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Project Reminders 

Presentations in class, Dec 5 and 7. Maximum of 10 minutes for your 

presentation. Make sure you practice!

Grade based on class survey which will count for 1/3 of participation 

component (5% of final grade overall); Survey question:

“This presentation was clear, interesting, and informative: 1, 2, 3, 4, 5”. 

Resources for presentations: 

http://www.nature.com/scitable/ebooks/english-communication-for-

scientists-14053993/giving-oral-presentations-14239332

http://www.pcworld.idg.com.au/slideshow/366369/world-worst-

powerpoint-presentations/

http://www.nature.com/scitable/ebooks/english-communication-for-scientists-14053993/giving-oral-presentations-14239332
http://www.pcworld.idg.com.au/slideshow/366369/world-worst-powerpoint-presentations/
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Project Presentation Schedule

Dec 5 Presentations

 Isaac, Adam, Shuzhe: Ventilation in Intensive Care Units

 Huiwen, Siyu: Treasure hunting

 Suyanpeng, Liyang: Pac Man

 Seok-Joo, Aditi, Ryan: Blackjack

 Andrew, Valerie, Anna: Fantasy Football Draft

 Derek, Chandra, Sajan: Robot Navigation

Dec 7 Presentations

 Weiyu, Sijia: Uber

 Junhong, Luze, Mohammad: Tennis

 Darshan, Ikka, Srinivas: Navigating conferences

 Zhanren, Palaniapan, Dhanush: IOE Master’s Course Selection

 Chien-Yi, Yixuan, Zheng: Safety Stock Planning
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Recap 

Methods we have covered for solving infinite horizon MDPs 

include:

 Value Iteration

 Policy Iteration

 Modified Policy Iteration

 LP Formulation of an MDP

Last class: Partially observable MDPs
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Monotone Policies

Policies with a simple structure are appealing

• Easier for decision makers to understand

• Easier to implement

• Easier to evaluate computationally

A common example is a control limit policy

a(s) = ቊ
𝑎1, 𝑖𝑓 𝑠 < 𝑠∗

𝑎2, 𝑖𝑓 𝑠 ≥ 𝑠∗

where a1 and a2 are alternative actions and s∗ is a control 

limit.

Question: What conditions guarantee the existence of a 

control limit policy for an infinite horizon problem?
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Monotonicity: Infinite Horizon MDPs

The following theorem provides a means to prove existence of a 

monotone policy for infinite horizon MDPs

Theorem (≈6.11.1 Puterman) Suppose the following hold:

1. 𝑣 ∈ 𝑉𝜎 implies L𝑣 ∈ 𝑉𝜎

2. 𝑣 ∈ 𝑉𝜎 implies there exists a d′ ∈ 𝐷𝜎 ∩ 𝑎𝑟𝑔𝑚𝑎𝑥𝑑∈𝐷 𝐿𝑑𝑣. 

3. For any convergent sequence vn ⊂ 𝑉𝜎 , lim
𝑛→∞

𝑣𝑛 ∈ 𝑉𝜎 .

Then there exists an optimal stationary policy in Π𝜎

Proof:  See Puterman pp 255-256
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In English Theorem 6.11.1 says:

If the value function and decision rule at each iteration of the value 

iteration algorithm have a special property (e.g. monotonicity) and

that property is preserved through applications of operator L then

there is an optimal policy with the property.

Monotonicity: Infinite Horizon MDPs
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Theorem 6.11.1 is a powerful result that can be used to prove a 

number of properties of infinite horizon MDPs including the 

following that is analogous to Theorem 4.7.4 in the finite horizon 

context

Monotonicity: Infinite Horizon MDPs

Theorem (6.11.6 Puterman) Suppose for 𝑡 = 1,… ,𝑁 − 1

1.  𝑟(𝑠, 𝑎) is nondecreasing in 𝑠 for all 𝑎 ∈ 𝐴.

2.  𝑞(𝑘|𝑠, 𝑎) is nondecreasing in 𝑠 for all 𝑘 ∈ 𝑆, 𝑎 ∈ 𝐴. 

