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Fishing is the reason I love 

decision making under 

uncertainty!

These slides (and pictures ) are on 
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A Long History…

PubMed results by methodology 
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Topics in this tutorial

• Markov Decision Process (MDP) Basics

• Partially Observable Markov Decision Processes 

(POMDPs)

• Data-Driven Model Parameterization

• Other Models for Medical Decision-Making

• Conclusions



Healthcare problems addressed by 

MDPs and POMDPs

Schaefer et al. 2005.  "Modeling medical treatment using Markov decision processes." In Operations research and health 

care, pp. 593-612. Springer US, 2005.

Dıez, et al. 2011 "MDPs in medicine: opportunities and challenges." In Decision Making in Partially Observable, Uncertain 

Worlds: Exploring Insights from Multiple Communities (IJCAI Workshop), Barcelona (Spain), vol. 9, p. 14. 2011.

Steimle and Denton. 2017. "Markov decision processes for screening and treatment of chronic diseases." In Markov 

Decision Processes in Practice, pp. 189-222. Springer International Publishing, 2017.



Richard Bellman

Dynamic programming (DP) dates back to 

early work of Richard Bellman in the 1940’s

1954 Paper by Bellman describes the 

foundation for DP

Since its development DP has been applied to 

fields of mathematics, engineering, biology, 

chemistry, medicine, and many others

For more history on Richard Bellman see: http://www.gap-
system.org/~history/Biographies/Bellman.html



Definitions 

A policy defines the action to take in each possible 

state of the system

An optimal policy defines the optimal action to take for 

each state that will achieve some goal such as

• Maximize rewards gained over time

• Minimize costs paid over time

• Achieve an outcome with high probability



Shortest path problems

• DPs can be used for 

finding the shortest path 

that joins two points in a 

network

• Many problems can be 

formulated as a shortest 

path problem



Shortest Path Example

What is the shortest path in this directed graph?
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Principle of Optimality

Following is a quote from a 1954 paper by Richard Bellman:

“An optimal policy has the property that whatever the initial 

state and the initial decision are, the remaining decisions 

must constitute an optimal policy with regard to the state 

resulting from the first decision.”

Bellman, 1954. “The Theory of Dynamic Programming,” Bulletin of the 

American Mathematics Society, 60(6), 503-515



Dynamic program terminology

Main Elements

• States: vertices of the graph

• Actions: which vertex to move to

• Transfer Function: edges of the graph

• Rewards: cost associated with selecting an edge 

Goal: Starting from vertex S, select the action at each 

vertex that will minimize total edge distance travelled to 

reach vertex G



Dynamic program formulation

Let a DP have states, st ∈ 𝑆, actions 𝑎𝑡 ∈ 𝐴, rewards, 𝑟𝑡(𝑠𝑡, 𝑎𝑡), and an 

optimal value function, 𝑣𝑡(𝑠𝑡), defined for stages 𝑡 = 1, 2, … , 𝑇

Optimality Equations:

v𝑡 𝑠𝑡 = max
𝑎𝑡∈𝐴

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝑣𝑡+1 𝑠𝑡+1 , ∀𝑠𝑡

v𝑇 𝑠𝑇 = 𝑅 𝑠𝑇 , ∀𝑠𝑇

v𝑡 𝑠𝑡 is the maximum total reward for all stages 𝑡, 𝑡 + 1,… , 𝑇𝑡, also called 

the “optimal value to go”

Transition from 𝑠𝑡 to 𝑠𝑡+1 governed by a transfer equation:

𝑠𝑡+1 = 𝑔(𝑠𝑡, 𝑎𝑡)



Assumptions made in this tutorial

• Finite horizon

• The set of decision epochs, 𝑇,  actions, 𝐴, 

and states, 𝑆, are finite

• The decision maker’s goal can be 

represented by linear additive rewards 



What About Uncertainty?

Uncertainty arises in many ways in chronic 

diseases:

• Future health status

• Treatment effects

• Diagnostic test results

• Procedure outcomes

The first and easiest step to address uncertainty is a 

Markov decision process (MDP)



Optimality Equations

For all states, 𝑠𝑡, and all time periods, 𝑡 = 1,… , 𝑇 − 1

𝑣𝑡 𝑠𝑡 = max
𝑎𝑡∈𝐴

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝜆 ෍

𝑠𝑡+1∈𝑆

𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) 𝑣𝑡+1 𝑠𝑡+1

Boundary Condition:   𝑣𝑇 𝑠𝑇 = 𝑅(𝑠𝑇), ∀𝑠𝑇

Immediate
Reward

Future “value to go”



Fundamental Result

Theorem: Suppose vt 𝑠𝑡 , for all 𝑡 and 𝑠𝑡 is a solution to the 

optimality equations, then 𝑣𝑡 𝑠𝑡 = 𝑣𝑡
∗ 𝑠𝑡 , for all 𝑡 and 𝑠𝑡 the 

associated actions define the optimal policy 𝜋∗ for the MDP.

