can update the apparent
performance of our model:

Pvalidated = Papparent − Optimism
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Performance measures

Discrimination
– How well can the model differentiate between patients

with positive and negative imaging results?

Calibration
– How reliable are the predicted risks?
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Calibration

Calibration slope is equal to one in the
development sample
In an external dataset, the calibration slope
(βcalibration) is estimated using a logistic
regression model with the linear predictor as the
only explanatory variable:

log P(Disease present)
P(Disease not present) = α + βcalibration LPi
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Agreement between internal and
external validation estimates

Internal Validation External Validation
Bone scan
(n = 416)

CT scan
(n = 643)

Bone scan
(n = 664)

CT scan
(n = 507)

ROC area 0.82 0.87 0.81 0.86
Brier score 0.080 0.060 0.068 0.061
Calibration slope 0.86 0.90 0.99 0.94
Performance measures were found by applying the predictive models fit in the development samples to the external validation

samples.
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Predictive models are well-calibrated
to external data sets
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Bias-corrected Performance of Imaging
Guidelines

How can we account for the systematic bias as
not all men with newly-diagnosed prostate cancer
received imaging?



Verification bias

G+ and G- indicate whether a patient is recommended to
receive imaging or not based on guideline G

Unadjusted sensitivity and specificity are estimated based
only on patients who received imaging tests:

Sensitivity = P(G+ | Disease present)

Specificity = P(G− | Disease not present)

Not all patients in our cohort received imaging, which leads
to verification bias
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Verification bias
Entire patient population Patients who received imaging

Patients who did not
receive imaging

21



Verification bias correction

We used our logistic regression model to estimate sensitivity and
specificity based on the entire patient population:

P(G+ | Disease present) = P(Disease present | G+)P(G+)
P(Disease present)

P(G− | Disease not present) = P(Disease not present | G−)P(G−)
P(Disease not present)

Main assumption: factors considered by the guideline are the only
factors that influence imaging decisions

Begg, C. B., Greenes, R. A. Assessment of diagnostic tests when disease verification is subject to selection bias.
Biometrics, 39:207, 1983.
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Verification bias greatly impacts apparent
performance of imaging guidelines

Uncorrected Bias-corrected
Clinical guidelines Sensitivity Specificity Sensitivity Specificity
Bone scan

EAU 97.9 33.4 84.5 75.7
AUA 97.9 43.5 81.2 82.0
NCCN 97.9 40.8 82.3 80.9
Briganti’s CART 89.6 45.4 79.3 83.3

CT scan
EAU 98.4 36.5 89.9 74.4
AUA 96.8 49.2 87.2 82.5

The numbers are the percentages. EAU: European Urological Association; AUA: American Urological
Association; NCCN: National Comprehensive Cancer Network; CART: classification and regression tree.
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Classification Modeling for Metastatic
Cancer Detection

Can we design imaging guidelines using machine
learning methods that can outperform the
published guidelines?



Classification models

Two important challenges:
• Learning from unlabeled data

– In practice not all patients receive imaging at diagnosis

• Learning from imbalanced data
– A minority of patients has metastatic cancer

To address these challenges, two machine learning
paradigms are combined:
• Semi-supervised learning
• Cost-sensitive learning
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Cost-sensitive Laplacian Kernel Logistic
Regression (Cos-LapKLR)

f ∗ = argmin
f∈H

1
l

l∑
i=1

δ1{yi=1} log
(
1 + e−f(xi)

)
+ (1− δ)1{yi=−1} log

(
1 + ef(xi)

)

+ γH‖f‖2
H + γMfTLf

where f is the decision function, f∗(x) =
∑l+u

i=1 α
∗
i K(xi,x), u the number of unimaged

patients, K the positive definite kernel function and L the Laplacian matrix.
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Alternative classification models

Several other classification models adapted for
imbalanced data learning were implemented:
• Cost-sensitive logistic regression and support vector

machines
• Random forests and AdaBoost combined with

advanced resampling techniques

The diagnostic accuracy of guidelines developed
from classification models was corrected for
verification bias
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Published guidelines are near-Pareto optimal
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Published guidelines are close to the efficient
frontier with missed metastasis rate < 1%
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Impact of recommendations if implemented
Bone scan CT scan

PSA > 20 or GS > 7 PSA > 20 or GS > 7 or
clinical T stage ≥ T3

20.7% (prev 27%) of
patients would be scanned

– Of those, 17.0%
(prev 12%) would be
positive

Estimated 0.8% of
patients have missed
metastatic disease

38% negative scans would
be avoided

22.6% (prev 27%) of
patients would be scanned

– Of those, 14.3%
(prev 10%) would be
positive

Estimated 0.4% of
patients have missed
metastatic disease

44% negative scans would
be avoided

30



MUSIC Imaging Appropriateness Criteria
instituted across Michigan

Statewide goal of performing
imaging in≥ 95% of patients
that meet the criteria and in
< 10% of those that do not

MUSIC members were provided
with a toolkit including placards
with the criteria and explanations
for patients

fLLSIc
Michigan Urooqica Surgery
Improvement IoIIahorative

MUSIC Imaging Appropriateness Criteria

Bone Scan CT Scan

>20 >20

OR OR
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Imaging Goals

Perform imaging in 95% of
patients meeting criteria
Perform imaging in <10%
of patient NOT meeting
criteria
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MUSIC achieved state-wide decrease in
utilization of unnecessary imaging tests
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Project outcomes

Reduction in harm to patient health from reduced
radiation exposure, fewer unnecessary follow-up
procedures, and decreased patient anxiety

MUSIC collaborative saved more than $262,000 in
2015 through reducing unnecessary imaging tests

AskMUSIC web tool for predictive models built
from MUSIC data
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Project outcomes

Selin Merdan, Christine Barnett, David C. Miller, James E.
Montie, Brian T. Denton. Data Analytics for Optimal Detection
of Metastatic Prostate Cancer, (preprint available at
http://www-personal.umich.edu/˜smerdan/).
Selin Merdan, Paul R. Womble, David C. Miller, Christine
Barnett, Zhu Ye, Susan M. Linsell, James E. Montie, Brian T.
Denton. Toward better use of bone scans among men with
early-stage prostate cancer. Urology.
Rachel Risko, Selin Merdan, Paul R. Womble, Christine
Barnett, Zhu Ye, Susan M. Linsell, James E. Montie, David C.
Miller, Brian T. Denton. Clinical predictors and recommendations
for staging computed tomography scan among men with prostate
cancer. Urology.
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Sensitivity and specificity of imaging tests

Bone scan
• Sensitivity of 86%
• Specificity of 81%

CT scan
• Sensitivity of 42%
• Specificity of 82%
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State-wide increase in the utilization of
imaging tests for high-risk patients

An increase in the use of imaging tests in patients
that meet the criteria from
• 82% to 84% for BS
• 74% to 77% for CT scan

The MUSIC consortium has made measurable
improvements in a short period of time and
additional increases are anticipated
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Compliance with MUSIC Imaging Criteria

Our results were presented at collaborative-wide meetings
with clinical champions who returned to their practices to
present the results to their own practice group

MUSIC members were provided with a toolkit including
placards with the criteria and explanations for patients

Members received comparative performance feedback that
detailed how well their practice patterns correlated with the
MUSIC Imaging Criteria
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Bias correction

P(G+ | Disease present) = P(Disease present | G+)P(G+)
P(Disease present)

P(G− | Disease not present) = P(Disease not present | G−)P(G−)
P(Disease not present)

Separate the entire population into G+ and G−
Develop logistic regression model among patients
who received imaging to estimate the probability
of metastatic disease for every patient
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