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Sequential decision-making under uncertainty

Finance

Inventory management

Machine maintenance

Medical decision making
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Prevention of cardiovascular disease (CVD) involves balancing 
the benefits and harms of treatment

Uncertain Future Benefits 

• Delay the onset of potentially deadly and 
debilitating heart attacks and strokes
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Immediate harms

• Side effects (e.g., muscle pain, frequent 
urination)



Markov decision processes generalize Markov chains to include 
decisions
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☺  

Death

Heart 
Attack

Stroke

Health states
• Blood pressure levels
• Cholesterol levels
• Current medications 

Steimle, L. N., & Denton, B. T. (2017). Markov decision processes for screening and treatment of chronic diseases. In Markov 

Decision Processes in Practice (pp. 189-222). Springer, Cham.



Markov decision process sequence of steps

6

Markov Process
𝑃 𝑎𝑡

Decision-Maker’s Policy
𝜋 𝑠𝑡

State
𝑠𝑡

Action
𝑎𝑡



Markov decision process optimal policy
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Markov Process

𝑷 𝑎𝑡

Decision-Maker’s Policy

𝝅 𝑠𝑡

State
𝑠𝑡

Action
𝑎𝑡

max
𝜋∈Π

𝔼𝜋,𝑃 

𝑡=1

𝑇

𝑟𝑡 𝑠𝑡, 𝑎𝑡 + 𝑟𝑇+1 𝑠𝑇+1



Clinical risk calculators are used to estimate a 
patient’s risk

82013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart 
Association Task Force on Practice Guidelines. 2014

Inputs:
• Age
• Sex
• Race
• Cholesterol
• Blood Pressure
• History of Diabetes
• On Hypertensive Treatment
• Smoking status

Output:
Current 10-Year Risk



Well-established clinical studies give conflicting 
estimates about CVD risk
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1 Wilson et. al. Prediction of Coronary Heart Disease Using Risk Factor Categories. Circulation. 1998
2 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart 
Association Task Force on Practice Guidelines. 2014

17.8 %



Research Questions

How can we improve Markov decision processes 
to account for model ambiguity?

How much benefit is there really?
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The remainder of this presentation

Multi-model Markov decision processes

Branch-and-bound algorithms

Alternative ambiguity-aware formulations
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MMDPs have two layers of uncertainty 

Optimal control of a stochastic system… 
• Markov decision processes

…under model uncertainty
• Robust optimization

• Stochastic optimization

12



Early robust optimization approaches to MDPs with model 
parameter uncertainty

Assume that P lies within some 
ambiguity set

e.g., Interval Model

Goal is to maximize worst-case 
performance

(s,a)-rectangularity property gives a 
tractable model for MDPs

13



Robust optimization approach to ambiguity in Markov decision 
processes can be modeled as a two-player zero-sum game

➢Decision-maker selects an action to maximize expected rewards

➢Adversary selects transition probabilities to minimize DM’s 
expected rewards

max
𝑎∈𝒜

min
𝑝𝑡(𝑠,𝑎)∈𝒫𝑡(𝑠,𝑎)

𝑟𝑡 𝑠, 𝑎 + σ𝑠′∈𝒮 𝑝𝑡 𝑠
′ 𝑠, 𝑎 𝑣𝑡+1(𝑠)

(s,a)-rectangularity property gives a tractable model based on the 
assumption the adversary can select each row independently

14

Nilim, A. and El Ghaoui, L. "Robust control of Markov decision processes with uncertain transition matrices." Operations 
Research 53.5 (2005): 780-798.

Iyengar, G. "Robust dynamic programming." Mathematics of Operations Research 30.2 (2005): 257-280.



(s,a)-rectangularity is computationally attractive, but has its 
drawbacks

Leads to overly-protective policies

➢Optimizing for cases where all parameters 
take on worst-case values simultaneously

Transition matrices might lose known structure

➢Ambiguity is realized independently across 
states, actions, and/or decision epochs

Relaxing (s,a)-rectangularity causes the max-min 
problem to be NP-hard*

15
*Wiesemann, Wolfram, Daniel Kuhn, and Berç Rustem. “Robust Markov decision processes.” Mathematics of 
Operations Research 38.1 (2013): 153-183.



