
Theorem (≈6.2.2 Puterman): If there exists a 𝑣 such that 𝑣 = 𝐿𝑣 , then 𝑣 = 𝑢𝜆
𝜋∗

. 

This proof is in two parts: (a) prove that if 𝑣 ≥ 𝐿𝑣 then 𝑣 ≥ 𝑢𝜆
𝜋∗ and (b) prove if 𝑣 ≤ 𝐿𝑣 then 𝑣 ≤ 𝑢𝜆

𝜋∗. 

From which it follows that if 𝑣 = 𝐿𝑣 and 𝑣 = 𝑢𝜆
𝜋∗. 

Part (a): For some arbitrary policy  𝜋 = (𝑑, 𝑑, 𝑑, … . ) if 𝑣 ≥ 𝐿𝑣 then 𝑣 ≥ max
𝑑

{𝑟𝑑 + 𝜆𝑃𝑑𝑣}. It follows that: 

     

               𝑣 ≥ 𝑟𝑑 + 𝜆𝑃𝑑𝑣 

                                                                                    = 𝑟𝑑 + 𝜆𝑃𝑑(𝑟𝑑 + 𝑃𝑑𝑣) 

                                                                                    = 𝑟𝑑 + 𝜆𝑃𝑑𝑟𝑑 + ⋯ + 𝜆𝑛𝑃𝑑
𝑛𝑣 

Therefore it follows from subtracting 𝑢𝜆
𝜋∗ from both sides that: 

𝑣 −  𝑢𝜆
𝜋∗ ≥ 𝜆𝑛𝑃𝑑

𝑛𝑣 −  ∑ 𝜆𝑘𝑃𝑑
𝑘𝑟𝑑

∞
𝑘=𝑛    (1) 

Since ||𝜆𝑛𝑃𝑑
𝑛𝑣 || ≤ 𝜆𝑛||𝑣|| then since 0 <  𝜆 < 1 for any 𝜖 there exists some 𝑛 sufficiently large: 

(−
𝜖

2
) 𝑒 ≤ 𝜆𝑛𝑃𝑑

𝑛𝑣 ≤ (
𝜖

2
) 𝑒 

Where 𝑒 is a vector of ones of dimension equal to that of vector 𝑣. Now since the rewards are finite and 

the norm of a transition probability matrix is 1 it follows that:  

||𝜆𝑘𝑃𝑑
𝑘𝑟𝑑|| ≤  𝜆𝑘  ||𝑃𝑟𝑑|| ≤ 𝜆𝑘||𝑟𝑑||  ≤ 𝜆𝑘𝑀  

where M is a finite upper bound on all elements of the reward vector. Thus, it follows that 

∑ 𝜆𝑘𝑃𝑑
𝑘𝑟𝑑

∞

𝑘=𝑛 

≤ 𝑀 ∑ 𝜆𝑘

∞

𝑘

=
𝜆𝑛

1 − 𝜆
𝑀 

Where the latter equality is obtained by taking the difference between ∑ 𝜆𝑖∞
𝑖=0 =

1

1−𝜆
 and ∑ 𝜆𝑖𝑛

𝑖=0 =

1−𝜆𝑛

1−𝜆
. 

Using this bound we see that for any given 𝜖  there exists n sufficiently large such that: 

(−
𝜖

2
) 𝑒 ≤ ∑ 𝜆𝑘𝑃𝑑

𝑘𝑟𝑑

∞

𝑘=0

≤ (
𝜖

2
) 𝑒 

Using equation (1) and the above results we have that 𝑣 ≥ 𝑢𝜆
𝜋∗ + 𝜆𝑛𝑃𝑑

𝑛𝑣 − ∑ 𝜆𝑘𝑃𝑑
𝑘𝑟𝑑

∞
𝑘=𝑛 ≥ 𝑢𝜆

𝜋∗ − 𝜖 

Therefore in the limit 𝑛 → ∞ and 𝜖 → 0 we have 𝑣 ≥ 𝑢𝜆
𝜋∗. This completes the proof of part (a). 

 



 

Part (b): 

If 𝑣 ≤ 𝐿𝑣 then there exists some policy 𝜋 = (𝑑, 𝑑, . . ) such that 𝑣 ≤ 𝑟𝑑 + 𝜆𝑃𝑑𝑣.  From Lemma 6.1.2 in 

Puterman it follows that 𝑣 ≤ (𝐼 − 𝜆𝑃𝑑)−1𝑟𝑑 = 𝑢𝜆
𝜋.  Therefore 𝑣(𝑠) ≤ max

𝜋
{𝑢𝜆

𝜋(𝑠)} = 𝑢𝜆
𝜋∗. 

From parts (a) and (b) it follows that if 𝑣 = 𝐿𝑣 then 𝑣 = 𝑢𝜆
𝜋∗.  

 


