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 Today 

More Parallel Machine Models: 

 Makespan with preemptions: 𝑃𝑚  𝑝𝑟𝑚𝑝 𝐶𝑚𝑎𝑥 

 Total completion time: 𝑃𝑚   𝐶𝑗𝑗 , 𝑃𝑚   𝑤𝑗𝐶𝑗𝑗  

 Project scheduling: 𝑃∞  𝑝𝑟𝑒𝑐 𝐶𝑚𝑎𝑥 



Makespan With Preemptions 

 The addition of preemptions makes many 
scheduling problems easier 

 Allowing for preemption is a relaxation of the 
nonpreemptive problem 



Makespan With Preemptions 

Lemma 5.2.2 (Pinedo): Under the optimal schedule 
for 𝑃𝑚 𝑝𝑟𝑚𝑝 𝐶𝑚𝑎𝑥  

  𝐶𝑚𝑎𝑥
∗ =  𝑚𝑎𝑥(𝑝1,  𝑝𝑗/𝑚)  𝑗  

Proof: follows from fact that 𝑝1 has the longest 
processing time and using the LP formulation of 
𝑃𝑚 𝑝𝑟𝑚𝑝 𝐶𝑚𝑎𝑥. 

A corollary to this is that 𝑚𝑎𝑥(𝑝1,  𝑝𝑗/𝑚)  𝑗  is a lower 

bound for 𝑃𝑚  𝐶𝑚𝑎𝑥  

 



Makespan With Preemptions 

Algorithm for 𝑃𝑚 𝑝𝑟𝑚𝑝 𝐶𝑚𝑎𝑥 : 

Step 1: Process the n jobs in any order on a single machine to 
get a schedule with makespan  𝑝𝑗𝑗 ≤ 𝑚𝐶𝑚𝑎𝑥∗  

Step 2: Break the single machine schedule into m parts: 
0, 𝐶𝑚𝑎𝑥

∗ ,  𝐶𝑚𝑎𝑥
∗ , 2𝐶𝑚𝑎𝑥

∗ , 2𝐶𝑚𝑎𝑥
∗ , 3𝐶𝑚𝑎𝑥

∗ , … 

Step 3: Use the processing sequence in the first interval for 
machine 1, the second interval for machine 2, etc. (note: order 
of jobs is not important, only the order of the machines 
matters) 



Makespan With Preemptions 

Example: Solve the following instance of 
𝑃3  𝑝𝑟𝑚𝑝 𝐶𝑚𝑎𝑥  

 

 

Jobs 1 2 3 4 5 6 7 8 

𝑝𝑗 4 6 3 2 9 5 4 9 



 P𝑚     𝐶𝑗𝑗  

Important result for P𝑚     𝐶𝑗𝑗  without preemptions 

Theorem 5.3.1 (Pinedo): The SPT rule is optimal for 
P𝑚     𝐶𝑗𝑗  

Proof: Based on the Hardy- Littlewood inequality. 

 



Total Completion Time :  𝐶𝑗  

Recall that the SPT rule is optimal for 1   𝐶𝑗 which     
follows from expressing completion time as 

  𝐶𝑗 = 𝑛𝑝1 + 𝑛 − 1 𝑝2 + …+ 2𝑝𝑛−1 + 𝑝𝑛  

 

and using the Hardy-Littlewood inequality. 

 

Interesting Story about Indian Mathematician Srinivas 

Ramanujan and his work with Hardy and Littlewood: 

https://en.wikipedia.org/wiki/Srinivasa_Ramanujan 

 

https://en.wikipedia.org/wiki/Srinivasa_Ramanujan
https://en.wikipedia.org/wiki/Srinivasa_Ramanujan
https://en.wikipedia.org/wiki/Srinivasa_Ramanujan


 P𝑚     𝐶𝑗𝑗  

Example: Use SPT to solve the following instance of 
𝑃3   𝐶𝑗𝑗   

 

 

Jobs 1 2 3 4 5 6 7 8 

𝑝𝑗 4 6 3 2 9 5 4 9 



 P𝑚     𝑤𝑗𝐶𝑗𝑗  

What happens when weights are added? 

 The WSPT rule minimizes completion time for 
1     𝑤𝑗𝐶𝑗𝑗  

 For Pm     𝑤𝑗𝐶𝑗𝑗  WSPT is not necessarily optimal 

but it has a worst case guarantee 

  
 𝑤𝑗𝐶𝑗(𝑊𝑆𝑃𝑇)

 𝑤𝑗𝐶𝑗(𝑂𝑃𝑇)
≤
1

2
(1 + 2)  

 



 P𝑚     𝑤𝑗𝐶𝑗𝑗  

Example: Use WSPT to solve the following instance 
of 𝑃3   𝑤𝑗𝐶𝑗𝑗   

 

 

Jobs 1 2 3 4 5 6 7 8 

𝑝𝑗 4 6 3 2 9 5 4 8 

𝑤𝑗 6 5 7 3 2 1 8 5 



 Project Scheduling 

Unconstrained project scheduling can be 

expressed as the following parallel machine 

scheduling problem:   𝑷∞  𝒑𝒓𝒆𝒄 𝑪𝒎𝒂𝒙  

Examples: 

 Construction projects 

 Installing new IT systems 

 Product design  

 Corporate mergers 

 Space exploration 

 Military operations 



 Project Managers 

This graph shows 
the increase in 
Project Management 
Institute (PMI) 
membership over 
time. 