3. 𝑟 𝑠, 𝑎 is superadditive (subadditive) on 𝑆 × 𝐴 .

4. 𝑞(𝑘|𝑠, 𝑎) is superadditive (subadditive) on 𝑆 × 𝐴 , ∀𝑘

Then there exist optimal stationary decision rules, 𝑑∗(𝑠) , which are nondecreasing

(nonincreasing) in 𝑠.
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New Topic: Limits of DP

Realistic applications often lead to DPs that cannot be 

solved exactly.

Often the state space becomes extremely large resulting 

in at least two potential problems for using MDPs:

• Difficulty in computing the value function

• “The curse of dimensionality”

• Difficulty in parameter estimation

• “The curse of modeling”
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Example

You are developing a decision support system to manage 

inventory for a retail outlet selling 100 different types of shoes. 

Weekly you must decide whether and how much to order of each 

shoe. 
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Example

You are a transportation engineer developing an intelligent traffic 

control system for downtown Ann Arbor. 

All of these problems have in common that the state space 

becomes extremely large.
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Approximate Dynamic Programming

Many MDPs cannot be solved exactly due to the curse of 

dimensionality. However, many options exist to find “good” 

solutions:

• Heuristics 

• Approximate dynamic programming methods 

• Deterministic

• Sampling (Simulation) based  

The ideal approach is problem dependent. 
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Approximate DP Approaches

 Deterministic aggregation methods

 State aggregation

 Basis function expansion

 Sampling based methods
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Approximation: Reducing the State Set

The number of state is often the most prohibitive characteristic of 

large-scale DPs. Aggregating states is one approximation method 

for reducing the number of states:

4 State Example:

1 2 3 4
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Approximations:State Aggregation

Aggregation involves generating a partition that is a “reasonable” 

approximation 

1 2 3 4

1 2 3 4

1 2 3 4

Partition 1

Partition 2

Partition 3
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Approximations:State Disaggregation

After solving the DP the resulting policy must be disaggregated  

1 2 3 4

s’1 s’2a’1 a’2

1 2 3 4

s1,a(s1) s2, a(s2) s3, a(s3) s4, a(s4)

𝑎 𝑠 = argmax
𝑎∈𝐴

{𝑟 𝑠, 𝑎 + 𝜆 ෍

𝑗∈𝑆′

𝑝 𝑗 𝑠, 𝑎 ҧ𝑣𝑡+1 𝑠′ }

ҧ𝑣𝑡+1 𝑠′
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Aggregation in Multiple Dimensions

Consider the following 2-dimensional example. States are S1 and S2

which can vary continuously in some range. For example the states 

in a drug treatment model could be cholesterol and blood pressure. 

S2

S1

400

220

150

Cholesterol

Blood Pressure

80

Cell 1 Cell 2

Cell 3 Cell 4
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Aggregation in Multiple Dimensions

4 State Example: Each cell of the partition is represented by 

a discrete state (e.g. conditional mean)

S2

S1

(115, 337.5) (185, 337.5)

(115, 212.5) (185, 212.5)

400

150

80 220
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Aggregation in Multiple Dimensions

Consider the following 2-dimensional example. States are S1 and S2

which can vary continuously in some range. For example the states 

in a drug treatment model could be cholesterol and blood pressure. 

S2

S1

400

220

150

Cholesterol

Blood Pressure

80
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Linear Growth Partitioning

The following is an alternative partitioning method in which three 

partitioning decisions are made: (a) cell, (b) direction, (c) position

S2

S1

400

150

80 220

s1,a(s1)

s2,a(s2)

s3,a(s3)

s4,a(s4) s5,a(s5)
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Dimension Reduction Methods

Basis function approximations approximate the optimal 

value function as a weighted sum of basis functions:

𝑉 𝑠 = ෍

𝑘=1

∞

𝑟𝑘𝜙𝑘(𝑠)

𝑉 𝑠 ≈ ෨𝑉 𝑠 = ෍

𝑘=1

𝐾

𝑟𝑘𝜙𝑘(𝑠)

