
IO543: Scheduling

Lecture 5

Brian Denton
Associate Professor, IOE

IOE Bld 2893
btdenton@umich.edu

mailto:btdenton@umich.edu

Today

Goals:

 Show 𝛼 𝛽 𝐿𝑚𝑎𝑥 reduces to 𝛼 𝛽 ∑𝑇𝑗

 Learn a little about AMPL

 Solve 1 | rj | Lmax via branch-and-bound

2

AMPL

AMPL Resources on

IO543 CTools site:

• AMPL software for

Mac and Windows

systems

• AMPL book

• IOE510 Tutorial on

AMPL
3

AMPL

AMPL is a modeling language that can be used to

solve many types of problems

 Linear programs

 Integer programs

 Nonlinear programs

AMPL separates the problem from the instance

4

AMPL: Example

knapsack.mod

set N;

param p {j in N};

param d;

param w {j in N};

var X {j in N} binary;

maximize Total_Jobs: sum {j in N} w[j] * X[j];

subject to Due_Date: sum {j in N} (p[j]) * X[j] <= d;

5

AMPL: Example

knapsack.dat

data;

#item index definition

set N := item1, item2, item3, item4, item5, item6, item7, item8, item9, item10;

#item sizes, p, and weights w

param: p w :=

 item1 1 1

 item2 1 2

 item3 1 3

 item4 1 4

 item5 1 5

 item6 1 6

 item7 1 7

 item8 1 8

 item9 1 9

 item10 1 10;

#knapsack size, d

param d := 4; 6

AMPL: Example

knapsack.run

model .\Knapsack\knapsack.mod;

data .\Knapsack\knapsack.dat;

option solver cplex; #change default solver to cplex

solve; #solve the knapsack problem

display X; #display the optimal decision variables

This is an AMPL script stored in directory .\Knapsack in the AMPL executable

directory. To run this....

1) Start AMPL

2) To solve the model type: include .\Knapsack\knapsack.run;

3) To reset AMPL for another problem type: reset;

Limited student versoin available at: http://ampl.com/

Full version available via CAEN Labs

7

http://ampl.com/
http://ampl.com/

Getting Started

Install AMPL and use it to solve the following

instance of 1 ∑𝑈𝑗

 Due Date = 30 days

Jobs 1 2 3 4 5 6 7 8 9 10

𝑤𝑗 10 9 8 7 6 5 4 3 2 1

𝑝𝑗 5 7 12 3 8 7 5 1 2 4

8

9

Maximum Lateness: Lmax

Definition: Lateness is the difference between the

completion time and the due date.

 The maximum lateness is:

 𝐿𝑚𝑎𝑥 = max
𝑖∈{1,…,𝑛}

𝐿𝑖 where 𝐿𝑖 = 𝐶𝑖 −𝑑𝑖

10

Maximum Lateness: Lmax

Proposition: 1 | | Lmax is solved by sorting jobs in or

order of increasing due dates, known as the earliest

due date (EDD) first rule

Proof: complete in class

 What is the optimal schedule?

jobs 1 2 3 4

pj 4 2 6 5

dj 8 12 11 10

11

Release dates 1 | rj | Lmax

 The problem 1 | rj | Lmax restricts the job start times
to be no earlier than the jobs release date, rj

 This problem is important because it is commonly
used as a heuristic for more complex scheduling
problems (e.g. flow shops, job shops)

12

Release dates 1 | rj | Lmax

Theorem (3.2.4 Pinedo): The problem 1 | rj | Lmax is
NP-Hard.

Proof Idea: 3-PARTITION reduces to 1 | rj | Lmax.

13

Branch & Bound for 1 | rj | Lmax

Branching

 Level 0: single (root) node and no jobs have been

scheduled

 Level 1: n nodes such that job j is scheduled first at

node j

 Level k: jobs in the first k positions have been

specified

Note: We will use “best bound” as the strategy for

picking which node to branch from next.

14

Branch & Bound for 1 | rj | Lmax

Fathoming Nodes

At a given node at level k:

 Let J be the set of unscheduled jobs indexed by 𝑗𝑘

 Let t be the time when jobs in J can start

 Only create a node for job 𝑗𝑘 if

 𝑟𝑗𝑘
< min

𝑙∈𝐽
(max 𝑡, 𝑟𝑙 + 𝑝𝑙)

15

Branch & Bound for 1 | rj | Lmax

Bounding

 1 | rj , prmp | Lmax is a relaxation of 1 | rj | Lmax

 The Preemptive Earliest Due Date (EDD) rule is

optimal for 1 | rj , prmp | Lmax and therefore provides a

lower bound (LB)

 If Preemptive EDD gives a non-preemptive

schedule then it is a candidate schedule

16

Branch & Bound for 1 | rj | Lmax

Preemptive Earliest Due Date Rule:

1) Sort jobs in order of increasing due date

2) Select among jobs with 𝑟𝑗 ≤ 𝑡 the one with the

earliest due date

3) Process j until time 𝑡′ , the time at which a job

j′ has an earlier due date and 𝑟𝑗′ ≤ 𝑡′; Set 𝑡 =

t′ and return to step 2.

17

Example

Use Branch-and Bound to solve the following

instance of 1 | rj | Lmax:

Start by solving level 0: 1 | rj , prmp| Lmax

jobs 1 2 3 4

pj 4 2 6 5

rj 0 1 3 5

dj 8 12 11 10

18

Branch-and-Bound for 1 | rj | Lmax

2,*,*,* 1,*,*,* 3,*,*,*

,,*,*

4,*,*,*

? ? ? ?

19

Branch-and-Bound for 1 | rj | Lmax

2,*,*,* 1,*,*,* 3,*,*,*

,,*,*

4,*,*,*

1,2,*,* 1,3,*,*

1,3,4,2

Lmax=5 Lmax=7 X X

Lmax=6 Lmax=5

Lmax=5

1,4,*,*

Fathom since the

best possible bound

is 5 and we already

have candidate with

Lmax = 5

Lmax=6

20

.

Next Time

For next time read sections 3.4 of Pinedo.

 we will discuss Dynamic Programming (DP) and use it

 to show EDD is optimal for 1 𝑝𝑟𝑒𝑐 𝐿𝑚𝑎𝑥