Multi-model Markov Decision Process notation

Generalizes a standard Markov decision process

▪ State space, 𝒮 ≡ {1,… , 𝑆}

▪ Decision epochs, 𝒯 ≡ {1,… , 𝑇}

▪ Action space, 𝒜 ≡ {1,… , 𝐴}

▪ Rewards, 𝑅 ∈ ℝ𝑆×𝐴×𝑇

Finite set of models,  ℳ = 1,… , |ℳ|

▪ Model 𝑚: An MDP (𝒮, 𝒜, 𝒯, 𝑅, 𝑃𝑚)

▪ Transition probabilities 𝑃𝑚 are model-specific

▪ Model weights: 𝜆1, 𝜆2, … , 𝜆|ℳ|

16
Steimle, L. N., Kaufman, D.L., and Denton B.T.  “Multi-model Markov Decision Processes.” IISE Transactions, 2021.



The weighted value problem seeks to find a single policy that 
performs well in expectation

Performance of policy 𝜋 in model 𝑚:

𝑣𝑚 𝜋 = 𝔼𝜋,𝑃
𝑚



𝑡=1

𝑇

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝑟𝑇+1(𝑠𝑇+1)

Weighted value of policy 𝜋:

𝑊 𝜋 = 

𝑚∈ℳ

𝜆𝑚𝑣
𝑚 𝜋

Weighted value problem: 𝑊∗= max
𝜋∈Π

𝑊 𝜋

17



The weighted value problem is hard

The MMDP is a special case of a partially-observable MDP. 

Proposition: The optimal policy may be history-dependent. 
Proof by contradiction

Proposition: In general, the Weighted Value Problem is PSPACE-
hard.
Reduction from Quantified Satisfiability

18

MDP MMDP POMDP



Special case of an MMDP with deterministic Markov policies

19

Proposition: There exists a deterministic policy that is optimal 
when restricting to Markov policies

Proposition: The Weighted Value Problem for Markov deterministic 
policies is NP-hard 

Reduction from 3-CNF-SAT

Initially, we focused on finding near-optimal Markov deterministic policies, 
𝜋 ∈ ΠMD, using a polynomial time approximation.



Multi-model Markov decision process

▪ 4,096 states

▪ 64 actions

▪ 40 decision epochs

▪ 2 models

Case study data

▪ Longitudinal data from Mayo Clinic

▪ Framingham, ACC risk calculators

▪ Disutilities from medical literature

20

☺  

Death

Heart 
Attack

Stroke

Example: approximation algorithm for cardiovascular
disease prevention MMDP

Mason, J. E., Denton, B. T., Shah, N. D., & Smith, S. A. (2014). Optimizing the simultaneous management of blood 
pressure and cholesterol for type 2 diabetes patients. European Journal of Operational Research, 233(3), 727-738.



We compared our approximation algorithm policy to 
policies that ignore model ambiguity

21

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

Optimal Decisions for ACC Model

MMDP Decisions

Optimal Decisions for FHS Model



In some cases, ignoring ambiguity has relatively minor 
implications
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Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

1,881

Framingham Heart Study Model

Optimal Decisions for FHS Model



In some cases, ignoring ambiguity has relatively minor 
implications

23

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

1,881

Framingham Heart Study Model

Optimal Decisions for ACC Model

Optimal Decisions for FHS Model

1,789 (-3%)



In some cases, ignoring ambiguity has relatively minor 
implications

24

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

1,881

Framingham Heart Study Model

Optimal Decisions for ACC Model

MMDP Decisions

Optimal Decisions for FHS Model

1,841 (-2%)

1,789 (-3%)



But in other cases, ignoring ambiguity can have major 
implications
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695.9 

679.3 (-2%)

561.5 (-19%)

Optimal Decisions for ACC Model

MMDP Decisions

Optimal Decisions for FHS Model

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

American College of Cardiology Model



Observations
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• MMDPs are difficult to solve computationally, but a polynomial-
time approximation algorithm can provide near-optimal solutions 
in many instances

• Based on a CVD case study, it can be important to address 
ambiguity when there are multiple plausible models



Multi-model Markov decision processes

Branch-and-bound algorithms

Alternative ambiguity-aware formulations

27

The remainder of this presentation



Approaches to solve the weighted value problem

• Mixed-integer programming (MIP)

• Branch-and-cut on a 2-stage stochastic integer 
program formulation

• Custom branch-and-bound that exploits 
MMDP structure

28



The connection between MMDP and two-stage 
stochastic program

29

𝜋

Performance of policy 𝜋 in model 1

Performance of policy 𝜋 in model 2

Performance of policy 𝜋 in model |ℳ|

⋮

Stochastic program MMDP

Scenarios Model of MDP

Binary first-stage decision variables Policy 

Continuous second-stage decision variables MDP model value functions

𝜆1

𝜆2

𝜆|ℳ|



The MMDP is largely decomposable but... 

