
Lecture 3 Example: Computational Complexity Analysis 

 

This short description is intended to elaborate on the analysis on complexity discussed in class as part of 

lecture. The following is the standard formulation of the equipment replacement problem, discussed in 

lecture 3:  

States: age of machine at stage t, 𝑠𝑡 

Actions: 𝑎𝑡 ∈ {𝐵𝑢𝑦,  𝐾𝑒𝑒𝑝} 

Rewards: 

• 𝑐(𝑠𝑡) = cost of operating a machine of age 𝑠𝑡 

• 𝑝 = price of new machine 

• 𝑟(𝑠𝑡) = trade-in value for machine of age 𝑠𝑡 

Optimality Equations: 

 𝑣𝑡(𝑠𝑡) = min
𝑎𝑡∈{𝐵,𝐾}

{𝑝 − 𝑟(𝑠𝑡) + 𝑐(0) + 𝑣𝑡+1(1),  𝑐(𝑠𝑡)+𝑣𝑡+1(𝑠𝑡 + 1)},     ∀𝑠𝑡  

  𝑣𝑇(𝑠𝑇) = −r(st),     ∀𝑠𝑇  

The optimality equations can be solved using backwards recursion (sometimes called backwards 

induction). An important question is, how much computational effort is required to solve this problem, 

and how does it grow as the problem size grows? We can break this down by considering the two major 

types of computing operations: 1) comparisons within the min{} operation; 2) additions and 

subtractions. Since we are mainly interested in getting a sense of how the effort grows with problem 

size we will assume all these operations take approximately the same amount of time (in reality they 

would vary somewhat depending on the computing platform and software used).  Inspecting the 

optimality equations above yields the following: 

At each period, t, and each state 𝑠𝑡, one comparison is made. Thus, if there are n decision stages then 

the equipment can be 1 year old at the first stage, 2 years old at the second stage, etc. 

# of comparisons = 1 + 2 + ⋯  n-1 + n = 
𝑛(𝑛+1)

2
∼ 𝑂(𝑛2) 

From the optimality equations, at each period, t, and state, 𝑠𝑡 , there is 1 subtraction and 3 additions: 

# of additions/subtractions = 
4𝑛(𝑛+1)

2
∼ 𝑂(𝑛2) 

Recall that the notation 𝑂(𝑛2) indicates that there exists some finite number, M, such that the function 

being approximated is less than or equal to 𝑀𝑛2 for any choice of n.  This provides an approximation of 



how the effort changes with respect to problem size. Based on the above analysis, the overall 

computational effort is: 

# of comparisons + # of additions/subtractions = 1 + 2 + ⋯  n-1 + n = 
𝑛(𝑛+1)

2
+   

4𝑛(𝑛+1)

2
∼ 𝑂(𝑛2) 

and the effort is said to grow quadratically with respect to the size of the problem, as define by the 

number of decision stages, 𝑛. 

We also considered a second formulation of the equipment replacement problem as a shortest path 

problem (see slide 11, lecture 3). In this formulation the problem is represented by a directed graph. 

Following is for the example from lecture 3: 

 

 

The optimality equations for an n period problem are: 

𝑣𝑖 = min
𝑗=𝑖+1, …, 𝑛

{𝑐𝑖𝑗 + 𝑣𝑗},            𝑣𝑛 = 0      

and the computational effort is again in terms of comparisons and additions/subtractions. At each stage i 

there are n-iI comparisons and therefore the number of comparisons is the same as the prior formulation: 

# of comparisons = n+(n-1) +  ⋯ 2 + 1 = 
𝑛(𝑛+1)

2
∼ 𝑂(𝑛2). 

The number of additions and subtractions is determined by the number of operations to compute the 𝑐𝑖𝑗. 

If we note the definition of these parameters from lecture 3 (slide 12): 

cij = operating cost during years i,i+1,…,j-1 + purchase cost at the beginning of year i - trade-in value at the 

beginning of year j. 

then it follows that the number of additions and subtractions is equal to (j-i +2) and summing over all 

relevant i, j, for the coefficients we get 

# of additions/subtractions = ∑ ∑ (𝑗 − 𝑖 + 2)𝑛
𝑗=𝑖+1

𝑛
𝑖=1      



          =  ∑ (1 + 2 + ⋯ + 𝑛 − 2)𝑛
𝑖=1      

         = ∑ (
𝑖(𝑖+1)

2
− 2)𝑛

𝑖=1  

Clearly the first term in the summation is the dominant term. We can use the following formula that gives 

a close form expression for the sum: 

∑
𝑖(𝑖 + 1)

2
=

𝑛(𝑛 + 1)(2𝑛 + 1)

6

𝑛

𝑖=1

 

to establishes that:  

# of additions/subtractions ∼ 𝑂(𝑛3) and therefore: 

# of comparisons + # of additions/subtractions ∼ 𝑂(𝑛3) 

Thus, this second formulation, based on the shortest path problem, has computational effort that grows 

more quickly than the original formulation.  

Note: as was pointed out in class, the effort for the shortest path formulation of the specific problem given 

in class is less than estimated above because there is redundancy in the estimation of the coefficients, 𝑐𝑖𝑗, 

since the cost and trade-in estimates are stationary, i.e., they do not vary in time. The above analysis 

applies to the most general case of the problem in which these parameters may vary in time, but special 

cases such as the stationary version of the problem may be solved more quickly if there is some special 

problem structure that can be exploited.   


