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Project Schedule

April 12:

Semiconductor Manufacturing: Yixing Lu, Yuzhi Wan, Xue Huang

Scheduling Commercials on TV: David Sachs, Bevin Mathew

Learning Effects in Scheduling: Ling Ken, Chao Xia, Wensi Wang and 

Chengwei Zhai

Ship Production Scheduling: Lauren Claus, Daniel Kilcullen, Seng-

Hsiang Lin

Patient Scheduling in Clinics: Armando Bernal, Victor Fuentes, Seok

Joo Kwak, Jamie Yap

Job Shop Problems with Earliness and Lateness Objective: Wenbo

Sun, Qi He



Project Schedule

April 14

Uber Dispatching: Zhengyang Wun, Ji Wu, Xiaoying Qing

Scheduling in the Olympics: Christine Abney, Amada Bayagich, Eric 

Buchsbaum, Lauren Fitzpatrick

Nurse Scheduling:  Kelly Ogiesoba, Matt Rouhana, Joe Scherping

Baseball Scheduling: Maria Lopez, Anthony Sciuto, Alejandro Vigo

Medical Procedure Scheduling: Esmaeil Keyvanshokooh, Ece Sanci, 

Karmel Shehadeh

The South U Dilemma: Olivia Melendez, Jacob Villareal, Mitch 

McKinstry



Class Schedule

See the complete schedule on Ctools:

13 Mar 29, 

Mar 31 

Stochastic Models Chapter 9 –

selected 

topics 

14 Apr 5, 7 Stochastic Models Chapter 10 –

selected 

topics

15 Apr 12, 14 Class Presentations 

on Applications

15 Apr 27 Final Exam, 10:30-

12:30 



Zombie Scheduling

5

Consider the following instance of a zombie 

scheduling problem:

Zombies move at 

different speeds

It takes 15 seconds 

to reload and fire 

the crossbow

Classify this as a 

scheduling problem

𝑡1

𝑡2
𝑡3

𝑡4



1 𝑎𝑝𝑝𝑡, 𝑠𝑒𝑞 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗)

The problem 1 𝑎𝑝𝑝𝑡, 𝑠𝑒𝑞 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) is an extension of 

1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) that considers the additional 

decision of how to sequence customers

Two perspectives on sequencing

 Customers perspective is to find the ideal position in 

the sequence to minimize waiting

 Managers perspective is to find the best sequence 

to minimize the cost of waiting and idling



1 𝑎𝑝𝑝𝑡, 𝑠𝑒𝑞 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗)

1 𝑎𝑝𝑝𝑡, 𝑠𝑒𝑞 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) extremely difficult to solve 

exactly. Following is a common heuristic:

Smallest Variance First (SVF) Rule:

Step 1: Compute 𝑉𝑎𝑟(𝑍𝑗) for all customers = 1,… , 𝑛.

Step 2: Sequence customers in nondecreasing order of 

𝑉𝑎𝑟(𝑍𝑗).

Step 3: Solve 1 𝑎𝑝𝑝𝑡 (𝑐𝑤∑𝑤𝑗 + 𝑐𝑠∑𝑠𝑗) to find the 

appointment times conditional on SVF sequence.



New Topic!
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Stochastic Parallel Machine Scheduling:

3 Different Environments:

 Advance job-to-machine allocations
 Jobs allocated to machines before processing begins

 Static list policy
 Jobs sequenced in a list before processing begins, 

and allocated to the first available machine

 Dynamic list policy
 Every time the machine is freed the decision maker 

decides which job to start



Advance Allocation: 𝑃𝑚 | |∑𝐶𝑗
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If job-to-machine allocation decisions are made before the 

first job starts processing then 𝑃𝑚 | |∑𝐶𝑗 can be solved 

easily:

Theorem: If job-to-machine allocation decisions are made 

before random processing times are observed then the 

SEPT rule is optimal for the stochastic counterpart of  

𝑃𝑚 | |∑𝐶𝑗

Proof: The proof is identical to deterministic 𝑃𝑚 | |∑𝐶𝑗 since 

the objective is the expectation of the sum of random 

processing times.



