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My Background
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 PhD candidate, IEM, Shanghai Jiao Tong Univ., China, 

since 2012

 Visiting student, IOE, since 2014

 Research interests: stochastic programming, 

applications in appointment scheduling and surgery 

scheduling



Today
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 More on single machine scheduling problems:

 1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) for multiple 

(n>2) customers

 Stochastic programming model



Example: bus schedule
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Consider the following instance of a bus scheduling 

problem as 1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗):

The bus moves at a 

random speed

Passengers need to 

know the schedule in 

advance

Classify this as a 

scheduling problem



Discrete Distribution

Stochastic Programs
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Stochastic linear programs are linear programs with 

random model parameters

Linear Program:

min 𝑐𝑥 𝐴𝑥 = 𝑏, 𝑥 ≥ 0}

In the stochastic counterpart 𝑐, 𝐴, and 𝑏 could be 

random variables

Questions we might want to answer:

 What is the optimal solution that minimizes expected cost?

 What is the EVPI? VSS?



Discrete Distribution

Stochastic Programs
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Two-stage stochastic linear programs involve two types 

of decisions:

 First stage decisions: 𝑥

 Second stage decisions: 𝑦(𝜔)

First stage decisions are made before the random 

variables are observed; second stage (recourse) decisions 

are made after the random variables are observed

𝑥 → 𝜔 → 𝑦(𝜔)



Decision Process

min{𝑐𝑥 +  

𝜔=1

𝐾

𝑝(𝜔)𝑄 𝑥, 𝜔 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0}

Q x, 𝜔 = min 𝑞 𝜔 𝑦(𝜔) 𝑇(𝜔)𝑥 +𝑊(𝜔)𝑦(𝜔) = ℎ(𝜔), 𝑦(𝜔) ≥ 0}

𝑥

𝑦(1)

𝑦(2)

𝑦(𝐾)1st Stage

Decision
2nd Stage (Recourse)

Decisions

𝑝1

𝑝2

𝑝𝐾

First Stage Problem:

Second Stage Problem:
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Two-Stage Stochastic Program 

There are K 

possible 

scenarios



Discrete Distribution

Example: 1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗)
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1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) can be written as the following 

nonlinear stochastic optimization problem:

min{𝐸𝜔[𝑐
𝑤max 0, 𝑍 − 𝑥 + 𝑐𝑠max 0, 𝑥 − 𝑍 ]}

Or alternatively as the following two-stage stochastic 

linear program:

min∑𝜔
𝐾 𝑝 𝜔 (𝑐𝑤𝑤 𝜔 + 𝑐𝑠𝑠(𝜔))

𝑠. 𝑡.
𝑤 𝜔 − 𝑠 𝜔 = 𝑧 𝜔 − 𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔
𝑤 𝜔 , 𝑠 𝜔 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔



Discrete Distribution

Example: 1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗)
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Assume that there are two jobs and the cost of waiting is 

cw = 1 and the cost of machine idling is cs = 2. 

The processing time is a random variable, Z, that has a 

discrete uniform distribution U(1,4)

Formulate this problem as a stochastic program (in class)

Scenario 

(w)

1 2 3 4

p(w) ¼ ¼ ¼ ¼

Z(w) 1 2 3 4
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Example: 1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗)

The cost function is piecewise linear when Z 

has a discrete uniform distribution.
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x1 x2 x3 x4
x5

1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) 𝑓𝑜𝑟 𝑛 > 2

Set appointment times, 𝑎𝑗, to minimize the total expected 

cost of waiting and idling: (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗)

Appointment times defined by job allowances: 𝑎𝑗 = ∑𝑘=1
𝑗−1

𝑥𝑘

Sample scenario:

Start of day Planned end of day



1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) can be expressed as the 

following nonlinear stochastic optimization problem:

}][][{min
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Cost of Waiting Cost of Idling

1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗)



Stochastic Program

1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) can be expressed as the following 

two-stage stochastic linear program:

min
𝑥

E𝜔[∑𝑗=2
𝑛 𝑐𝑗

𝑤𝑤𝑗 𝜔 + ∑𝑗=2
𝑛 𝑐𝑗

𝑠𝑠𝑗 𝜔 ]

𝑠. 𝑡.
𝑤2(𝜔) − 𝑠2(𝜔) = 𝑧1 𝜔 − 𝑥1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔

−𝑤2(𝜔) + 𝑤3(𝜔) − 𝑠3(𝜔) = 𝑧2 𝜔 − 𝑥2, 𝑓𝑜𝑟 𝑎𝑙𝑙 ω

−𝑤𝑛−1(𝜔) + 𝑤𝑛(𝜔) − 𝑠𝑛(𝜔) = 𝑧𝑛−1 𝜔 − 𝑥𝑛−1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔

𝑤𝑗 𝜔 , 𝑠𝑗 𝜔 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔, 𝑗



Discrete Distribution

“Curse of Dimensionality”

As the number of random variables in a stochastic 

scheduling problem increases the problem can become 

unsolvable.

