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My Background
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 PhD candidate, IEM, Shanghai Jiao Tong Univ., China, 

since 2012

 Visiting student, IOE, since 2014

 Research interests: stochastic programming, 

applications in appointment scheduling and surgery 

scheduling



Today
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 More on single machine scheduling problems:

 1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) for multiple 

(n>2) customers

 Stochastic programming model



Example: bus schedule
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Consider the following instance of a bus scheduling 

problem as 1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗):

The bus moves at a 

random speed

Passengers need to 

know the schedule in 

advance

Classify this as a 

scheduling problem



Discrete Distribution

Stochastic Programs
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Stochastic linear programs are linear programs with 

random model parameters

Linear Program:

min 𝑐𝑥 𝐴𝑥 = 𝑏, 𝑥 ≥ 0}

In the stochastic counterpart 𝑐, 𝐴, and 𝑏 could be 

random variables

Questions we might want to answer:

 What is the optimal solution that minimizes expected cost?

 What is the EVPI? VSS?



Discrete Distribution

Stochastic Programs
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Two-stage stochastic linear programs involve two types 

of decisions:

 First stage decisions: 𝑥

 Second stage decisions: 𝑦(𝜔)

First stage decisions are made before the random 

variables are observed; second stage (recourse) decisions 

are made after the random variables are observed

𝑥 → 𝜔 → 𝑦(𝜔)



Decision Process

min{𝑐𝑥 +  

𝜔=1

𝐾

𝑝(𝜔)𝑄 𝑥, 𝜔 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0}

Q x, 𝜔 = min 𝑞 𝜔 𝑦(𝜔) 𝑇(𝜔)𝑥 +𝑊(𝜔)𝑦(𝜔) = ℎ(𝜔), 𝑦(𝜔) ≥ 0}

𝑥

𝑦(1)

𝑦(2)

𝑦(𝐾)1st Stage

Decision
2nd Stage (Recourse)

Decisions

𝑝1

𝑝2

𝑝𝐾

First Stage Problem:

Second Stage Problem:
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Two-Stage Stochastic Program 

There are K 

possible 

scenarios



Discrete Distribution

Example: 1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗)
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1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) can be written as the following 

nonlinear stochastic optimization problem:

min{𝐸𝜔[𝑐
𝑤max 0, 𝑍 − 𝑥 + 𝑐𝑠max 0, 𝑥 − 𝑍 ]}

Or alternatively as the following two-stage stochastic 

linear program:

min∑𝜔
𝐾 𝑝 𝜔 (𝑐𝑤𝑤 𝜔 + 𝑐𝑠𝑠(𝜔))

𝑠. 𝑡.
𝑤 𝜔 − 𝑠 𝜔 = 𝑧 𝜔 − 𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔
𝑤 𝜔 , 𝑠 𝜔 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔



Discrete Distribution

Example: 1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗)
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Assume that there are two jobs and the cost of waiting is 

cw = 1 and the cost of machine idling is cs = 2. 

The processing time is a random variable, Z, that has a 

discrete uniform distribution U(1,4)

Formulate this problem as a stochastic program (in class)

Scenario 

(w)

1 2 3 4

p(w) ¼ ¼ ¼ ¼

Z(w) 1 2 3 4
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Example: 1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗)

The cost function is piecewise linear when Z 

has a discrete uniform distribution.
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x1 x2 x3 x4
x5

1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) 𝑓𝑜𝑟 𝑛 > 2

Set appointment times, 𝑎𝑗, to minimize the total expected 

cost of waiting and idling: (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗)

Appointment times defined by job allowances: 𝑎𝑗 = ∑𝑘=1
𝑗−1

𝑥𝑘

Sample scenario:

Start of day Planned end of day



1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) can be expressed as the 

following nonlinear stochastic optimization problem:

}][][{min
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Cost of Waiting Cost of Idling

1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗)



Stochastic Program

1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) can be expressed as the following 

two-stage stochastic linear program:

min
𝑥

E𝜔[∑𝑗=2
𝑛 𝑐𝑗

𝑤𝑤𝑗 𝜔 + ∑𝑗=2
𝑛 𝑐𝑗

𝑠𝑠𝑗 𝜔 ]

𝑠. 𝑡.
𝑤2(𝜔) − 𝑠2(𝜔) = 𝑧1 𝜔 − 𝑥1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔

−𝑤2(𝜔) + 𝑤3(𝜔) − 𝑠3(𝜔) = 𝑧2 𝜔 − 𝑥2, 𝑓𝑜𝑟 𝑎𝑙𝑙 ω

−𝑤𝑛−1(𝜔) + 𝑤𝑛(𝜔) − 𝑠𝑛(𝜔) = 𝑧𝑛−1 𝜔 − 𝑥𝑛−1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔

𝑤𝑗 𝜔 , 𝑠𝑗 𝜔 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔, 𝑗



Discrete Distribution

“Curse of Dimensionality”

As the number of random variables in a stochastic 

scheduling problem increases the problem can become 

unsolvable.