Advance allocation: 𝑃𝑚 | |𝐶𝑚𝑎𝑥
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If job-to-machine allocation decisions are made in advance 

then 𝑃𝑚 | |𝐶𝑚𝑎𝑥 can be formulated as a stochastic program

𝑥𝑖𝑗 =  
1 if job j is assigned to machine i
0 otherwise

𝐶𝑖 (𝜔) = completion time of jobs on machine i under scenario 𝜔

𝐶𝑚𝑎𝑥 𝜔 = max completion time of jobs on machine i under scenario 𝜔

min𝐸𝜔[ 𝐶𝑚𝑎𝑥 (𝜔)]

s. t. ∑𝑖 𝑥𝑖𝑗 = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗

𝐶𝑚𝑎𝑥 𝜔 ≥ 𝐶𝑖 𝜔 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝜔

𝐶𝑖 𝜔 = ∑𝑗 𝑍𝑗 𝜔 𝑥𝑖𝑗 , 𝑓𝑜𝑟𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝜔

𝐶𝑖(𝜔) ≥ 0, 𝑥𝑖𝑗 𝑏𝑖𝑛𝑎𝑟𝑦, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝜔



Static list policy: 𝑃𝑚 | |𝐶𝑚𝑎𝑥
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For the special case of 𝑃2 𝐶𝑚𝑎𝑥 the following can be 

proven:

Theorem: If there are two machines in parallel and the 

processing times are exponentially distributed, then the 

longest expected processing time first (LEPT) rule 

minimizes the expected makespan.

Proof: See Pinedo, pages 322 – 326.

Note: the stochastic counterpart of 𝑃2 𝐶𝑚𝑎𝑥 with 

exponential processing times is not NP-Hard.



Solution: J3,J4,J6,J1,J2,J5

Example: Static List Policy𝑃𝑚 | |𝐶𝑚𝑎𝑥
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Example: Find the static list policy for the following instance 

of stochastic 𝑃3 | |𝐶𝑚𝑎𝑥 with independent exponentially 

distributed processing times:

Job 𝜆𝑗

1 2.5

2 4.0

3 1.0

4 1.5

5 5.0

6 2.0

J6

J4

J3

J5,   J2,  J1
?

Note: This is not necessarily optimal for P3, but it often works 

well as a heuristic



Static list policy: 𝑃𝑚 | |∑𝐶𝑗
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The following static list policy is optimal for 𝑃𝑚 | |∑𝐶𝑗: 

Theorem: Given n jobs with processing times such  𝐸[𝑍1] ≤
𝐸[𝑍2] ≤ ⋯ ≤ 𝐸[𝑍𝑛] then shortest expected processing time 

first (SEPT) rule minimizes total expected completion time 

under a static list policy.

Proof: follows from the deterministic case since ∑𝐶𝑗 is the 

sum of random processing times. 



Solution:

Example: 𝑃𝑚 | |∑𝐶𝑗
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Example: Find the optimal static list policy for the following 

instance of stochastic 𝑃3 | |∑𝐶𝑗 with independent 

exponentially distributed processing times:

Job 𝜆𝑗

1 3.5

2 2.0

3 4.0

4 1.5

5 3.0

6 6.0

?

?

?

?,   ?,   ? 



Solution:

Example: 𝑃𝑚 | |∑𝐶𝑗
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Example: Find the optimal static list policy for the following 

instance of stochastic 𝑃3 | |∑𝐶𝑗 with independent 

exponentially distributed processing times:

Job 𝜆𝑗

1 3.5

2 2.0

3 4.0

4 1.5

5 3.0

6 6.0

J1

J3

J6

J4,   J2,  J5



Policy Implications
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The class of static list policies is a restriction of the class of 

dynamic list policies.  Based on this fact, answer what can 

you say about the following?

1. The difference between the objective function values for 

𝑃𝑚 | |∑𝐶𝑗 under static and dynamic policies?

2. The difference between the objective function values for 

𝑃2 | |∑𝐶𝑗 with 3 jobs under static and dynamic policies?



Heuristics

Many stochastic scheduling problems are difficult or 

impossible to solve exactly

Heuristics provide a means for fast approximation but some 

measure of accuracy is needed

Definition: The performance ratio (PR) of a heuristic for 

instance, I,  is the ratio of the heuristic objective value H(I)

to the optimal objective value Opt (I).

Definition: The worst case PR is: 

𝑃𝑅𝑊𝐶 = max
𝐼

𝐻 𝐼

𝑂𝑝𝑡 𝐼



Example: Bin-Packing Problem

The bin-packing problem asks the question: how many (1-

dimensional) bins are needed to contain a set of items?