Importance: This proves solving the optimality equations 

yields an optimal solution to the MDP.

Reference: These results are an aggregate of results presented in chapter 4 of “Markov 

Decision Processes: Discrete Stochastic Dynamic Programming,” by Puterman. 



Special Structured Policies

Policies with a simple structure are:

• Easier for decision makers to understand

• Easier to implement

• Easier to solve the associated MDPs

General structure of a control limit policy

at(st) = ቊ
𝑎1, 𝑖𝑓 𝑠 < 𝑠∗

𝑎2, 𝑖𝑓 𝑠 ≥ 𝑠∗

where a1 and a2 are alternative actions and s∗ is a control 

limit.



Monotone Policies

States

nondecreasing
monotone policy

States

Actions

nondecreasing
monotone policy 
with 2 actions

𝑠∗

𝑎2
∗

𝑎1
∗

Actions

Definition: Control limit policies are examples of 
monotone policies. A policy is monotone if the decision 
rule at each stage is nonincreasing or nondecreasing with 
respect to the system state.



Monotonicity: Sufficient Conditions

Theorem: Suppose for 𝑡 = 1,… , 𝑇 − 1

1.  𝑟𝑡(𝑠, 𝑎) is nondecreasing in 𝑠 for all 𝑎 ∈ 𝐴.

2.  𝑞𝑡(𝑘|𝑠, 𝑎) is nondecreasing in 𝑠 for all 𝑘 ∈ 𝑆, 𝑎 ∈ 𝐴. 

3. 𝑟𝑡 𝑠, 𝑎 is superadditive (subadditive) on 𝑆 × 𝐴 .

4. 𝑞𝑡(𝑘|𝑠, 𝑎) is superadditive (subadditive) on 𝑆 × 𝐴 , ∀𝑘

5. 𝑅𝑇 𝑠 is nondecreasing in 𝑠.

Then there exist optimal decision rules, 𝑑𝑡
∗(𝑠) , which are 

nondecreasing (nonincreasing) in 𝑠 for 𝑡 = 1,… , 𝑇 − 1.

See Puterman, chapter 4, for discussion of this and related properties.

(IFR Property)



MDP Example: Drug Treatment Initiation

Some treatment decisions can be 

viewed as a “stopping time” problem:

• Statins lower your risk of 

heart attack and stroke

• Treatment has side effects 

and cost

• Patients decision:

• initiate statins 

• defer initiation for a year



Model Description

Decision epochs:

• Time horizon: Ages 40-80

• Annual decision epochs

Actions: Initiate (Q) or delay (C) statin treatment

States: 

• Risk factors: Total cholesterol and HDL

• Demographic: Gender, Race, BMI, smoking status, 

medical history 



Stopping Time Problem

Optimality equations:

vt s = max
a∈{𝑄,𝐶}

𝑅𝑡 s , r s, C +෍

j∈𝑆

𝑝 𝑗 𝑠, 𝐶 𝑣𝑡+1 𝑗 , ∀𝑠 ∈ 𝑆

v𝑇 s = RT s , ∀𝑠 ∈ 𝑆

States define patient health status

Action 𝐶 represents decision to defer statin initiation, Q
denotes decision to start statins  

R𝑡 s is expected survival if statins are initiated



Metabolic 

States before 

an event has 

occurred. 

L

Heart Attack or 

Stroke

r(L,W)
r(M,W)

r(H,W)

Rt,(S)

r(V,W)

VM H

On Statins 1

1

Q Q Q Q

Statin Treatment Markov Chain



Rewards

There are various types of reward functions used in 

health studies like this. The simplest definition for this 

problem is:

• rt 𝑠𝑡 is the time between decision epochs (e.g. 1 

year)

• 𝑅𝑡 𝑠𝑡 is the expected future life years adjusted for 

quality of life on medication



Computing Transition Probabilities

Transition probabilities between metabolic states:

• Longitudinal electronic medical record data for total 

cholesterol (bad cholesterol) and HDL (good cholesterol) 

levels for many patients 

Transition probabilities from healthy states to complication 

state

• Published cardiovascular risk models that estimate the 

probability of heart attack or stroke in the next year



Computing Transition Probabilities



Estimating Transition Probabilities

Transition probabilities are estimated using longitudinal data

for a cohort of patients that includes:

• Laboratory and clinical data (e.g. cholesterol, blood 

pressure)

