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My Background —

» PhD candidate, IEM, Shanghai Jiao Tong Univ., China,
since 2012

= Visiting student, IOE, since 2014
» Research interests: stochastic programming,

applications in appointment scheduling and surgery
scheduling



= More on single machine scheduling problems:

= 1 |appt [(c"Yw; + c>)s;) for multiple
(n>2) customers

» Stochastic programming model



Example: bus schedule I

Consider the following instance of a bus scheduling
problem as 1 |appt |(c" Y w; + ¢ s)):

The bus moves at a :1 PONT'A'HU VARREN ., powntown

random speed ]

Passengers need to
know the schedule in
advance

Classify this as a
scheduling problem




Stochastic Programs

Stochastic linear programs are linear programs with
random model parameters

Linear Program:
min{cx | Ax = b,x = 0}

In the stochastic counterpart c, A, and b could be
random variables

Questions we might want to answer:

» What is the optimal solution that minimizes expected cost?

= What is the EVPI? VSS?



Stochastic Programs

Two-stage stochastic linear programs involve two types
of decisions:

* First stage decisions: x
= Second stage decisions: y(w)
First stage decisions are made before the random

variables are observed; second stage (recourse) decisions
are made after the random variables are observed

x = w-y)



Two—Stage Stochastic Program .

Decision Process

There are K
X possible
scenarios
1st Stage y(K)
Decision
2nd Stage (Recourse)
Decisions
K
First Stage Problem: min{cx + Z p(w)Q(x,w) | Ax = b,x = 0}
w=1

Second Stage Problem: Q(X, w) = min{g(w)y(w) | T(w)x + W (w)y(w) = h(w), y(w) = 0}
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Example: 1[appt|(c"Yw; + CSZS]-) _

1| appt|(c™Yw; + c°).s;) can be written as the following
nonlinear stochastic optimization problem:

min{E,[c" max(0,Z — x) + ¢®* max(0,x — Z)]}

Or alternatively as the following two-stage stochastic
linear program:

min Y.X p(w)(c¥w(w) + c’s(w))
S.T.
w(lw) —s(w) =z(w) —x, forallw
w(w),s(w) =0, for all w



Example: 1[appt|(c"Yw; + CSZS]-) _

Assume that there are two jobs and the cost of waiting is
c¥ = 1 and the cost of machine idling is ¢ = 2.

The processing time is a random variable, Z, that has a
discrete uniform distribution U(1,4)

Scenario 1 2 3 4
(@)

p(w) Z Z Ya Ya
Z(m) 1 2 3 4

Formulate this problem as a stochastic program (in class)



Example: 1[appt|(c"Yw; + CSZS]-) _

The cost function is piecewise linear when Z
has a discrete uniform distribution.

3
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Total cost
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2.5 3 3.5 4

X N
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1 |appt |(cXw; + c°Ts;) forn > 2 Mo

Set appointment times, a;, to minimize the total expected
cost of waiting and idling: (c"Yw; + c°}’s;)

Appointment times defined by job allowances: a; = Zk 1xk

Start of day Planned end of day

v v
X4

<

Sample scenario:

r——— @ @ @ @ @
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1 |appt [(c?Yw; + c°Ys;)

1 |appt |(c”Xw; + c°Ys;) can be expressed as the
following nonlinear stochastic optimization problem:

Cost of Waiting Cost of Idling

\ \
( \ ( \

min{icwEw[Wj] + Zn:CSEw[SJ]}

wi(w)=max(w;- (@) + Zi-(®)—x-1,0), j =2,..,n—1

si(w) =max(—w;-1(w)—Zj-1(w)+x7-1,0), j =2,...,n—1



Stochastic Program .

1 |lappt |(c"Xw; + c°).s;) can be expressed as the following
two-stage stochastic linear program:

mxin Ep[Xizs ¢f'wj(w) + X5, ¢ sj(w)]

S.t.
Wy (w) — sy (w) = z(w) — xq, for all

—wy(w) + wz(w) — s3(w) = z(w) — x3, forall w

~Wn_1(@) + wp (@) = sp(w) = zp—1 (@) = Xp_q, for all w

wi(w),sj(w) =0, forall w,j



“Curse of Dimensionality” .

