
IO543: Scheduling 
 
Lecture 6 

 
Brian Denton 
Associate Professor, IOE 
 
IOE Bld 2893 
btdenton@umich.edu 
 

mailto:btdenton@umich.edu


Today  

Goals: 

 

 Introduction to dynamic programming 

 

 Learn to solve: 

 1 𝑝𝑟𝑒𝑐 𝐿𝑚𝑎𝑥 
 1  ∑𝑇𝑗    

 

 

 

2 



3 

Maximum Lateness: 1 | | Lmax  

Definition: Lateness is the difference between the 

completion time and the due date. 

 

 The maximum lateness is: 

 

 𝐿𝑚𝑎𝑥 = max
𝑖∈{1,…,𝑛}

𝐿𝑖    where 𝐿𝑖 = 𝐶𝑖 −𝑑𝑖 

 

 



4 

1 |𝑝𝑟𝑒𝑐|ℎ𝑚𝑎𝑥 

Consider the following generalization of 1 || Lmax : 

 

1 |𝑝𝑟𝑒𝑐|ℎ𝑚𝑎𝑥 

 

Where  ℎ𝑚𝑎𝑥 = max {ℎ1 𝐶1 , ℎ2 𝐶2 , … , ℎ𝑛 𝐶𝑛 } and 

ℎ𝑗 ⋅ , 𝑗 = 1,… , 𝑛, are any nondecreasing cost 

functions.  

 

This problem can be solved by dynamic 

programming. 



 Introduction to DP 

Dynamic programming (DP) dates 

back to early work of Richard 

Bellman in the 1940’s 

Since it’s development DP has been 

applied to fields of engineering, 

biology, chemistry, and many others 

DP is a powerful technique for 

scheduling problems 

 

For more history on Richard Bellman see: http://www.gap-

system.org/~history/Biographies/Bellman.html 5 



  Dynamic Programming (DP) Intro 

The elements of a DP are:  

• Stages: 𝑡 

• States: st 

• Actions: 𝑎𝑡 

• Rewards: 𝑟𝑡(𝑠𝑡 , 𝑎𝑡) 

 

Goal: Find the policy that maximizes total 

rewards 

 
6 



  Dynamic Programming (DP) Primer 

DPs  are solved via optimality equations: 

𝑣𝑡 𝑠𝑡 = max
𝑎𝑡∈𝐴
𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝑣𝑡+1 𝑠𝑡+1 ,  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑡 

v𝑇 𝑠𝑇 = 𝑅 𝑠𝑇 ,    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑇 

𝑣𝑡 𝑠𝑡  is the value to go for stages t, t+1,…,T 

𝑅 𝑠𝑇  is the terminal reward at the last stage 

 

 

7 



Example: Shortest Path 

S 

A 

B 

C 

D G 

6 

5 

1 

3 

4 1 

1 
4 

What is the shortest path in this directed graph? 

 

8 



Example: DP Formulation 

Following are the elements of the DP formulation 

 States: vertices of the graph 

 Actions: which vertex to move to? 

 Rewards: distance associated with each edge 

 

Goal: Starting from vertex S, select the action at each 

vertex that will minimize total edge distance travelled to 

reach vertex G 

 

9 



Example: Shortest Path Problem 

 Modify the graph to create a one-to-one 

correspondence between vertices (states) and stages 

Stage:       1              2                 3             4               5       

S 

A 

B 

C 

D G 

6 

5 

1 

3 

4 1 

1 4 

F 

0 

E 
0 

10 



Example: Shortest Path Problem 

Principle of Optimality: 

 Any “subpath” in the optimal path must be the 

shortest path between the two vertices 

 To find the best action at node S compare 

 Distance from S to A + Shortest Path from A to G 

 Distance from S to B + Shortest Path from B to G 

 

S 

A 

B 

C 

D G 

6 

5 

1 

3 
1 4 

F 

E 
0 

4 0 1 
11 



Example: DP Formulation 

 

 

 Initial condition: v5(G) = 4,  

 Start by finding the Stage 4 distance  

      from E G and F G:  v4(E) = 4, v4(F) = 1 

 Stage 3: compute the shortest path from C and D: 

 v3(C) = min{0+V4(E), 1+V4(F)}=2, v3(D) = 0+ v4(F) = 1 

 Stage 2: compute the shortest path from A and B: 

  v2(A) = min{1+v3(C), 3+v3(D)} = 3,   v2(B) = 4+v3(D) = 5 

 Stage 1: compute the shortest path from S: 

 v1(S) = min{6+v2(A), 5+v2(B)} = 9 

 

Answer: Shortest path is SACFG with a path length of 9 

 

  

S 
A 

B 

C 

D G 

6 

5 

1 

3 

4 1 

1 4 

F 

0 

E 
0 

12 



Learn More About DP 

DP will be appear several times in this course. 

Following are good references: 

 
  

 
 Operations Research, 4th Edition, 

Wayne Winston, Duxbury Press, 2003 

 

 The Art and Theory of Dynamic 

Programming, Stuart Dreyfus and Averill 

Law, 1977 (on Ctools) 

 

 Dynamic Programming and Optimal 

Control, Volumes 1 and 2, Dimitri 

Bertsekas, Athena Scientific 

Beginners 

I’m feelin’ lucky 

Bring it on! 

