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Last time we took a forward
approach and a backwards approach
(policy evaluation algorithm (PEA))
and found the same results for the
problem:

Question:

. Policy m: At vertex S go up. At all
future states choose to go up if you
have ever gone up in the past; F
otherwise choose to go down.
(remember choosing to go up or
down does not guarantee you will in
this stochastic problem)

Answer:
Forward approach: 601.12
PEA algorithm: 601.12

. What is the expected distance Theorem 4.2.1 guarantees
travelled under policy = ? these always give the same
answer (under the

conditions specified)
But the backward approach is more

efficient. 1
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Optimality equations for stochastic DPs:
 Why do they work?

Application to traversing a dangerous network
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Following is a quote from a 1957 paper by Richard Bellman:

“An optimal policy has the property that whatever the initial state and the
Initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.”
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Optimization of Stochastic DPs

For policy  the expected discounted reward is:

up(s) =EF[Xeer A (X, V) + ry (Xy)]

Optimization Problem: An optimal policy r* satisfies
ul (s) = ufr(s), for all s € S and for all polices w € Tl

To find ©* solve the following problem:

uyy (s) = maxug(s)
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Principle of Optimality

Define the optimal value to go function as:

ve(he) = %16312[({”? (he)}

\ Obtained from policy

evaluation algorithm
Optimality equations (Bellman’s equations):

ve(he) :I;Illéjlji{rt(St, a) + 12 jes peUlse, )vepr(hey )}t =1, ,N =1, Vh
vy (hy) = rv(sy), Vhy

Note: The optimality equations reduce to the policy evaluation equations when the
“max” operator is replaced by a specific action
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Following is a fundamental result of dynamic programming

Theorem (=4.3.2 Puterman): Suppose v, (h;), for all t and h; is a solution
to the optimality equations, then v.(h;) = v;*(h;), for all t and h; and

v1(s1) = uy™ (sy),foralls; €S.

\ Expected future rewards for all stages under
the optimal policy *

Recall we are making the following assumptions:

. The set of actions, A, and states, S, are finite

. The rewards, r(s,a), are bounded, i.e., r(s,a) <M

. The policy is deterministic (e.g. MD or HD)

. The decision maker’s goal can be represented by linear additive rewards
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Getting the Optimal Policy

The optimal policy is obtained using the optimal value function as
follows...

di(ht) € argmaxgey {Tt(St, a) + ZjESpt(ilst» a)vt+1(ht+1)}

and the optimal policy is n* = (d{,d5, ..., dNy_1)-



Optimality of HD and MD Policies | EdMersmamme

The following property can be used to establish optimality of policies
constructed from deterministic decision rules:

Lemma (4.3.1 Puterman): Let w(-) be some real valued function defined
on discrete set W and let q(-) be a probability distribution on W. Then

max(w(w)} 2 Tyew W)

Exercise: Given two policies, myp* € I17P and my* € 17K, that each
satisfy their respective optimality equations, prove vf "0 (hy) >
v, "% (hy), ¥ hy,t 8



O ptl m a.l Ity Of M D P O I I C I eS mm::mf_;m ENGINEERING

Following is an aggregate of theorems in Puterman Section 4.4, based
on the assumptions from last class, i.e., S and A are finite, bounded
rewards, linear additive utility.

Theorem (=4.2.2 Puterman): Let v{ (h,), Vh; be solutions of the
optimality equations. If v{ (h;) depends on h; only through s; then there is
an MD optimal policy.

Proof: Completed in class.



Finding Optimal Policies

The following algorithm generalizes the policy evaluation algorithm to
find an optimal policy when the optimal policy depends only on the
current state.

Algorithm (Backward Induction):

1. Sett=N,vyn(sy) = ry(sy), Vsy
2. If t =1 stop,otherwise go to step 3

3. Substitutet — 1 for t and compute v{(s;), Vs, as:

vi(se) = max {ry(sp @ + 2 ) pe(flse, @vias ()
jES
Set a;(sy) = arg rzlax {re(sp @) + 4 Zjes pe(lse, a)vii:()}
ae
return to step 2.
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MICHIGAN ENGINEERING
Example Lo e
*  Pr(ula =u) =0.8 and Pr(dla=d) = 0.7

- Use the backward induction algorithm to find the optimal
policy that minimizes expected distance travelled.

11
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*  Pr(ula =u) =0.8 and Pr(dla=d) = 0.7

- Use the backward induction algorithm to find the optimal
policy and minimum expected distance travelled.

Answer:
Expected distance travelled 437.22

Optimal Policy:
State: A B C D E
Action: u d d d uord 12
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Formulate and solve a DP for the following

problem:

. You must traverse the following network in which edge
weights are the probability of encountering a zombie if
you travel along that edge

. Your goal is to minimize the probability of an encounter
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