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Optimality of monotone policies
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Concepts from Last Class

Definition: A function is superadditive if for x™ > x~, where x*,x~ € X and
yt >y~ ,where,yt,y" €Y,

gx™,y) +gxT,y ) 2 g,y +gxT,yh)
If the reverse inequality holds then g(x, y) is subadditive.

Definition: A Markov chain has the IFR property if there is an ordering of
states, S = {1,2, ....,n}, such that

q:(kls,a) = ?:k pe(ls, a)

IS nondecreasing in s for all k and a.

*Read about these concepts in Section 4.7 of Puterman
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Special Structured Policies

IVEESITY of MICHIGAN ® COLLEGE of ENGINEERING

Policies with a simple structure are:

. Easier for decision makers to understand
. Easier to implement
. Easier to solve the associated MDPs

A common example is a control limit policy

a,if s<s”
a,, if s=>s"

ag(sy) = {

where a; and a, are alternative actions and s* is a control limit.

Question: What conditions guarantee the existence of a control limit
policy? >
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Examples of Monotone Policies

CHIGAN ® CCHLEGE of ENGINEERING

Definition: A policy is monotone if the decision rule at each stage
IS nonincreasing or nondecreasing with respect to the system

state.
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Superadditive Functions

Write the following optimality equations:

ve(s) =max{r(s,a) + 2L jes pils, Dver ()}
! |

|

. |

ve(s) =max{v.(s, a)}

We will prove: if v,(s,a) is superadditive or subadditive
then there is an optimal policy that monotone.
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Property of Superadditive Functions

The following Lemma is the key to providing sufficient conditions such
that monotone policies are optimal if v.(s, a) is superadditive.

Lemma (4.7.1 Puterman): Suppose g(x,y) is a superadditive function
defined on X X Y and for each x € X, mg(xg(x, y) exists. Then
y

f(x) = max{y’ € argmaxyey g(x,)}

IS monotone nondecreasing in x.

Proof: Completed in class. See Puterman, pp 104-105.
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Definition: Increasing Failure Rate (IFR)

Many stochastic processes exhibit the following characteristic

 There is a natural ordering of states (e.g. best to worst)
«  The worse the current state, the more likely it is to get worse

This property can be formalized as follows

Definition (IFR): A Markov chain has the IFR property if there is an
ordering of states, S = {1,2, ....,n}, such that

q:(kls,a) = ?:k pe(ls, a)

IS nondecreasing in s for all k and a.



Property: Product of Sequences M e

The following Lemma is also a key property for proving conditions
under which an optimal policy is monotone.

Lemma (4.7.2 Puterman): Let {x;}, {x;} be real valued nonnegative
sequences satisfying

YickXj = Nk Xj'

For all k, with equality holding for k = 0. Suppose v;,, = v; forj=0,1,...,
then

(0.0) (00] !/
Lo XjVj Z Ljzo X} Vj-
provided the sums are finite.

Proof: See Puterman, pp 106.
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The following proposition provides conditions under which the optimal
value function is monotone.

We need this to prove v,(s, a) is superadditive.

Proposition (4.7.3 Puterman) The optimal value to go function,v,(s), is
nondecreasing (nonincreasing) in s for t=1,..., N, if the following conditions hold

1. r:(s,a) is nondecreasing (nonincreasing) ins forallae Aandt=1,...,N — 1.
2. q:(k|s,a) is nondecreasinginsforallk e S, ae Aandt =1, ..., N.

3. Ry(s) nondecreasing (nonincreasing) in s.

Proof: Completed in class. See Puterman, p 107.



Monotonicity: Optimal Policy Licmoweanan
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The following provides conditions under which the optimal policy Is
monotone.

Theorem (4.7.4 Puterman) Suppose fort =1,...,N —1
1. r:(s,a) is nondecreasing in s for all a € A.

2. q:(k|s,a) is nondecreasing in sforall k € S,a € A.

3. 1:(s,a) is superadditive (subadditive) on S x A ..

4. q:(k|s, a) is superadditive (subadditive) on S X A,Vk
5. Ry(s) is nondecreasing in s.

Then there exist optimal decision rules, d;(s) , which are nondecreasing
(nonincreasing) insfort=1,...,N — 1.

Proof: See Puterman, p 107.
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Another Monotonicity Result M

of MICHIGAN ® COLLEGE of ENGINEERING

The following provides additional sufficient conditions under which the
optimal policy is monotone.

Theorem (4.7.5 Puterman) Suppose fort =1,...,N —1
1. r:(s,a) is nonincreasing in s for all a € A.

2. q:(k|s,a) is nondecreasing in sforall k € S,a € A.

3. 1:(s,a) is superadditive on S X A ..

4. ¥iZop:(ls, @)u(j) is superadditive on S x A, Vk for any nonincreasing u()

5. Ry(s) is nonincreasing in s.

Then there exist optimal decision rules, d;(s) , which are nondecreasing in s for
t=1,..,N—1.

Proof: See Puterman, p 108. 11
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Summary

=  For certain MDPs the optimal policy can be proven to be monotone
before solving the MDP

= Insuch cases it becomes easier to solve the problem because the
set of actions that could be optimal reduces as the problem is

solved:
3 monotone backward induction is an algorithm that takes advantage
of this fact

Read section 4.7 of Puterman for a complete description of optimality of
monotone policies.

12
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To use this algorithm, states s = 1, ..., M, are ordered such that optimal

actions, a*(s), are non-decreasing in s.
Complete set of
possible actions

/

Algorithm (Monotone Backward Induction):

1. UN(SN) — RN(SN), fOT' all SN, Sett =N —1, Set A1 = A

2. Evaluate v.(s;) for all s; = 1to M as:

ve(s) = max {r(s, @) + 1)) pe(flse, v ()

aEASt
ES
Set of optimal !
actions at stage t

~ A;,=argmax {r(sy,a) +1 z (s, aA)vey1()}

€A -
A= lst jES

* *
New set of possible As, = max{a € ASt}

actions at state s; + 1

T Ay =f{a€Alaz=al}

3. Ift =1 then stop; otherwise t = t — 1, and return to step 2.

13
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A tool deteriorates stochastically with states S = {0,1,2, ... }.The decision maker chooses
from actions A = {D, R}, to replace the tool (R) or defer replacement (D). The tool

deteriorates by i states with probability p(i). Action R has the potential to return the tool
to the ideal state 0.

Transition probabilities:

0, j<s

pt(ils;D) = {p(] _ S), ] > s

and p:(j|s,R) = p(j),j = 0. Rewards:

Where W is a fixed reward for each epoch, K is a fixed cost of replacement, and h(s) is a
state dependent nonnegative maintenance cost. The salvage value at the end of period N is

Ry (s)

Note: Theorem 4.7.5 can be used to prove there is always an optimal monotone policy for 14
this problem (see Canvas).



In Class Assignment
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Assume the manufacturing tool has states S = {G, B, F}, i.e., good (G), bad (B),
failed (F) .The decision maker chooses from actions A = {D, R}, to replace the tool
(R) or defer replacement (D). There are three stages t=1,2,3.

Transition probability matrix:

0.6 0.3 0.1
P=10 04 0.6
0 0 1.0

and repair returns the state to G w.p. 1.
Rewards:

1 — h(s), =D

Where W=1, K=1, h = (0,1, 2) and the salvage is R; = (2,1, 0).

Exercise: Given it can be proven an optimal monotone policy exists. Use
monotone backward induction to find the optimal policy.
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