13 



14 

1 |𝑝𝑟𝑒𝑐|ℎ𝑚𝑎𝑥 

Applying DP to 𝟏 𝒑𝒓𝒆𝒄 𝒉𝒎𝒂𝒙  

DP works backwards through the problem 

At a given stage, J is the set of jobs already 
scheduled, in the interval 

[𝐶𝑚𝑎𝑥 −  𝑝𝑗
𝑗∈𝐽  

, 𝐶𝑚𝑎𝑥] 

 

Jc is the set of jobs remaining to be scheduled and 
J' is the set of schedulable jobs 

 



15 

DP Algorithm for 1|prec|hmax 

Algorithm (3.2.1 Pinedo): 

Step 1: Set 𝐽 = ∅, 𝐽𝑐 = 1, . . , 𝑛 , and let 𝐽 ′ be all jobs 
that have no successors. 

Step 2: Determine 𝑗∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗∈𝐽′{ℎ𝑗(∑ 𝑝𝑘)}𝑘∈𝐽𝑐  

Add j* to J and delete j* from Jc. Modify J' to 
represent the new set of schedulable jobs. 

Step 3: If 𝐽𝑐 = ∅ then STOP, otherwise go to Step 2 

Empty set 



16 

In-Class Assignment 

Use Algorithm 3.2.1 to determine the schedule that 

minimizes hmax for the following example: 

jobs 1 2 3 

pj 2 3 5 

hj (Cj) 1+ C1 1.2 C2 2+0.8 C3 



17 

A Special Case: 1 || Lmax  

Algorithm 3.2.1 can be used to prove the earliest 

due date  first (EDD) rule is optimal for 1 || Lmax  

Proof sketch by induction using DP formulation: 

 At stage n it is optimal to choose the job with maximum 

due date Lmax 

 Assume it is optimal to choose maximum due date job 

at stages n,n-1,…,k +1 

 Prove it is optimal to choose maximum due date at 

stage k 

 

 



18 

Section 3.4:  
Total tardiness 1||S Tj 

 Due to its practical importance 1||S Tj it has been 

used in many applications 

 Until 1990 it was not clear if it was easy or (NP-) 

hard 

 It can be solved using dynamic programming or 

integer programming 



19 

An Important Result 

Arrange all jobs so that d1≤d2≤…≤dn and let job k be such 

that pk=max(p1,…,pn) 

Lemma (3.4.1 Pinedo): There is an integer d, 0≤d≤n-k, 

such that there is an optimal sequence S in which job k is 

preceded by all jobs j with j≤k+d and followed by all jobs j 

with j>k+d. 

 

Proof: See Pinedo 

 

We can use this to decompose the scheduling problem 

into 3 parts 



20 

Consequences of Lemma 3.4.3. 

There is an optimal sequence that processes the jobs 

in this order: 

1. jobs 1,2,…,k-1,k+1,…,k+d in some order 

2. job k 

3. jobs k+d+1, k+d+2, …, k+n in some order 

 

How do we find the optimal sequence? 

DP to the rescue! 



21 

Algorithm to Min Total Tardiness 

Definitions:  

Completion time of job k: Ck(d)=Sj≤k+dpj  

J(j,l,k) is the set of jobs in {j,j+1,…,l} that have 

a processing time less than job k  

k' is the job in J(j,l,k) with the next largest 

processing time, i.e., pk'=max{pj : j J(j,l,k)} 

V(J(j,l,k),t) is the minimum total tardiness of 

the jobs in J(j,l,k) for the optimal sequence 

starting at time t 

 



22 

DP Algorithm for 1||S Tj 

Iteratively apply the following recursive equations: 

Optimality Equations: 

  𝑉 𝐽 𝑗, 𝑙, 𝑘 , 𝑡 = min
𝛿
{𝑉 𝐽 𝑗, 𝑘′ + 𝛿, 𝑘′ , 𝑡  

+max 0, 𝐶𝑘′ 𝛿 − 𝑑𝑘′ +  𝑉 𝐽 𝑘
′ + 𝛿 + 1, 𝑙, 𝑘′ , 𝐶𝑘′(𝛿) } 

 

Initial conditions: 

   𝑉 ∅, 𝑡 = 0,       𝑉 {𝑗}, 𝑡 = max {0, 𝑡 + 𝑝𝑗 − 𝑑𝑗} 

 



23 

Example 

Use the DP Algorithm to solve the following 
instance of 1||S Tj 

 

 

 

 

Check ctools for complete solution 

jobs 1 2 3 4 5 

pj 121 79 147 83 130 

dj 260 266 266 336 337 



24 

Complexity of DP Algorithm  

 There are at most n3 subsets J(j,l,k) and at most Spj time 
points  

 

 Each equation requires O(n) operations so the overall 
complexity is O(n4Spj) 

 

 The running time is polynomial in n, however due to Spj 
the algorithm is called pseudopolynomial or NP Hard in 
the ordinary sense 



25 

Next Time 

We will wrap up chapter 3: read sections 3.6 and 3.7 

Next Thursday we will begin on Chapter 4 


