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Today

Optimality of monotone policies
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Concepts from Last Class

Definition: A function is superadditive if for x+ ≥ 𝑥− , where x+, 𝑥− ∈ X and 

y+ ≥ 𝑦− , where , 𝑦+, 𝑦− ∈ Y ,

g x+, y+ + g x−, y− ≥ 𝑔(x+, 𝑦−) + 𝑔 𝑥−, 𝑦+

If the reverse inequality holds then g(𝑥, 𝑦) is subadditive.

Definition: A Markov chain has the IFR property if there is an ordering of 

states, 𝑆 ≡ {1,2, … . , 𝑛}, such that

𝑞𝑡 𝑘 𝑠, 𝑎 = σ𝑗=𝑘
𝑛 𝑝𝑡(𝑗|𝑠, 𝑎)

is nondecreasing in s for all k and a.

*Read about these concepts in Section 4.7 of Puterman
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Special Structured Policies

Policies with a simple structure are:

• Easier for decision makers to understand

• Easier to implement

• Easier to solve the associated MDPs

A common example is a control limit policy

at(st) = ቊ
𝑎1, 𝑖𝑓 𝑠 < 𝑠∗

𝑎2, 𝑖𝑓 𝑠 ≥ 𝑠∗

where a1 and a2 are alternative actions and s∗ is a control limit.

Question: What conditions guarantee the existence of a control limit 

policy?
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Examples of Monotone Policies

States

nondecreasing
monotone policy

States

Actions

nondecreasing
monotone policy 
with 2 actions

𝑠∗

𝑎2
∗

𝑎1
∗

Actions

Definition: A policy is monotone if the decision rule at each stage 
is nonincreasing or nondecreasing with respect to the system 
state.
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Superadditive Functions

Write the following optimality equations:

𝑣𝑡(𝑠) =max
𝑎∈𝐴

{𝑟 𝑠, 𝑎 + 𝜆σ𝑗∈𝑆 𝑝 𝑗 𝑠, 𝑎 𝑣𝑡+1(𝑠)}

as

𝑣𝑡(𝑠) =max
𝑎∈𝐴

{𝑣𝑡 𝑠, 𝑎 }

We will prove: if 𝑣𝑡(𝑠, 𝑎) is superadditive or subadditive

then there is an optimal policy that monotone.
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Property of Superadditive Functions

The following Lemma is the key to providing sufficient conditions such 

that monotone policies are optimal if 𝑣𝑡 𝑠, 𝑎 is superadditive.

Lemma (4.7.1 Puterman): Suppose 𝑔(𝑥, 𝑦) is a superadditive function 

defined on X × 𝑌 and for each 𝑥 ∈ 𝑋,max
𝑦∈𝑌

𝑔(𝑥, 𝑦) exists. Then 

f x = max{y′ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌 𝑔 𝑥, 𝑦 }

is monotone nondecreasing in 𝑥.

Proof:  Completed in class. See Puterman, pp 104-105.
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Definition: Increasing Failure Rate (IFR)

Many stochastic processes exhibit the following characteristic 

• There is a natural ordering of states (e.g. best to worst)

• The worse the current state, the more likely it is to get worse

This property can be formalized as follows

Definition (IFR): A Markov chain has the IFR property if there is an 

ordering of states, 𝑆 ≡ {1,2, … . , 𝑛}, such that

𝑞𝑡 𝑘 𝑠, 𝑎 = σ𝑗=𝑘
𝑛 𝑝𝑡(𝑗|𝑠, 𝑎)

is nondecreasing in s for all k and a.
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Property: Product of Sequences

The following Lemma is also a key property for proving conditions 

under which an optimal policy is monotone.

Lemma (4.7.2 Puterman): Let {xj}, {𝑥𝑗
′} be real valued nonnegative 

sequences satisfying

σ𝑗=𝑘
∞ 𝑥𝑗 ≥ σ𝑗=𝑘

∞ 𝑥𝑗′

For all k , with equality holding for k = 0. Suppose 𝑣𝑗+1 ≥ 𝑣𝑗 for j=0,1,…, 

then

σ𝑗=0
∞ 𝑥𝑗𝑣𝑗 ≥ σ𝑗=0

∞ 𝑥𝑗′𝑣𝑗 .

provided the sums are finite.

Proof:  See Puterman, pp 106.
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Monotonicity: Optimal Value to Go

The following proposition provides conditions under which the optimal 

value function is monotone. 

We need this to prove 𝑣𝑡 𝑠, 𝑎 is superadditive.

Proposition (4.7.3 Puterman) The optimal value to go function,𝑣𝑡(𝑠), is 

nondecreasing (nonincreasing) in s for t=1,…, N, if the following conditions hold

1.  𝑟𝑡(𝑠, 𝑎) is nondecreasing (nonincreasing) in 𝑠 for all 𝑎 ∈ 𝐴 and 𝑡 = 1,… , 𝑁 − 1.

2.  𝑞𝑡(𝑘|𝑠, 𝑎) is nondecreasing in 𝑠 for all 𝑘 ∈ 𝑆, 𝑎 ∈ 𝐴 and 𝑡 = 1, … , 𝑁.

3. R𝑁 𝑠 nondecreasing (nonincreasing) in 𝑠.

Proof:  Completed in class. See Puterman, p 107.
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Monotonicity: Optimal Policy

The following provides conditions under which the optimal policy is 

monotone. 

Theorem (4.7.4 Puterman) Suppose for 𝑡 = 1,… , 𝑁 − 1

1.  𝑟𝑡(𝑠, 𝑎) is nondecreasing in 𝑠 for all 𝑎 ∈ 𝐴.

2.  𝑞𝑡(𝑘|𝑠, 𝑎) is nondecreasing in 𝑠 for all 𝑘 ∈ 𝑆, 𝑎 ∈ 𝐴. 