As the number of random variables in a stochastic

scheduling problem increases the problem can become
unsolvable.

Example: Consider an instance of 1 [appt |(c"Yw; + ¢®}s;)
with 9 customers and independent and identically distributed

processing times with discrete uniform distribution:
U(1,10)

How many scenarios are there?

How many decision variables in the stochastic program?
How many constraints?



Monte Carlo Simulation

= Monte Carlo simulation involves
random sampling to obtain
numerical estimates

» MC Simulation has many
applications, including stochastic
programming where it is used to
estimate probability distributions

Stanislaw Ulam
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Monte—Carlo Sampling .

In most cases stochastic programs with continuous random variables
(e.g. Normal, Uniform, Exponential) cannot be solved exactly. The most
common approximation method is Monte-Carlo Sampling

Example: Consider two processing times: Z; ~ U(0,1), j = 1,2

Discrete Scenario Tree

2nd stage 16



Stochastic Program .

1 |lappt |(c"Xw; + c°).s;) can be expressed as the following
sample average approximation (SAA):

mlnz (Z] =2 ] W](w)+ Z] =2 ]S](w))

S.t.
wy(w) — So(w) = zy(w) —xq, forw=1,..,K

—wy(w) + w3 (w) — s3(w) = z,(w) —x,, forw=1,..,K

~Wn_1(@) + W (@) = sp(@) = zp_1(@) = Xp_q, forw=1,..,K

wi(w),sj(w) =20, forall w,j



Statistical Bounds

When statistical sampling is used to estimate the
solution to a stochastic program, confidence intervals
must be estimated

Confidence Intervals:

Step 1: Construct N independent SAAs each with

K scenarios and solve each to get the optimal solution
with objective Q,,, n=1, ..., N.

Step 2: Approximate (1 — a)100% confidence interval as:

il Jvar(Q¥) — JVvar(Q¥)
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Student’s t distribution

Norml Estimate the normal when
=19 the sample size is small and
population standard

deviation is unknown.

f(x)

T-distributions are well bell-
shaped and symmetric, but

. have ‘fatter’ tails than the
normal.
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Assume that there are seven jobs and the cost of waiting
is ¢/'= 1 and the cost of machine idling is ¢; = 1.

The processing times are random variables

Construct N = 10 independent SAAs each with K =
1,000 scenarios
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Expected costs I

Qn(x”) Qn(X)

© 00 N O O Hh W N ==
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1.661
1.651
1.625
1.672
1.653
1.636
1.634
1.674
1.638
1.667

2.163
2.164
2.193
2.265
2.196
2.213
2.138
2.235
2.218
2.252

x*: optimal solution,
X. mean-value solution

95% confidence interval:
* nN* __ VVar(Q*)
Q" €@ tN—l% JN

\/VaT'(Q*)]
JN

Q*+ty_,

N R

0*(x*) ~ 1.651 + 0.013
Q(%) ~ 2.204 + 0.031

VSS=7?; EVPI=?

)
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Solutions _

Customers in the middle in the optimal
schedule are allotted more allowances.
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Waiting and idling times

Waiting time

0.5

0.4+t

0.3}

0.2

0.1

0.0

The optimal solution outperforms the mean-value solution in

lowering customer waiting time which increases rapidly as the
number of customers increases.

Expected waiting times for the customers

| —&— Optmal solution
—o— Mean-value solution

Customer

Idling time

0.5

04+

0.3+

0.2+

0.1+

0.0

Expected idling times for the customers

—&— Optmal solution
—o— Mean-value solution

X 1 X 1 77777|‘77'77'* 77177’
12 3 4 5 6 7
Customer
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Sensitivity analysis

The optimal allowances increase with
the waiting time cost.
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