• Pharmacy claims data indicating prescriptions

𝑝 𝑠′ 𝑠 , 𝑎 =
𝑛 𝑠, 𝑠′, 𝑎

σ𝑠′𝑛 𝑠, 𝑠′, 𝑎
, ∀𝑠′, 𝑠, 𝑎



Optimal Treatment Initiation Policy

Female

Male

Bad cholesterol/Good cholesterol



Other Related Examples

The previous example is based on this paper:

• Denton, B.T., Kurt, M., Shah, N.D., Bryant, S.C., Smith, S.A., “A Markov Decision Process 

for Optimizing the Start Time of Statin Therapy for Patients with Diabetes,” Medical Decision 

Making, 29(3), 351-367, 2008

Following are extensions:

• Kurt, M., Denton, B.T., Schaefer, A., Shah, N., Smith, S., “The Structure of Optimal Statin 

Initiation Policies for Patients with Type 2 Diabetes”, IIE Transactions on Healthcare 1, 49-65, 

2011

• Mason, J.E., England, D., Denton, B.T., Smith, S., Kurt, M., Shah, N., “Optimizing Statin 

Treatment Decisions in the Presence of Uncertain Future Adherence,” Medical Decision 

Making 32(1), 154-166, 2012.

• Mason, J., Denton, B.T., Shah, N., Smith, S., “Optimizing the Simultaneous Management of 

Cholesterol and Blood Pressure Treatment Guidelines for Patients with Type 2 Diabetes,” 

European Journal of Operational Research, 233, 727-738, 2013.

https://btdenton.engin.umich.edu/wp-content/uploads/sites/138/2015/08/Denton-2009.pdf
https://btdenton.engin.umich.edu/wp-content/uploads/sites/138/2015/08/Kurt-2010.pdf
https://btdenton.engin.umich.edu/wp-content/uploads/sites/138/2015/08/Mason-2011.pdf
https://btdenton.engin.umich.edu/wp-content/uploads/sites/138/2015/08/Mason-2013.pdf


Other Examples of MDPs for Chronic Disease

 Liver Disease: Alagoz, L.M. Maillart, A.J. Schaefer, and M.S. Roberts. 

Choosing among living-donor and cadaveric livers. Management Science, 

53(11):1702–1715, 2007

 Kidney Disease: Ahn, Jae-Hyeon, and John C. Hornberger. "Involving patients 

in the cadaveric kidney transplant allocation process: A decision-theoretic 

perspective." Management Science 42.5 (1996): 629-641.

 Opthamology: Kirkizlar, E., Serban, N., Sisson, J. A., Swann, J. L., Barnes, C. 

S., & Williams, M. D. (2013). Evaluation of telemedicine for screening of 

diabetic retinopathy in the Veterans Health 

Administration. Ophthalmology, 120(12), 2604-2610.

 Dementia: Boger, J., Hoey, J., Poupart, P., Boutilier, C., Fernie, G., & Mihailidis, 

A. (2006). A planning system based on Markov decision processes to guide 

people with dementia through activities of daily living. IEEE Transactions on 

Information Technology in Biomedicine, 10(2), 323-333.



MDPs: Where to learn more
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• Partially Observable Markov Decision Processes 

(POMDPs)

• Data-Driven Model Parameterization

• Other Models for Medical Decision-Making

• Conclusions



Partially Observable MDPs (POMDPs)

Model Elements:

• Decision Epochs: 𝑡 = 1, … , 𝑇

• Core States: 𝑠𝑡 ∈ 𝑆

• Actions: 𝑎𝑡 ∈ 𝐴

• Rewards: 𝑟𝑡(𝑠𝑡, 𝑎𝑡)

• Transition Probability Matrix: 𝑃

• Observations: 𝑜 ∈ 𝑂

• Observation Probability Matrix: 𝑄 ∈ 𝑅 𝑆 ×|𝑂| Unique to POMDPs



POMDP Sequence of Events

Choose 

action 𝑎𝑡(𝑏𝑡)
Transition to new core state, 

𝑠𝑡+1, in the Markov chain

Receive “observation” 

according to observation 

probability matrix

Receive 

reward, 

𝑟𝑡(𝑠𝑡 , 𝑎𝑡)

Updated belief 

vector, 𝑏𝑡

unobserved

Bayesian update

Start with 𝑏0 End with 𝑅𝑇(𝑠𝑇)



Sufficient Statistic

The belief vector has one element for each state that defines 

the probability the system is in state 𝑠𝑡

𝑏𝑡(𝑠𝑡) = 𝑃(𝑠𝑡|𝑜𝑡, 𝑎𝑡−1, 𝑜𝑡−1, 𝑎𝑡−2, … , 𝑜1, 𝑎0)

The belief vector is a sufficient statistic to define the optimal 

policy for a POMDP.