Example:

Bin Size = 10

Item Sizes: {5,8,3,4,6,1,7,5}

Optimal Solution: 4 Bins

5

5

87

3

6

4?
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Example: Bin-Packing Problem

# of  bins selected

Items only allocated to bins that 

were selected

Every item goes in one bin

Bin size limit (z = item size, T = bin 

size)

otherwise

selectedibinif
xi

0

1


Otherwise

ibintoassignedjitemif
yij

0

1


IP Formulation for the bin-packing problem:
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Example: Bin-Packing Problem

Many bin-packing heuristics have been studied: 

First-fit (FF): Start with one empty bin; place each item in the first 

least full bin in which the item fits. If none then open another bin.

Best-fit (BF): Start with on empty bin; place each item in the bin 

with the smallest space that the item can fit in. If none, open 

another bin.

It has been proven no list heuristic for bin packing can 

have a worst case performance ratio less than 1.5

Johnson, D.S. et al., 1974, Worst-Case Performance Bounds for Simple One-

Dimensional Packing Algorithms, SIAM Journal on Computing 



Parallel Machines with Time Limits

Consider the following problem that is similar to bin 
packing and parallel machine scheduling 

 The number of machines may be varied and there 
is a cost, 𝑐𝑓,  for each machine used

 Machines are available for a limited time during the 
day, after which there is an overtime cost per unit 
time, 𝑐𝑣

21



Surgery-to-OR scheduling 

 Surgeries vary in 
duration

 Planned OR time is 
typically 8-10 hour per 
day

 Supporting staff are 
needed for every OR 
opened

Application: Surgery Scheduling

22



Decisions: How many operating rooms (ORs) to 

open? Which OR to schedule each surgery block in?

Criteria: Cost of ORs opened, Overtime costs for 

operating rooms

S 1 S 2 S 3 S n

OR 1 OR 2 OR 3 OR m

Application: Surgery Scheduling
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Extensible Bin-Packing

Cost of ORs + Overtime

Surgeries only scheduled in ORs 

that are active

Every surgery goes in one OR

Overtime

otherwise

activeiORif
xi

0

1


Otherwise

iORtoassignedjsurgeryif
yij

0

1

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Example: Extensible Bin-Packing 

Extensible bin-packing allows overfilling bins, at a cost

Example:

Bin Size = 10

Cost per bin 1:

Cost per unit 0.1: 

Item Sizes: {5,8,3,4,6,1,7,5}

Optimal Solution: 3 Bins

5

5

8

7

3

6

4
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The stochastic extensible bin-packing problem can be 

formulated as a stochastic program

Stochastic Extensible Bin-Packing

Surgery Distribution



Expected Longest Processing Time First (ELPT) Heuristic:

Compute mean surgery 

durations, 𝐸[𝑍𝑗]

.11
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Sort surgeries from longest 

to shortest

Sequentially apply 

surgeries to emptiest room

ELPT-Based Heuristic



Average Performance

Performance

Measure
High Overtime Cost Low Overtime Cost

MV 

Problem

ELPT MV 

Problem

ELPT

Mean 0.89 0.92 0.99 0.99

StDev 0.05 0.06 0.01 0.01

Max 0.96 0.97 0.99 1.0

Min 0.81 0.81 0.97 0.97

 Numerical experiments based on 20 problem instances generated 

using data from Mayo Clinic

 Solved the stochastic program (SP) with 10,000 scenarios to find 

optimal solution for every instance 

 Following are the ratios (obtained from MC sampling) of the optimal 

SP solution to the solution from MV problem and ELPT heuristic



In-Class Assignment

Apply the LPT-based heuristic to the following instance of the 

EBP problem

 A Thoracic Surgery Unit has 9 surgeries with mean durations:

 Surgery 1, Lobectomy,   75 minutes

 Surgery 2, Biopsy, 150 minutes

 Surgery 3, Thoracoscopy,  80 minutes

 Surgery 4, Esophagogastrectomy: 330 minutes

 Surgery 5, Bronchoscopy, 50 minutes

 Surgery 6, Bronchoscopy, 50 minutes

 Surgery 7, Thymectomy, 280 minutes

 Surgery 8, Biopsy, 120 minutes

 Surgery 9 Lobectomy, 175 minutes

 6 ORs are available for 480 minutes each day (Regular Time)

 Overtime cost is $30/minute

 The cost of opening an OR/day is $4400 29


