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Today

Optimality of monotone policies
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Concepts from Last Class

Definition: A function is superadditive if for x+ ≥ 𝑥− , where x+, 𝑥− ∈ X and 

y+ ≥ 𝑦− , where , 𝑦+, 𝑦− ∈ Y ,

g x+, y+ + g x−, y− ≥ 𝑔(x+, 𝑦−) + 𝑔 𝑥−, 𝑦+

If the reverse inequality holds then g(𝑥, 𝑦) is subadditive.

Definition: A Markov chain has the IFR property if there is an ordering of 

states, 𝑆 ≡ {1,2, … . , 𝑛}, such that

𝑞𝑡 𝑘 𝑠, 𝑎 = σ𝑗=𝑘
𝑛 𝑝𝑡(𝑗|𝑠, 𝑎)

is nondecreasing in s for all k and a.

*Read about these concepts in Section 4.7 of Puterman
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Special Structured Policies

Policies with a simple structure are:

• Easier for decision makers to understand

• Easier to implement

• Easier to solve the associated MDPs

A common example is a control limit policy

at(st) = ቊ
𝑎1, 𝑖𝑓 𝑠 < 𝑠∗

𝑎2, 𝑖𝑓 𝑠 ≥ 𝑠∗

where a1 and a2 are alternative actions and s∗ is a control limit.

Question: What conditions guarantee the existence of a control limit 

policy?
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Examples of Monotone Policies

States

nondecreasing
monotone policy

States

Actions

nondecreasing
monotone policy 
with 2 actions

𝑠∗

𝑎2
∗

𝑎1
∗

Actions

Definition: A policy is monotone if the decision rule at each stage 
is nonincreasing or nondecreasing with respect to the system 
state.



5

Superadditive Functions

Write the following optimality equations:

𝑣𝑡(𝑠) =max
𝑎∈𝐴

{𝑟 𝑠, 𝑎 + 𝜆σ𝑗∈𝑆 𝑝 𝑗 𝑠, 𝑎 𝑣𝑡+1(𝑠)}

as

𝑣𝑡(𝑠) =max
𝑎∈𝐴

{𝑣𝑡 𝑠, 𝑎 }

We will prove: if 𝑣𝑡(𝑠, 𝑎) is superadditive or subadditive

then there is an optimal policy that monotone.
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Property of Superadditive Functions

The following Lemma is the key to providing sufficient conditions such 

that monotone policies are optimal if 𝑣𝑡 𝑠, 𝑎 is superadditive.

Lemma (4.7.1 Puterman): Suppose 𝑔(𝑥, 𝑦) is a superadditive function 

defined on X × 𝑌 and for each 𝑥 ∈ 𝑋,max
𝑦∈𝑌

𝑔(𝑥, 𝑦) exists. Then 

f x = max{y′ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌 𝑔 𝑥, 𝑦 }

is monotone nondecreasing in 𝑥.

Proof:  Completed in class. See Puterman, pp 104-105.
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Definition: Increasing Failure Rate (IFR)

Many stochastic processes exhibit the following characteristic 

• There is a natural ordering of states (e.g. best to worst)

• The worse the current state, the more likely it is to get worse

This property can be formalized as follows

Definition (IFR): A Markov chain has the IFR property if there is an 

ordering of states, 𝑆 ≡ {1,2, … . , 𝑛}, such that

𝑞𝑡 𝑘 𝑠, 𝑎 = σ𝑗=𝑘
𝑛 𝑝𝑡(𝑗|𝑠, 𝑎)

is nondecreasing in s for all k and a.
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Property: Product of Sequences

The following Lemma is also a key property for proving conditions 

under which an optimal policy is monotone.