Complete history of observations (up to 𝑡) and 
actions (up to 𝑡 − 1)

ℎ𝑡



Bayesian Updating

Belief Update Formula: 

𝑏𝑡 𝑠𝑡 ≡ 𝑃 𝑠𝑡 ℎ𝑡 =
𝑃 𝑠𝑡 , 𝑜𝑡, 𝑎𝑡−1 ht−1)

𝑃 𝑜𝑡, 𝑎𝑡−1 ℎ𝑡−1)

Numerator:

𝑃 𝑠𝑡 , 𝑜𝑡 , 𝑎𝑡−1 ht−1) = ෍

𝑠𝑡−1∈𝑆

𝑃 𝑠𝑡 , 𝑜𝑡, 𝑎𝑡−1, 𝑠𝑡−1 ℎ𝑡−1)

= ෍

𝑠𝑡−1∈𝑆

𝑃 𝑜𝑡 𝑠𝑡 , at−1, st−1, ℎ𝑡−1) 𝑃(𝑠𝑡 𝑎𝑡−1, 𝑠𝑡−1, ℎ𝑡−1 𝑃(𝑎𝑡−1|𝑠𝑡−1, ℎ𝑡−1)𝑃 𝑠𝑡−1 ℎ𝑡−1

= 𝑃 𝑎𝑡−1 ℎ𝑡−1 𝑃(𝑜𝑡|𝑠𝑡) ෍

𝑠𝑡−1∈𝑆

𝑃(𝑠𝑡 𝑎𝑡−1, 𝑠𝑡−1 𝑏𝑡−1(𝑠𝑡−1)



Bayesian Updating

Belief Update Formula: 

𝑏𝑡 𝑠𝑡 =
𝑃 𝑠𝑡 , 𝑜𝑡 , 𝑎𝑡−1 ht−1)

𝑃 𝑜𝑡 , 𝑎𝑡−1 ℎ𝑡−1)

𝑃 𝑜𝑡 , 𝑎𝑡−1 ht−1) = ෍

𝑠𝑡′∈𝑆

෍

𝑠𝑡−1∈𝑆

𝑃 𝑠𝑡′, 𝑜𝑡 , 𝑎𝑡−1, 𝑠𝑡−1 ℎ𝑡−1)

= ෍

𝑠𝑡′∈𝑆

෍

𝑠𝑡−1∈𝑆

𝑃 𝑜𝑡 𝑠𝑡′, at−1, st−1, ℎ𝑡−1) 𝑃(𝑠𝑡′ 𝑎𝑡−1, 𝑠𝑡−1, ℎ𝑡−1 𝑃(𝑎𝑡−1|𝑠𝑡−1, ℎ𝑡−1)𝑃 𝑠𝑡−1 ℎ𝑡−1

= 𝑃 𝑎𝑡−1 ℎ𝑡−1 ෍

𝑠𝑡′∈𝑆

𝑃(𝑜𝑡|𝑠𝑡′) ෍

𝑠𝑡−1∈𝑆

𝑃(𝑠𝑡′ 𝑎𝑡−1, 𝑠𝑡−1 𝑏𝑡−1(𝑠𝑡−1)

Denominator:



Bayesian Updating

.

Now everything is in terms of transition probabilities, 

observation probabilities, and the prior belief vector

𝑏𝑡 𝑠𝑡 =
𝑃(𝑜𝑡|𝑠𝑡) σ𝑠𝑡−1∈𝑆

𝑃(𝑠𝑡 𝑠𝑡−1, 𝑎𝑡−1 𝑏𝑡−1(𝑠𝑡−1)

σ𝑠𝑡′∈𝑆
𝑃(𝑜𝑡|𝑠𝑡′) σ𝑠𝑡−1∈𝑆

𝑃(𝑠𝑡′ 𝑠𝑡−1, 𝑎𝑡−1 𝑏𝑡−1(𝑠𝑡−1)

Numerator: Probability of observing 𝑜𝑡 and system is in 𝑠𝑡

Denominator: Probability of observing 𝑜𝑡



Optimality Equations for POMDPs

Rewards Vector: rt 𝑎𝑡 = (𝑟𝑡
1 𝑎𝑡 , … , 𝑟𝑡

𝑆 𝑎𝑡 )′ denotes the expected 

rewards under transitions and observations 

Optimality Equations: In POMDPs, the value function is defined on the 

belief space. 