1.Select Basis functions 𝜙1, … , 𝜙𝐾, which are functions of the 

original state characteristics (e.g. blood pressure, cholesterol)

2.Compute weights 𝑟1, … , 𝑟𝐾 so that σ𝑘=1
𝐾 𝑟𝑘𝜙𝑘 𝑠 ≈ 𝑉(𝑠)

For certain types of functions 
the value function can be 
expressed exactly

Realistically a finite set of K 
functions must be selected
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Dimension Reduction Methods

Basis function approximations seek to approximate the 

optimal value function with a lower dimensional function:

෨𝑉 𝑠 = ෍

𝑘=1

𝐾

𝑟𝑘𝜙𝑘(𝑠)

1.Select Basis functions 𝜙1, … , 𝜙𝐾, which are function of 

the original state characteristics

2.Compute weights 𝑟1, … , 𝑟𝐾 so that σ𝑘=1
𝐾 𝑟𝑘𝜙𝑘 𝑠 ≈ 𝑉(𝑠)
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Approximation Examples

Taylor series:

sin 𝑥 ≈ 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!

Linear regression: 

𝑦𝑖 = 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖
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Examples of Basis Functions

Examples of common basis functions:

Fourier Series

Radial Basis Functions

Legendre Polynomials

Wavelets
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Example: Tetris

𝜙1, … , 𝜙10: Basis functions mapping the state to the 

height ℎ𝑘 of each of the ten columns

𝜙11, … , 𝜙19: Basis functions mapping the state to 

the absolute difference between heights of 

successive columns: ℎ𝑘+1 − ℎ𝑘 , 𝑘 = 1,… , 9

𝜙20: Basis function maps state to the maximum 

column height: max
𝑘

ℎ𝑘

𝜙21: Basis function maps state to number of “holes” 

in the wall

𝜙22: Basis function is equal to one for every state
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Approximate Linear Program

The  linear programming formulation of an MDP can be used as a way to 

estimate basis function coefficients.

minσ𝑗∈S𝛼𝑗𝑣 𝑗

s.t.

𝑣 𝑠 − 𝜆σ𝑗∈S𝑝 𝑗 𝑠, 𝑎 𝑣 𝑗 ≥ 𝑟 𝑠, 𝑎 , ∀𝑎 ∈ 𝐴, 𝑠 ∈ 𝑆

𝑣 𝑠 urs, ∀𝑠 ∈ 𝑆

Replacing 𝑣 𝑗 with ෤𝑣 𝑗 = σ𝑘=1
𝐾 𝑟𝑘𝜙𝑘(𝑠)

minσ𝑗∈S𝛼𝑗 σ𝑘=1
𝐾 𝑟𝑘𝜙𝑘(𝑗)

s.t.

σ𝑘=1
𝐾 𝑟𝑘𝜙𝑘(𝑠) − 𝜆 σ𝑗∈S𝑝 𝑗 𝑠, 𝑎 σ𝑘=1

𝐾 𝑟𝑘𝜙𝑘(𝑠) ≥ 𝑟 𝑠, 𝑎 , ∀𝑎 ∈ 𝐴, 𝑠 ∈ 𝑆

𝑟𝑘 urs, ∀𝑘 = 1, … , 𝐾

This LP has 
many decision 
variables and 
constraints 

This LP has K 
decision 
variables and 
many 
constraints 
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How good are these approximations?

Example: Tetris

 Using a linear program to set the basis function coefficient resulted in 

policies with an average of 4274 points per game (human experts 

average about 3200 points per game)

 Other more advanced methods have lead to improvements averaging 

5500 points per game
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Want to learn more?

Powell WB. Approximate Dynamic Programming: Solving the Curses of Dimensionality. 

Wiley; 2007.

Schweitzer PJ, Seidmann A. Generalized Polynomial Approximations in Markovian

Decision Processes. Journal of Mathematical Analysis and Applications. 1985;110:568–

582.

De Farias DP, Van Roy B. The Linear Programming Approach to Approximate Dynamic 

Programming. Operations Research. 2003;51(6):850–865.