Learn more about 
PMI: 

http://www.youtube.c
om/watch?v=yOkPW
Kp3OOU 13 

http://www.youtube.com/watch?v=yOkPWKp3OOU
http://www.youtube.com/watch?v=yOkPWKp3OOU
http://www.youtube.com/watch?v=yOkPWKp3OOU
http://www.youtube.com/watch?v=yOkPWKp3OOU


Project Networks 

 Project networks are used as an aid in the 

management of large complex projects  

 Activities are represented by arcs and nodes 

represent completion of a set of activities. This 

is called an activity on arc (AOA) network 

 For each activity there is a set of 

predecessors that must be completed first 

 

 



Building a Project Network 

1.The start node represents the start of the project. Arcs from 
the start node denote activities without predecessors 

 

2.The finish node represents completion of the project 

 

3.Nodes representing the completion of an activity have labels 
that are larger than nodes representing the start of an 
activity 

 

4.No activity is represented by more than one arc  

 

5.Two nodes can be connected by at most one arc 

 
Note: To avoid violating rules 4 and 5, it can be sometimes necessary to 
utilize a dummy activity that takes zero time 



Example: 𝑃∞  𝑝𝑟𝑒𝑐 𝐶𝑚𝑎𝑥 

A firm plans to launch a new product. A list of 

activities, their predecessors, and activity durations 

are below. Draw a project diagram for this project 

Activity Predecessors Duration(days) 

A:train workers - 6 

B:purchase raw materials - 9 

C:produce product 1 A, B 8 

D:produce product 2 A, B 7 

E:test product 2 D 10 

F:assemble products 1&2 C, E 12 



Example: 𝑃∞  𝑝𝑟𝑒𝑐 𝐶𝑚𝑎𝑥 

Project Network 

1 

6 5 

4 2 

3 

A 6 

B 9 

Dummy 

C 8 

D 7 

E 10 

F 12 

Node 1 = starting node 

Node 6 = finish node 



 Definitions 

 The early event time for node i, represented by 
ET(i), is the earliest time at which the node i 
event can occur 

 The late event time for node i, represented by 
LT(i), is the latest time at which the event 
corresponding to node i can occur without 
delaying project completion 



 Early Event Time 

To find the early event time for each node in the 
project use the following steps: 

1. Start with the first node, ET(1) = 0 

2. For ET(i) 

 Find each predecessor to node i  

 For each predecessor sum the early event 
time and duration of the activity connecting the 
immediate predecessor to node i 

 ET(i) equals the maximum of the sums 

 



Example: 𝑃∞  𝑝𝑟𝑒𝑐 𝐶𝑚𝑎𝑥 

Compute  ET(i)’s 

• Start with ET(1) = 0 

• ET(2) = 9 

• ET(3) = max{ET(2) + 0,ET(1) + 6}=9 

• ET(4) =  ET(3) + 7 = 16 

• ET(5) = max{ET(3) + 8, ET(4) + 10} = 26 

• ET(6) = ET(5) + 12 = 38 

1 

6 5 

4 2 

3 
A 6 

B 9 

Dummy 

C 8 

D 7 

E 10 

F 12 



 Late Event Time 

To find the late event time for each node in the project 

use the following steps: 

1. Start with the last node, LT(n) = project duration 

2. For LT(i) 

• Find each successor to node i  

• For each successor find the difference between 
the late event time and the duration of the activity 
joining the successor to node i 

• LT(i) is the smallest of the differences computed in 
the previous step 



Example: 𝑃∞  𝑝𝑟𝑒𝑐 𝐶𝑚𝑎𝑥 

Compute  LT(i)’s 

• Start with LT(6) = ET(6) = 38  

• LT(5) = 38-12 = 26 

• LT(4) = 26-10 = 16 

• LT(3) = min{LT(5) – 8, LT(4) – 7} = min{18, 9} = 9 

• LT(2) = LT(3)  = 9  

• LT(1) = min{LT(3) – 6, LT(2) – 9} = min{3,0} = 0 

1 

6 5 

4 2 

3 
A 6 

B 9 

Dummy 

C 8 

D 7 

E 10 

F 12 



Example: 𝑃∞  𝑝𝑟𝑒𝑐 𝐶𝑚𝑎𝑥 

 ET(i)’s and LT(i)’s  

Node ET(i) LT(i) 

1 0 0 

2 9 9 

3 9 9 

4 16 16 

5 26 26 

6 38 38 

1 

6 5 

4 2 

3 A 6 

B 9 

Dummy 

C 8 

D 7 

E 10 

F 12 



 Total Float 

The total float of an activity is a measure of how 

important it is to keep the activity on time 

Total float, TF(i,j), is the amount by which the 

starting time of activity (i,j) could be delayed 

beyond its earliest possible starting time without 

delaying the project 

      TF(i,j) = LT(j) – ET(i) - tij 



 Critical Path 

An activity with a total float of zero is a critical 

activity 

A path from node 1 to the finish node that 

consists entirely of critical activities is called a 

critical path 

The critical path determines the length of the 

project and delaying a critical activity delays the 

entire project 

 

    



Example: 𝑃∞  𝑝𝑟𝑒𝑐 𝐶𝑚𝑎𝑥 

Activity Total Float CP 

A 9-0-6=3 No 

B 9-0-9=0 Yes 

C 26-9-8=9 No 

D 16-9-7=0 Yes 

E 26-16-10=0 Yes 

F 38-26-12=0 Yes 

1 

6 5 

4 2 

3 A 6 

B 9 

Dummy 

C 8 

D 7 

E 10 

F 12 

The  critical path is  

1-2-3-4-5-6 
 



Resource Allocation  

The critical path is important for making 

decisions about how to allocate resources 

1 

6 5 

4 2 

3 A 6 

B 9 

Dummy 

C 8 

D 7 

E 10 

F 12 

The  critical path is  

1-2-3-4-5-6 
 

Ohio Grad 

Michigan  

Grad 