𝑣𝑡 𝑏𝑡 = max
𝑎𝑡∈𝒜

𝑏𝑡 ⋅ 𝑟𝑡(𝑎𝑡) + 𝜆෍
𝑜𝑡+1 ∈𝒪

𝛾(𝑜𝑡+1|𝑏𝑡, 𝑎𝑡)𝑣𝑡+1 𝑇(𝑏𝑡, 𝑎𝑡 , 𝑜𝑡+1 )

Boundary Condition:   𝑣𝑇+1 𝑏𝑇+1 = 𝑏𝑇+1 ⋅ 𝑟𝑇+1

𝑟𝑡
𝑠𝑡 𝑎𝑡 =෍

𝑜𝑡+1∈𝑂
෍

𝑠𝑡+1∈𝑆
𝑟 𝑠𝑡 , 𝑎𝑡, 𝑠𝑡+1, 𝑜𝑡+1 𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝑝(𝑜𝑡+1|𝑠𝑡+1)

Probability of observation 𝑜𝑡+1
given belief vector  𝑏𝑡 and 
action 𝑎𝑡

Updated belief given 
observation 𝑜𝑡+1 and 
action 𝑎𝑡



Solution Methods

• POMDPs are difficult to solve exactly:

• Time complexity is exponential in the number of 

actions, observations, and decision epochs

• Dimensionality in the state space grows with the 

number of core states

• Complexity class is P-Space Hard

• Most approaches rely on approximations: finite 

grids, supporting hyperplane sampling



POMDP Example: Prostate cancer 

screening

Age 40 Age 41



Biomarker Test: PSA

0

1

2

3

4

5

6

7

8

40 45 50 55 60 65 70 75

P
S

A
 (

n
g

/m
L

)

Age

Cancer Free

Cancer at Age 52



Core States



Detailed Model Description

• Decision Epochs, 𝑡 = 40 41,… , 85

• Health States: Health/cancer status, 𝑠𝑡

• Observations: PSA test result, 𝑜𝑡

• Observation Matrix: 𝑞𝑡(𝑜𝑡|𝑠𝑡)

• Rewards: Quality adjusted life years
• 𝑟𝑡 𝑁𝐶,𝑁𝑜 𝑃𝑆𝐴 𝑇𝑒𝑠𝑡 = 1
• 𝑟𝑡 𝑁𝐶, 𝑃𝑆𝐴 𝑇𝑒𝑠𝑡 = 1 − 𝛿
• 𝑟𝑡 𝑁𝐶, 𝐵𝑖𝑜𝑝𝑠𝑦 = 1 − 𝜇
• 𝑟𝑡 𝐶,𝑁𝑜 𝑃𝑆𝐴 𝑇𝑒𝑠𝑡 = 1
• 𝑟𝑡 𝐶, 𝑃𝑆𝐴 𝑇𝑒𝑠𝑡 = 1 − 𝛿
• 𝑟𝑡 𝐶, 𝐵𝑖𝑜𝑝𝑠𝑦 = 1 − 𝜇 − 𝑓𝜖

Resource to 
learn more 
about 
QALYs and 
other public 
health 
measures:



Model Data



Optimal Policy for Screening

Zhang, J., Denton, B.T. Balasubramanian, H., Shah, N.D., and Inman, B.A.. 
2012. "Optimization of prostate biopsy referral decisions." M&SOM, 14(4); 
529-547.



Other examples of POMDPs for 

chronic disease

 Breast Cancer: Maillart, L.M., Ivy, J.S., Ransom, S., Diehl, K. Assessing 

dynamic breast cancer screening policies. Operations Research, 

56(6):1411–1427, 2008.

 Colorectal Cancer: Erenay, F. S., Alagoz, O., & Said, A. (2014). 

Optimizing colonoscopy screening for colorectal cancer prevention and 

surveillance. Manufacturing & Service Operations Management, 16(3), 

381-400.

 Tuberculosis:  Suen, Sze-chuan, Margaret L. Brandeau, and Jeremy D. 

Goldhaber-Fiebert. "Optimal timing of drug sensitivity testing for patients 

on first-line tuberculosis treatment." Health care management 

science (2017): 1-15.

 Heart Disease: Hauskrecht, M., & Fraser, H. (2000). Planning treatment 

of ischemic heart disease with partially observable Markov decision 

processes. Artificial Intelligence in Medicine, 18(3), 221-244.



POMDPs: Where to learn more

• Tutorial: “POMDPs for Dummies” http://cs.brown.edu/research/ai/pomdp/tutorial/

• Smallwood, Richard D., and Edward J. Sondik. "The optimal control of partially 

observable Markov processes over a finite horizon." Operations research 21, no. 5 

(1973): 1071-1088.

• Sondik, Edward J. "The optimal control of partially observable Markov processes 

over the infinite horizon: Discounted costs." Operations research 26, no. 2 (1978): 

282-304.

• Monahan, George E. "State of the art—a survey of partially observable Markov 

decision processes: theory, models, and algorithms." Management Science 28, no. 

1 (1982): 1-16.