3. 𝑟𝑡 𝑠, 𝑎 is superadditive (subadditive) on 𝑆 × 𝐴 .

4. 𝑞𝑡(𝑘|𝑠, 𝑎) is superadditive (subadditive) on 𝑆 × 𝐴 , ∀𝑘

5. 𝑅𝑁 𝑠 is nondecreasing in 𝑠.

Then there exist optimal decision rules, 𝑑𝑡
∗(𝑠) , which are nondecreasing

(nonincreasing) in 𝑠 for 𝑡 = 1,… , 𝑁 − 1.

Proof:  See Puterman, p 107.
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Another Monotonicity Result

The following provides additional sufficient conditions under which the 

optimal policy is monotone. 

Theorem (4.7.5 Puterman) Suppose for 𝑡 = 1,… , 𝑁 − 1

1.  𝑟𝑡(𝑠, 𝑎) is nonincreasing in 𝑠 for all 𝑎 ∈ 𝐴.

2.  𝑞𝑡(𝑘|𝑠, 𝑎) is nondecreasing in 𝑠 for all 𝑘 ∈ 𝑆, 𝑎 ∈ 𝐴. 

3. 𝑟𝑡 𝑠, 𝑎 is superadditive on 𝑆 × 𝐴 .

4. σ𝑗=0
∞ 𝑝𝑡 𝑗 𝑠, 𝑎 𝑢 𝑗 is superadditive on 𝑆 × 𝐴 , ∀𝑘 for any nonincreasing 𝑢()

5. 𝑅𝑁 𝑠 is nonincreasing in 𝑠.

Then there exist optimal decision rules, 𝑑𝑡
∗(𝑠) , which are nondecreasing in 𝑠 for 

𝑡 = 1,… , 𝑁 − 1.

Proof:  See Puterman, p 108.
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Summary

 For certain MDPs the optimal policy can be proven to be monotone 

before solving the MDP

 In such cases it becomes easier to solve the problem because the 

set of actions that could be optimal reduces as the problem is 

solved:

 monotone backward induction is an algorithm that takes advantage 

of this fact

Read section 4.7 of Puterman for a complete description of optimality of 

monotone policies.
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Exploiting Monotonicity

To use this algorithm, states 𝑠 = 1,… ,𝑀, are ordered such that optimal 

actions, 𝑎∗(𝑠), are non-decreasing in 𝑠.

Algorithm (Monotone Backward Induction):

1. 𝑣𝑁 𝑠𝑁 = 𝑅𝑁 𝑠𝑁 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑆𝑁, Set t = N − 1, 𝑆𝑒𝑡 𝐴1 = 𝐴

2. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑣𝑡 𝑠𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑡 = 1 𝑡𝑜 𝑀 𝑎𝑠:

𝑣𝑡 𝑠𝑡 = max
a∈𝐴𝑠𝑡

{rt st, 𝑎 + 𝜆

𝑗∈𝑆

𝑝𝑡 𝑗 𝑠𝑡 , 𝑎 𝑣𝑡+1 𝑗 }

𝐴𝑠𝑡
∗ = arg max

a∈𝐴𝑠𝑡

{rt st, 𝑎 + 𝜆

𝑗∈𝑆

𝑝𝑡 𝑗 𝑠𝑡 , 𝑎 𝑣𝑡+1 𝑗 }

𝑎𝑠𝑡
∗ = max{𝑎 ∈ Ast

∗ }

𝐴𝑠𝑡+1 = {𝑎 ∈ 𝐴|𝑎 ≥ 𝑎𝑠𝑡
∗ }

3. If t = 1 then stop; otherwise t = t − 1, and return to step 2.

Set of optimal 
actions at stage t

New set of possible 
actions at state 𝑠𝑡 + 1

Complete set of 
possible actions
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Example: Maintenance Problem

A tool deteriorates stochastically with states S = {0,1,2, … }.The decision maker chooses 

from actions A = {D, R}, to replace the tool (R) or defer replacement (D). The tool 

deteriorates by i states with probability p(i). Action R has the potential to return the tool 

to the ideal state 0.

Transition probabilities:

pt 𝑗|𝑠, 𝐷 = ቊ
0, 𝑗 < 𝑠

𝑝 𝑗 − 𝑠 , 𝑗 ≥ 𝑠

and pt 𝑗|𝑠, 𝑅 = 𝑝 𝑗 , 𝑗 ≥ 0. Rewards:

rt 𝑠, 𝑎 = ቊ
𝑊 − ℎ 𝑠 , 𝑎 = 𝐷
𝑊 − 𝐾, 𝑎 = 𝑅

Where W is a fixed reward for each epoch, K is a fixed cost of replacement, and h(s) is a 

state dependent nonnegative maintenance cost. The salvage value at the end of period N is 

RN s

Note: Theorem 4.7.5 can be used to prove there is always an optimal monotone policy for 

this problem (see Canvas). 
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In Class Assignment

Assume the manufacturing tool has states S = {G, B, F}, i.e., good (G), bad (B), 

failed (F) .The decision maker chooses from actions A = {D, R}, to replace the tool 

(R) or defer replacement (D). There are three stages t=1,2,3.

Transition probability matrix:

𝑃 =
0.6 0.3 0.1
0 0.4 0.6
0 0 1.0

and repair returns the state to G w.p. 1.

Rewards:

rt 𝑠, 𝑎 = ቊ
1 − ℎ 𝑠 , 𝑎 = 𝐷
0, 𝑎 = 𝑅

Where  W=1, K=1, ℎ = 0,1, 2 and the salvage is R3 = (2, 1, 0). 

Exercise: Given it can be proven an optimal monotone policy exists. Use 

monotone backward induction to find the optimal policy. 