Example: Consider an instance of 1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗)

with 9 customers and independent and identically distributed 

processing times with discrete uniform distribution: 

𝑈(1, 10)

How many scenarios are there? 

How many decision variables in the stochastic program? 

How many constraints?



Monte Carlo Simulation
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 Monte Carlo simulation involves 

random sampling to obtain 

numerical estimates

 MC Simulation has many 

applications, including stochastic 

programming where it  is used to 

estimate probability distributions

Stanislaw Ulam



Discrete Distribution

Monte-Carlo Sampling
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In most cases stochastic programs with continuous random variables 

(e.g. Normal, Uniform, Exponential) cannot be solved exactly. The most 

common approximation method is Monte-Carlo Sampling

Example: Consider two processing times: 𝑍𝑗 ∼ 𝑈 0,1 , 𝑗 = 1,2

1

1

11

KK
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1

𝐾

1

𝐾

1

𝐾

Discrete Scenario Tree

1st stage

2nd stage



Stochastic Program

1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) can be expressed as the following 

sample average approximation (SAA):

min ∑𝜔=1
𝐾 1

𝐾
(∑𝑗=2

𝑛 𝑐𝑗
𝑤𝑤𝑗 𝜔 + ∑𝑗=2

𝑛 𝑐𝑗
𝑠𝑠𝑗 𝜔 )

𝑠. 𝑡.
𝑤2(𝜔) − 𝑠2(𝜔) = 𝑧1 𝜔 − 𝑥1, 𝑓𝑜𝑟 𝜔 = 1, . . , 𝐾

−𝑤2(𝜔) + 𝑤3(𝜔) − 𝑠3(𝜔) = 𝑧2 𝜔 − 𝑥2, 𝑓𝑜𝑟 ω = 1, . . , 𝐾

−𝑤𝑛−1(𝜔) + 𝑤𝑛(𝜔) − 𝑠𝑛(𝜔) = 𝑧𝑛−1 𝜔 − 𝑥𝑛−1, 𝑓𝑜𝑟 𝜔 = 1, . . , 𝐾

𝑤𝑗 𝜔 , 𝑠𝑗 𝜔 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔, 𝑗



Statistical Bounds
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When statistical sampling is used to estimate the 

solution to a stochastic program, confidence intervals 

must be estimated

Confidence Intervals:

Step 1: Construct 𝑁 independent SAAs each with 

𝐾 scenarios and solve each to get the optimal solution 

with objective 𝑄𝑛
∗ , 𝑛 = 1,… ,𝑁.

Step 2: Approximate 1 − 𝛼 100% confidence interval as:

[𝑄∗ − 𝑡𝑁−1,𝛼
2

𝑉𝑎𝑟(𝑄∗)

𝑁
, 𝑄∗ + 𝑡𝑁−1,𝛼

2

𝑉𝑎𝑟(𝑄∗)

𝑁
]



Student’s t distribution
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Estimate the normal when 

the sample size is small and 

population standard 

deviation is unknown.

T-distributions are well bell-

shaped and symmetric, but 

have ‘fatter’ tails than the 

normal. 
-4 -2 0 2 4

t
10,0.025

 Normal

 T(v=5)

 T(v=10)

f(x)

t
10,0.975



Example
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Assume that there are seven jobs and the cost of waiting 

is 𝑐𝑗
𝑤= 1 and the cost of machine idling is 𝑐𝑗

𝑠 = 1. 

The processing times are random variables

𝑍𝑗 𝜔 ~𝑈(0,1)

Construct 𝑁 = 10 independent SAAs each with 𝐾 =
1,000 scenarios



Expected costs
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𝒏 𝑸𝒏
∗ 𝒙∗ 𝑸𝒏  𝒙

1 1.661 2.163

2 1.651 2.164

3 1.625 2.193

4 1.672 2.265

5 1.653 2.196

6 1.636 2.213

7 1.634 2.138

8 1.674 2.235

9 1.638 2.218

10 1.667 2.252

𝒙∗: optimal solution, 

 𝒙: mean-value solution

95% confidence interval:

𝑄∗ ∈ [𝑄∗ − 𝑡𝑁−1,𝛼
2

𝑉𝑎𝑟(𝑄∗)

𝑁
,

𝑄∗ + 𝑡𝑁−1,𝛼
2

𝑉𝑎𝑟(𝑄∗)

𝑁
]

𝑄∗ 𝒙∗ ≈ 1.651 ± 0.013

𝑄  𝒙 ≈ 2.204 ± 0.031

VSS=?; EVPI=?



Solutions
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Customers in the middle in the optimal 

schedule are allotted more allowances.



Waiting and idling times
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 Expected waiting times for the customers
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 Expected idling times for the customers
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The optimal solution outperforms the mean-value solution in 

lowering customer waiting time which increases rapidly as the 

number of customers increases.



Sensitivity analysis
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The optimal allowances increase with 

the waiting time cost.