• Kaelbling, Leslie Pack, Michael L. Littman, and Anthony R. Cassandra. "Planning 
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The Movember Foundation’s 
GAP3 Cohort

The Movember Foundation launched the 
Global Action Plan Prostate Cancer Active 
Surveillance (GAP3) to create a global 
database:

• includes 15,101 patients from 25 
established AS cohorts worldwide

• records longitudinal observations of 
patients’ clinical and demographic 
characteristics

52



Hidden Markov Model (HMM)

• Time periods: annual

• Initial distribution: 

𝜙 = (𝜙1, 1 − 𝜙1)

• Transition probabilities:

𝐴𝑡 = P 𝑠𝑡+1 𝑠𝑡

• Observations: 
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Low Risk 
(LR) 

Cancer

High Risk 
(HR) 

Cancer

Leave AS 
without 

treatment

a23

a12

a13

a22a11

Leave AS 
for 

treatment 
with LR

Leave AS 
for 

treatment 
with HR

a14 a25

Absorbing States

a15

𝑂𝑡 = 𝑃𝑆𝐴𝑡, 𝐵𝑖𝑜𝑝𝑦𝑡

Diagnosis

𝜙1 1-𝜙2



Baum-Welch Algorithm for Parameter 
Estimation

Given the observation sequences

𝑂(1) = 𝑂1
1
, … , 𝑂𝑇1

1
, … , 𝑂 𝑁 = 𝑂1

𝑁
, … , 𝑂𝑇𝑁

𝑁
,

Baum-Welch algorithm, or equivalently the EM (expectation-
maximization) estimates the model

𝜆 = 𝜙, 𝐴, 𝐵, 𝐶, 𝜇, 𝜎

that locally maximizes the likelihood function

𝑃 𝑂 𝜆 =ෑ

𝑘=1

𝑁

𝑃(𝑂(𝑘)|𝜆)

Rabiner, Lawrence R. "A tutorial on hidden Markov models and selected applications in speech 
recognition." Proceedings of the IEEE 77, no. 2 (1989): 257-286. 54



Partially Observable Markov Decision 
Process 

• Objective: to balance the harm of biopsy with 

the benefit of early detection

• Decision Epochs: every year

• Actions: PSA test only,  PSA test and Biopsy

• Hidden States: Low-Risk Cancer, High-Risk Cancer

• Initial Distribution: 𝜙

• Transition Probability Matrix: 𝐴

• Biopsy Observation Probability Matrix: B

• PSA Observation Probability Matrix: 𝐶
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These elements come from 

the HMM

These elements define the 

decision process and goal



Results: Optimal Value Function at Age 50
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• The optimal policy is 
a threshold-based 
policy: if the belief of 
high-risk state 
exceeds the 
threshold, then do 
biopsy

Weights are set equally 
for criteria: 
• delay in detection of 

high risk cancer
• harm from biopsy 



Data-Driven POMDPs

Title: A Data-driven Partially Observable Markov 
Decision Process for Optimizing Individualized 
Surveillance Strategies for Prostate Cancer

Weiyu Li, Brian Denton

Session: TD76 - Joint Session MIF/HAS: 
Models and Methods for Improving Patient 
Outcomes

November 6, 2018, 2:00 PM - 3:30 PM @ West 
Bldg. 212C
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Other Models - Robust MDPs

• All models are subject to uncertainty in model parameter 

estimates and model assumptions

• Transition probabilities are based on statistical 

estimates from longitudinal data

• Rewards are based on statistical estimates of mean 

patient utility, cost, or other performance measures 

• Robust MDPs (RMDPs) attempt to account for this 

uncertainty 



RMDP Models

An RMDP assumes TPM is restricted to lie in an uncertainty 

set, 𝑈, leading to the following optimality equations:

Time Invariant Case – Adversary selects a single TPM

𝜋∗ = argmax
𝜋∈Π

min
𝑃∈𝑈

𝐸𝑃[෍

𝑡=1

𝑁−1

𝑟𝑡 𝑠𝑡 , 𝜋(𝑠𝑡) + 𝑟𝑁 𝑠𝑁 ]

Time Varying Case – Adversary selects a TPM at each epoch

𝜋∗ = argmax
𝜋∈Π

min
𝑃𝑡∈𝑈

𝐸𝑃𝑡[෍

𝑡=1

𝑁−1

𝑟𝑡 𝑠𝑡 , 𝜋(𝑠𝑡) + 𝑟𝑁 𝑠𝑁 ]



Uncertainty Sets

Many choices of 𝑈 have been proposed:

• Finite scenario model: 

𝑈 𝑠𝑡 = {𝑝1 𝑠𝑡 , 𝑝
2 𝑠𝑡 , … , 𝑝𝐾 𝑠𝑡 }

• Interval model: 

𝑈 𝑠𝑡 = 𝑝 𝑠𝑡 𝑝 𝑠𝑡 ≤ 𝑝 𝑠𝑡 ≤ 𝑝 𝑠𝑡 , 𝑝 𝑠𝑡 ⋅ 𝟏 = 1}

• Ellipsoidal models, relative entry bounds, …



RMDP Case Study: Type 2 Diabetes

Many medications that vary in efficacy, side effects and cost. 