Lemma (4.7.2 Puterman): Let {xj}, {𝑥𝑗
′} be real valued nonnegative 

sequences satisfying

σ𝑗=𝑘
∞ 𝑥𝑗 ≥ σ𝑗=𝑘

∞ 𝑥𝑗′

For all k , with equality holding for k = 0. Suppose 𝑣𝑗+1 ≥ 𝑣𝑗 for j=0,1,…, 

then

σ𝑗=0
∞ 𝑥𝑗𝑣𝑗 ≥ σ𝑗=0

∞ 𝑥𝑗′𝑣𝑗 .

provided the sums are finite.

Proof:  See Puterman, pp 106.
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Monotonicity: Optimal Value to Go

The following proposition provides conditions under which the optimal 

value function is monotone. 

We need this to prove 𝑣𝑡 𝑠, 𝑎 is superadditive.

Proposition (4.7.3 Puterman) The optimal value to go function,𝑣𝑡(𝑠), is 

nondecreasing (nonincreasing) in s for t=1,…, N, if the following conditions hold

1.  𝑟𝑡(𝑠, 𝑎) is nondecreasing (nonincreasing) in 𝑠 for all 𝑎 ∈ 𝐴 and 𝑡 = 1,… , 𝑁 − 1.

2.  𝑞𝑡(𝑘|𝑠, 𝑎) is nondecreasing in 𝑠 for all 𝑘 ∈ 𝑆, 𝑎 ∈ 𝐴 and 𝑡 = 1, … , 𝑁.

3. R𝑁 𝑠 nondecreasing (nonincreasing) in 𝑠.

Proof:  Completed in class. See Puterman, p 107.
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Monotonicity: Optimal Policy

The following provides conditions under which the optimal policy is 

monotone. 

Theorem (4.7.4 Puterman) Suppose for 𝑡 = 1,… , 𝑁 − 1

1.  𝑟𝑡(𝑠, 𝑎) is nondecreasing in 𝑠 for all 𝑎 ∈ 𝐴.

2.  𝑞𝑡(𝑘|𝑠, 𝑎) is nondecreasing in 𝑠 for all 𝑘 ∈ 𝑆, 𝑎 ∈ 𝐴. 

3. 𝑟𝑡 𝑠, 𝑎 is superadditive (subadditive) on 𝑆 × 𝐴 .

4. 𝑞𝑡(𝑘|𝑠, 𝑎) is superadditive (subadditive) on 𝑆 × 𝐴 , ∀𝑘

5. 𝑅𝑁 𝑠 is nondecreasing in 𝑠.

Then there exist optimal decision rules, 𝑑𝑡
∗(𝑠) , which are nondecreasing

(nonincreasing) in 𝑠 for 𝑡 = 1,… , 𝑁 − 1.

Proof:  See Puterman, p 107.
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Another Monotonicity Result

The following provides additional sufficient conditions under which the 

optimal policy is monotone. 

Theorem (4.7.5 Puterman) Suppose for 𝑡 = 1,… , 𝑁 − 1

1.  𝑟𝑡(𝑠, 𝑎) is nonincreasing in 𝑠 for all 𝑎 ∈ 𝐴.

2.  𝑞𝑡(𝑘|𝑠, 𝑎) is nondecreasing in 𝑠 for all 𝑘 ∈ 𝑆, 𝑎 ∈ 𝐴. 

3. 𝑟𝑡 𝑠, 𝑎 is superadditive on 𝑆 × 𝐴 .

4. σ𝑗=0
∞ 𝑝𝑡 𝑗 𝑠, 𝑎 𝑢 𝑗 is superadditive on 𝑆 × 𝐴 , ∀𝑘 for any nonincreasing 𝑢()

5. 𝑅𝑁 𝑠 is nonincreasing in 𝑠.

Then there exist optimal decision rules, 𝑑𝑡
∗(𝑠) , which are nondecreasing in 𝑠 for 

𝑡 = 1,… , 𝑁 − 1.

