
1

Last Time

Last time we took a forward
approach and a backwards approach
(policy evaluation algorithm (PEA))
and found the same results for the
problem:

Question:

• Policy 𝜋: At vertex S go up. At all
future states choose to go up if you
have ever gone up in the past;
otherwise choose to go down.
(remember choosing to go up or
down does not guarantee you will in
this stochastic problem)

• What is the expected distance
travelled under policy 𝜋 ?

But the backward approach is more
efficient.

S

10

500

10

0

1200

500

20

20

0

300

100

0

A

B

C

D

E

F

Answer:
Forward approach: 601.12
PEA algorithm: 601.12

Theorem 4.2.1 guarantees
these always give the same
answer (under the
conditions specified)

2

Today

Optimality equations for stochastic DPs:

• Why do they work?

Application to traversing a dangerous network

3

Principle of Optimality

Following is a quote from a 1957 paper by Richard Bellman:

“An optimal policy has the property that whatever the initial state and the

initial decision are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decision.”

4

Optimization of Stochastic DPs

For policy 𝜋 the expected discounted reward is:

𝑢𝑁
𝜋(𝑠) =𝐸𝑠

𝜋[σ𝑡=1
𝑁−1 𝜆𝑡−1𝑟𝑡 𝑋𝑡 , 𝑌𝑡 + 𝑟𝑁 𝑋𝑁]

Optimization Problem: An optimal policy 𝜋∗ satisfies

𝑢𝑁
𝜋∗(𝑠) ≥ 𝑢𝑁

𝜋 𝑠 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑒𝑠 𝜋 ∈ Π

To find 𝜋∗ solve the following problem:

𝑢𝑁
𝜋∗ 𝑠 = max

𝜋∈Π
𝑢𝑁
𝜋(𝑠)

5

Principle of Optimality

Define the optimal value to go function as:

𝑣𝑡 ℎ𝑡 = max
𝜋∈Π

{𝑣𝑡
𝜋 ℎ𝑡 }

Optimality equations (Bellman’s equations):

𝑣𝑡(ℎ𝑡) =max
𝑎∈𝐴

{𝑟𝑡 𝑠𝑡 , 𝑎 + 𝜆σ𝑗∈𝑆 𝑝𝑡 𝑗 𝑠𝑡 , 𝑎 𝑣𝑡+1(ℎ𝑡+1)} , 𝑡 = 1, . . , 𝑁 − 1, ∀ℎ𝑡

𝑣𝑁 ℎ𝑁 = 𝑟𝑁 𝑠𝑁 , ∀ℎ𝑁

Note: The optimality equations reduce to the policy evaluation equations when the

“max” operator is replaced by a specific action

Obtained from policy
evaluation algorithm

6

Principle of Optimality

Following is a fundamental result of dynamic programming

Theorem (≈4.3.2 Puterman): Suppose vt ht , for all 𝑡 and ℎ𝑡 is a solution

to the optimality equations, then 𝑣𝑡 ℎ𝑡 = 𝑣𝑡
∗ ℎ𝑡 , for all 𝑡 and ℎ𝑡 and

𝑣1 𝑠1 = 𝑢𝑁
𝜋∗ 𝑠1 , for all 𝑠1 ∈ 𝑆.

Recall we are making the following assumptions:

• The set of actions, A, and states, S, are finite

• The rewards, r(s,a), are bounded, i.e., r(s,a) ≤ M

• The policy is deterministic (e.g. MD or HD)

• The decision maker’s goal can be represented by linear additive rewards

Expected future rewards for all stages under
the optimal policy 𝜋∗

7

Getting the Optimal Policy

The optimal policy is obtained using the optimal value function as

follows…

𝑑𝑡
∗ ℎ𝑡 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴 𝑟𝑡 𝑠𝑡, 𝑎 + Σ𝑗∈𝑆𝑝𝑡 𝑗 𝑠𝑡 , 𝑎 𝑣𝑡+1 ℎ𝑡+1

and the optimal policy is 𝜋∗ = (𝑑1
∗, 𝑑2

∗ , … , 𝑑𝑁−1
∗).