Oral Medications:
• Metformin
• Sulfonylurea
• DPP-4 Inhibitors

Injectable Medications:
• Insulin
• GLP-1 Agonists



Treatment Goals

• HbA1C is an important biomarker for blood sugar 
control

• But disagreement exists about the optimal goals of 
treatment and which medications to use



Markov Chain for Type 2 Diabetes

HbA1C
States



Estimating the Uncertainty Set

A combination of laboratory data and pharmacy claims data 

was to estimate transition probabilities between deciles 

𝑝 𝑠′ 𝑠 , 𝑎 =
𝑛 𝑠, 𝑠′, 𝑎

σ𝑠′𝑛 𝑠, 𝑠′, 𝑎
, ∀𝑠′, 𝑠, 𝑎

1 − 𝛼 confidence intervals for row 𝑠 of the TPM:

[ Ƹ𝑝 𝑠′ 𝑠, 𝑎 − 𝑆( Ƹ𝑝 𝑠′ 𝑠, 𝑎 𝐿, Ƹ𝑝 𝑠′ 𝑠, 𝑎 + 𝑆( Ƹ𝑝 𝑠′ 𝑠, 𝑎 𝐿]

where 

𝑆( Ƹ𝑝 𝑠′ 𝑠, 𝑎 𝐿 = 𝜒 𝑠 −1,𝛼/2|𝑆|)
2 Ƹ𝑝 𝑠′ 𝑠, 𝑎 1 − Ƹ𝑝 𝑠′ 𝑠, 𝑎

𝑁(𝑠)

1
2



Uncertainty Set with Budget

𝑈 𝑠𝑡 =

𝑝 𝑠𝑡+1|𝑠𝑡 = Ƹ𝑝 𝑠𝑡+1|𝑠𝑡 − 𝛿𝐿𝑧𝐿 𝑠𝑡+1 + 𝛿𝑈𝑧𝑈 𝑠𝑡+1 , ∀𝑠𝑡+1

෍

𝑠𝑡+1∈𝑆

𝑝 𝑠𝑡+1|𝑠𝑡 = 1

෍

𝑠𝑡+1

(𝑧𝐿 𝑠𝑡+1 + 𝑧𝑈(𝑠𝑡+1)) ≤ Γ(𝑠𝑡+1)

𝑧𝐿 𝑠𝑡+1 ⋅ 𝑧𝑈 𝑠𝑡+1 = 0, ∀𝑠𝑡+1

0 ≤ 𝑝 𝑠𝑡+1|𝑠𝑡 ≤ 1, ∀𝑠𝑡+1

Properties:
• Can be reformulated as a linear program
• For Γ = |𝑆| can be solved in 𝑂( 𝑆 )



Results
Quality adjusted life years to first health complications 
for women with type 2 diabetes

Zhang, Y. Steimle, L. N. and Denton B. T. Robust Markov Decision Processes for Medical Treatment 
Decisions. Optimization-online, Updated on September 21, 2017



Accounting for ambiguity in MDPs

Title: Leveraging decomposition methods to design robust 
policies for Markov decision processes

Lauren N. Steimle, Brian T. Denton

Session: SD01: Applications of Stochastic Programming

November 4th, 4:30-6:30 PM in North Building 121A
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Markov decision process
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Ambiguity in 
Decision-Making

Lauren Steimle, Ph.D. Student
University of Michigan

Steimle, L. N., Kaufman, D.L., and Denton B.T. Multi-model Markov 
Decision Processes. Optimization-online, Updated on July 27, 2018.



RMDPs: Where to learn more

• Nilim, A., and El Ghaoui, L. 2005. "Robust control of Markov decision 

processes with uncertain transition matrices." Operations Research

53(5); 780-798.

• Iyengar, G.N. 2005. "Robust dynamic programming." Mathematics of 

Operations Research 30(2); 257-280.

• Wiesemann, W., Kuhn, D., and Rustem, B. 2013. "Robust Markov 

decision processes." Mathematics of Operations Research 38 (1); 153-

183.

• Delage, E., Iancu, D. 2015. “Robust Multistage Decision Making.” 