Proof:  See Puterman, p 108.
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Summary

 For certain MDPs the optimal policy can be proven to be monotone 

before solving the MDP

 In such cases it becomes easier to solve the problem because the 

set of actions that could be optimal reduces as the problem is 

solved:

 monotone backward induction is an algorithm that takes advantage 

of this fact

Read section 4.7 of Puterman for a complete description of optimality of 

monotone policies.
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Exploiting Monotonicity

To use this algorithm, states 𝑠 = 1,… ,𝑀, are ordered such that optimal 

actions, 𝑎∗(𝑠), are non-decreasing in 𝑠.

Algorithm (Monotone Backward Induction):

1. 𝑣𝑁 𝑠𝑁 = 𝑅𝑁 𝑠𝑁 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑆𝑁, Set t = N − 1, 𝑆𝑒𝑡 𝐴1 = 𝐴

2. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑣𝑡 𝑠𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑡 = 1 𝑡𝑜 𝑀 𝑎𝑠:

𝑣𝑡 𝑠𝑡 = max
a∈𝐴𝑠𝑡

{rt st, 𝑎 + 𝜆෍

𝑗∈𝑆

𝑝𝑡 𝑗 𝑠𝑡 , 𝑎 𝑣𝑡+1 𝑗 }

𝐴𝑠𝑡
∗ = arg max

a∈𝐴𝑠𝑡

{rt st, 𝑎 + 𝜆෍

𝑗∈𝑆

𝑝𝑡 𝑗 𝑠𝑡 , 𝑎 𝑣𝑡+1 𝑗 }

𝑎𝑠𝑡
∗ = max{𝑎 ∈ Ast

∗ }

𝐴𝑠𝑡+1 = {𝑎 ∈ 𝐴|𝑎 ≥ 𝑎𝑠𝑡
∗ }

3. If t = 1 then stop; otherwise t = t − 1, and return to step 2.

Set of optimal 
actions at stage t

New set of possible 
actions at state 𝑠𝑡 + 1

Complete set of 
possible actions
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Example: Maintenance Problem

A tool deteriorates stochastically with states S = {0,1,2, … }.The decision maker chooses 

from actions A = {D, R}, to replace the tool (R) or defer replacement (D). The tool 

deteriorates by i states with probability p(i). Action R has the potential to return the tool 

to the ideal state 0.

Transition probabilities:

pt 𝑗|𝑠, 𝐷 = ቊ
0, 𝑗 < 𝑠

𝑝 𝑗 − 𝑠 , 𝑗 ≥ 𝑠

and pt 𝑗|𝑠, 𝑅 = 𝑝 𝑗 , 𝑗 ≥ 0. Rewards:

rt 𝑠, 𝑎 = ቊ
𝑊 − ℎ 𝑠 , 𝑎 = 𝐷
𝑊 − 𝐾, 𝑎 = 𝑅

Where W is a fixed reward for each epoch, K is a fixed cost of replacement, and h(s) is a 

state dependent nonnegative maintenance cost. The salvage value at the end of period N is 

RN s

Note: Theorem 4.7.5 can be used to prove there is always an optimal monotone policy for 

this problem (see Canvas). 
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In Class Assignment

Assume the manufacturing tool has states S = {G, B, F}, i.e., good (G), bad (B), 

failed (F) .The decision maker chooses from actions A = {D, R}, to replace the tool 

(R) or defer replacement (D). There are three stages t=1,2,3.

Transition probability matrix:

𝑃 =
0.6 0.3 0.1
0 0.4 0.6
0 0 1.0

and repair returns the state to G w.p. 1.

Rewards:

rt 𝑠, 𝑎 = ቊ
1 − ℎ 𝑠 , 𝑎 = 𝐷
0, 𝑎 = 𝑅

Where  W=1, K=1, ℎ = 0,1, 2 and the salvage is R3 = (2, 1, 0). 

Exercise: Given it can be proven an optimal monotone policy exists. Use 

monotone backward induction to find the optimal policy. 