8

Optimality of HD and MD Policies

The following property can be used to establish optimality of policies

constructed from deterministic decision rules:

Lemma (4.3.1 Puterman): Let w(⋅) be some real valued function defined

on discrete set W and let q(⋅) be a probability distribution on W. Then

max
𝑢∈𝑊

𝑤 𝑢 ≥ σ𝑢∈𝑊 𝑞 𝑢 𝑤 𝑢

Exercise: Given two policies, 𝜋𝐻𝐷
∗ ∈ Π𝐻𝐷 and 𝜋𝐻𝑅

∗ ∈ Π𝐻𝑅, that each

satisfy their respective optimality equations, prove 𝑣𝑡
𝜋𝐻𝐷

∗

(ℎ𝑡) ≥

𝑣𝑡
𝜋𝐻𝑅

∗

(ℎ𝑡), ∀ ℎ𝑡, 𝑡

9

Optimality of MD Policies

Following is an aggregate of theorems in Puterman Section 4.4, based

on the assumptions from last class, i.e., S and A are finite, bounded

rewards, linear additive utility.

Theorem (≈4.2.2 Puterman): Let vt
∗ ht , ∀ℎ𝑡 be solutions of the

optimality equations. If vt
∗ ht depends on ℎ𝑡 only through st then there is

an MD optimal policy.

Proof: Completed in class.

10

Finding Optimal Policies

The following algorithm generalizes the policy evaluation algorithm to

find an optimal policy when the optimal policy depends only on the

current state.

Algorithm (Backward Induction):

1. Set t = N, 𝑣𝑁
∗ 𝑠𝑁 = 𝑟𝑁 𝑠𝑁 , ∀𝑠𝑁

2. 𝐼𝑓 𝑡 = 1 𝑠𝑡𝑜𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 3

3. 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑡 − 1 𝑓𝑜𝑟 𝑡 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑣𝑡
∗ 𝑠𝑡 , ∀𝑠𝑡 , 𝑎𝑠:

𝑣𝑡
∗ 𝑠𝑡 = max

a∈𝐴
{rt st, 𝑎 + 𝜆෍

𝑗∈𝑆

𝑝𝑡 𝑗 𝑠𝑡 , 𝑎 𝑣𝑡+1
∗ 𝑗 }

Set 𝑎𝑡
∗ 𝑠𝑡 = arg max

a∈𝐴
{rt st, 𝑎 + 𝜆 σ𝑗∈𝑆 𝑝𝑡 𝑗 𝑠𝑡 , 𝑎 𝑣𝑡+1

∗ 𝑗 }

𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑜 𝑠𝑡𝑒𝑝 2.

11

Example

• Pr 𝑢 𝑎 = 𝑢 = 0.8 and Pr 𝑑 𝑎 = 𝑑 = 0.7

• Use the backward induction algorithm to find the optimal
policy that minimizes expected distance travelled.

S

10

500

10

0

1200

500

20

20

0

300

100

0

A

B

C

D

E

F

12

Example

• Pr 𝑢 𝑎 = 𝑢 = 0.8 and Pr 𝑑 𝑎 = 𝑑 = 0.7

• Use the backward induction algorithm to find the optimal
policy and minimum expected distance travelled.

Answer:

Expected distance travelled 437.22

Optimal Policy:

State: A B C D E

Action: u d d d u or d

S

10

500

10

0

1200

500

20

20

0

300

100

0

A

B

C

D

E

F

13

Zombie Avoidance

Formulate and solve a DP for the following
problem:
 You must traverse the following network in which edge

weights are the probability of encountering a zombie if
you travel along that edge

 Your goal is to minimize the probability of an encounter

S F

0.2

0.25

0.3

0.02

0.5 0.1

0.010.1

0.05

0.1