INFORMS Tutorials in Operations Research 



Model-Free Methods

Two major sources of challenges to solving MDPs are:

1) “curse of dimensionality”

2) “curse of modeling”

“Model-Free” methods are suited to problems of type 2, for 

which transition probabilities are not known

These methods are known under various names including: 

reinforcement learning



Model-Free Methods

Monte Carlo sampling is a common approach for 

estimating the expectation of functions of random variables

Model free approaches use sample paths to estimate the 

value function

These methods are known under various names including: 

reinforcement learning



Monte-Carlo Sampling

Model free approaches use sample paths to estimate 

the value function via Monte Carlo sampling

𝐸𝜋[σ𝑡=1
𝑁−1 𝑟𝑡 𝑠𝑡 , 𝜋(𝑠𝑡) + 𝑟𝑁 𝑠𝑁 ]

≈
1

𝐾
෍

𝑘=1

𝐾

෍

𝑡=1

𝑁−1

𝑟𝑡 𝑠𝑡
𝑘 , 𝜋(𝑠𝑡

𝑘) + 𝑟𝑁 𝑠𝑁
𝑘 ]

Where 𝑘 = 1,… , 𝐾 are random sample paths from the 

Markov chain. 



Monte Carlo Policy Evaluation

A selected policy 𝜋 can be evaluated approximately 

via Monte Carlo sampling

As K → ∞ ෤𝑣𝜋 𝑠0 → 𝑣𝜋(𝑠0)

In practice the number of samples, 𝑁, must be 

chosen to tradeoff between (a) some desired level 

of confidence and (b) a computational budget.



Example: Bandit Problem

Consider a game in which your friend 

holds two coins: 1 coin is fair, the other 

is biased towards landing heads up. 

You know your friend holds two 

different coins but you don’t know the 

likelihood of each turning up a head.

Each turn you get to select the coin 

your friend will flip. If you win you get $1 

if you lose you lose $1.

Question: how would you play this 

game?

Application: medical 
treatment decisions with 
multiple treatment 
options and uncertain 
rewards



Example: multi-armed bandit

The action is which “arm”, 𝑎, to try at each decision epoch, 

and the expected reward for this action is 𝑄𝑡 𝑎 .

Since 𝑄𝑡 𝑎 is not known exactly it must be estimated as:

෪𝑄𝑡 𝑎 =
𝑟1+𝑟2+⋯+𝑟𝑘𝑎

𝑘𝑎

Where 𝑘𝑎 is the number of times arm 𝑎 has been sampled.

As 𝑘𝑎 → ∞ ෪𝑄𝑡 𝑎 → 𝑄𝑡 𝑎 , thus sampling each arm an 

infinite number of times will identify the optimal action 

𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴{𝑄𝑡 𝑎 }.



Example: multi-armed bandit

Policies obtained from learning attempt to converge to a near 

optimal policy quickly

The simplest learning-based policy is the greedy policy:

෤𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥{෪𝑄𝑡 𝑎 }

Alternatively the 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 method explores the action set 

by randomly selecting actions with probability 𝜖

As ka → ∞𝑄𝑡 𝑎 → 𝑄𝑡
∗(𝑎) and the optimal action is selected 

with probability greater than 1 − 𝜖.



Monte Carlo Policy Iteration

For more complex problems with multiple system states the 

following algorithm can be used

Algorithm (MC Policy Iteration):

1. For all 𝑠 initialize 𝜋 s and Q s, 𝜋(𝑠) . Choose a suitably large N.

2. 𝑷𝒐𝒍𝒊𝒄𝒚 𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒊𝒐𝒏:

Randomly select a starting pair, (s, 𝜋(𝑠)), and generate a sample path of length N

For all s, 𝜋(𝑠) in the sample path compute: ෨𝑄𝜋(𝑠, 𝜋 𝑠 ) = σ𝑡=𝑛𝑠
𝑁−1 𝜆𝑡𝑟𝑡 𝑠𝑡 , 𝜋(𝑠𝑡) + 𝜆𝑁𝑟𝑁 𝑠𝑁 , 

where 𝑛𝑠 is the index for the first instance state s is encountered.

3. 𝑷𝒐𝒍𝒊𝒄𝒚 𝑰𝒎𝒑𝒓𝒐𝒗𝒆𝒎𝒆𝒏𝒕:

For all s: π s ∈ argmaxa∈A Q s, a

Return to Step 2;



Other Approaches

• Temporal difference learning

• Q-learning



Example: SMART Trials

Murphy, S. A. (2005). An experimental design for the development of adaptive 
treatment strategies. Statistics in medicine, 24(10), 1455-1481.



Where to Learn More

Abhijit Gosavi, 2009, Reinforcement Learning: A Tutorial 

Survey and Recent Advances, INFORMS Journal on 

Computing, 212, 178-192. 

“Reinforcement Learning: An Introduction”, By Sutton and 

Barto, MIT Press
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Take Away Messages

• Operations research has an important role to play in 

understanding and advancing medical decisions 

• Observational data is an extraordinary resource but 

there are important research questions to answer to unlock 

the value

• There are extraordinary research opportunities to bring 

optimization methods to bear on diseases – you can be the 

first person to study many diseases
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