Example: Consider an instance of 1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗)

with 9 customers and independent and identically distributed 

processing times with discrete uniform distribution: 

𝑈(1, 10)

How many scenarios are there? 

How many decision variables in the stochastic program? 

How many constraints?



Monte Carlo Simulation
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 Monte Carlo simulation involves 

random sampling to obtain 

numerical estimates

 MC Simulation has many 

applications, including stochastic 

programming where it  is used to 

estimate probability distributions

Stanislaw Ulam



Discrete Distribution

Monte-Carlo Sampling
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In most cases stochastic programs with continuous random variables 

(e.g. Normal, Uniform, Exponential) cannot be solved exactly. The most 

common approximation method is Monte-Carlo Sampling

Example: Consider two processing times: 𝑍𝑗 ∼ 𝑈 0,1 , 𝑗 = 1,2

1

1

11

KK
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1

𝐾

1

𝐾

1

𝐾

Discrete Scenario Tree

1st stage

2nd stage



Stochastic Program

1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) can be expressed as the following 

sample average approximation (SAA):

min ∑𝜔=1
𝐾 1

𝐾
(∑𝑗=2

𝑛 𝑐𝑗
𝑤𝑤𝑗 𝜔 + ∑𝑗=2

𝑛 𝑐𝑗
𝑠𝑠𝑗 𝜔 )

𝑠. 𝑡.
𝑤2(𝜔) − 𝑠2(𝜔) = 𝑧1 𝜔 − 𝑥1, 𝑓𝑜𝑟 𝜔 = 1, . . , 𝐾

−𝑤2(𝜔) + 𝑤3(𝜔) − 𝑠3(𝜔) = 𝑧2 𝜔 − 𝑥2, 𝑓𝑜𝑟 ω = 1, . . , 𝐾

−𝑤𝑛−1(𝜔) + 𝑤𝑛(𝜔) − 𝑠𝑛(𝜔) = 𝑧𝑛−1 𝜔 − 𝑥𝑛−1, 𝑓𝑜𝑟 𝜔 = 1, . . , 𝐾

𝑤𝑗 𝜔 , 𝑠𝑗 𝜔 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔, 𝑗



Statistical Bounds
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When statistical sampling is used to estimate the 

solution to a stochastic program, confidence intervals 

must be estimated

Confidence Intervals:

Step 1: Construct 𝑁 independent SAAs each with 

𝐾 scenarios and solve each to get the optimal solution 

with objective 𝑄𝑛
∗ , 𝑛 = 1,… ,𝑁.

Step 2: Approximate 1 − 𝛼 100% confidence interval as:

[𝑄∗ − 𝑡𝑁−1,𝛼
2

𝑉𝑎𝑟(𝑄∗)

𝑁
, 𝑄∗ + 𝑡𝑁−1,𝛼

2

𝑉𝑎𝑟(𝑄∗)

𝑁
]



Student’s t distribution
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Estimate the normal when 

the sample size is small and 

population standard 

deviation is unknown.

T-distributions are well bell-

shaped and symmetric, but 

have ‘fatter’ tails than the 

normal. 
-4 -2 0 2 4

t
10,0.025

 Normal

 T(v=5)

 T(v=10)

f(x)

t
10,0.975



Example
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Assume that there are seven jobs and the cost of waiting 

is 𝑐𝑗
𝑤= 1 and the cost of machine idling is 𝑐𝑗

𝑠 = 1. 

The processing times are random variables

𝑍𝑗 𝜔 ~𝑈(0,1)

Construct 𝑁 = 10 independent SAAs each with 𝐾 =
1,000 scenarios



Expected costs
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𝒏 𝑸𝒏
∗ 𝒙∗ 𝑸𝒏  𝒙

1 1.661 2.163

2 1.651 2.164

3 1.625 2.193

4 1.672 2.265

5 1.653 2.196

6 1.636 2.213

7 1.634 2.138

8 1.674 2.235

9 1.638 2.218

10 1.667 2.252

𝒙∗: optimal solution, 

 𝒙: mean-value solution

95% confidence interval:

𝑄∗ ∈ [𝑄∗ − 𝑡𝑁−1,𝛼
2

𝑉𝑎𝑟(𝑄∗)

𝑁
,

𝑄∗ + 𝑡𝑁−1,𝛼
2

𝑉𝑎𝑟(𝑄∗)

𝑁
]

𝑄∗ 𝒙∗ ≈ 1.651 ± 0.013

𝑄  𝒙 ≈ 2.204 ± 0.031

VSS=?; EVPI=?



Solutions
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Customers in the middle in the optimal 

schedule are allotted more allowances.



Waiting and idling times
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 Expected waiting times for the customers
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 Expected idling times for the customers
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The optimal solution outperforms the mean-value solution in 

lowering customer waiting time which increases rapidly as the 

number of customers increases.



Sensitivity analysis
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The optimal allowances increase with 

the waiting time cost.