30

Big-M’s in logic-based constraints cause difficulty for standard 
stochastic programming methods

➢ Weak linear programming relaxation for the MIP

➢ Weak optimality cuts in Benders Decomposition

Problem is very decomposable

➢ Evaluation of a fixed policy is easily done by solving ℳ
independent MDPs



Branch-and-bound searches for policies that match across all 
models

31

Root Node: Relax requirement that policy must be same in each 
model

Goal: Find an implementable policy (policy is the same in all 
models) that maximizes weighted value

State 1

State 2

= Action 1

= Action 2
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Model 1 Model 2

Partial Policy 0 No actions have been fixed at the 
root node

Each model solved independently via 
backward induction

Gives an upper bound 𝑊0

𝑊0

Branch & Bound begins by solving each model independently



Branch & Bound proceeds by fixing a part of the policy that must 
match in all models

33

Model 1 Model 2

Partial Policy 0 Pick a state-time pair to branch on

𝑊0



Branch & Bound proceeds by fixing a part of the policy that 
must match in all models

34

Model 1 Model 2

Partial Policy 1 Partial Policy 2

Pick a state-time pair to branch on

Fix an action to add to the partial 
policy

𝑊0

Partial Policy 0 



Branch & Bound solves a relaxation using backward induction to 
obtain upper bound
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Model 1 Model 2

𝑊0

Partial Policy 2

Partial Policy 0 
Solve each model’s MDP with 
reduced action space for state-
time pairs that are fixed

Model 1 Model 2

Partial Policy 1

𝑊1

Action is fixed according to partial policy



Pruning eliminates the need to explore all possible 
policies
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Model 1 Model 2

Partial Policy

Model 1 Model 2

Partial Policy

ഥ𝑊

Prune by bound
The incumbent is better than 
any possible completion of 
the partial policy

Prune by optimality
Solving the relaxation gives 
an implementable policy



We compared 3 exact methods on 240 instances of 
MMDPs
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Solution Method Implementation
% solved in 5 

minutes?
Optimality 
Gap (avg.)

MIP Extensive Form Gurobi 0% 12.2%

MIP Branch-and-cut
Gurobi with 

Callbacks
0% 13.1%

Branch-and-Bound
Custom code 

in C++
97.9% 1.11%

[1] Steimle, L. N., Ahluwalia, V., Kamdar, C., and Denton B.T. (2018) “Decomposition methods for solving Multi-model Markov decision 
processes.” IISE Transactions, 2022.
[2] Gurobi Optimization, LLC (2018) “Gurobi Optimizer Reference Manual", http://www.gurobi.com



Our custom branch-and-bound approach is the fastest of 
the solution methods
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Solution Method Implementation
% solved in 5 

minutes?
Optimality 
Gap (avg.)

MIP Extensive Form Gurobi 0% 12.2%

MIP Branch-and-cut
Gurobi with 

Callbacks
0% 13.1%

Branch-and-Bound
Custom code 

in C++
97.9% 1.11%



Observations
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• A custom branch-and-bound approach outperforms 
MIP-based solution methods

• MMDPs tend to be harder to solve when there is more 
variance in the models’ parameters

• In many low variance cases, the mean value problem 
provides an optimal or near-optimal solution



Multi-model Markov decision processes

Branch-and-bound algorithms

Alternative ambiguity-aware formulations

40

The remainder of this presentation



So far, we have considered a risk-neutral decision-maker
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Weighted value problem 
maximizes expectation of 
model performance

What if the decision-maker wants to protect against 
undesirable outcomes resulting from ambiguity?

𝑊∗= max
𝜋∈Π



𝑚∈ℳ

𝜆𝑚𝑣
𝑚 𝜋



Branch-and-bound algorithm is easily modified to solve 
other ambiguity-aware formulations

max
𝜋∈Π𝑀𝐷

min
𝑚∈ℳ

𝑣𝑚(𝜋)

min
𝜋∈Π𝑀𝐷

max
𝑚∈ℳ

max
ഥ𝜋∈Π

𝑣𝑚(ത𝜋) − 𝑣𝑚(𝜋)

max
𝑧∈ℝ,𝜋∈Π𝑀𝐷

𝑧

s. t. ℙ 𝑣𝑚(𝜋) ≥ 𝑧 ≥ 1 − 𝜖

42

[1] Ahmed A, Varakantham P, Lowalekar M, Adulyasak Y, Jaillet P (2017) Sampling Based Approaches for Minimizing Regret in Uncertain 
Markov Decision Processes (MDPs). Journal of Artificial Intelligence Research 59:229–264
[2] Merakli, M. and Kucukyavuz, S. (2019) “Risk-Averse Markov Decision Processes under Parameter Uncertainty with an Application to Slow-
Onset Disaster Relief.” Optimization Online.

Max-min

Min-max-regret1

Percentile 
optimization2



These problems are still NP-hard. We compared to polynomial-
time alternatives
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Mean Value Problem

(s,a)-rectangular 
finite scenario MDP*

max
𝜋∈Π𝑀𝐷

𝔼𝜋, ത𝑃 

𝑡=1

𝑇

𝑟𝑡 𝑠, 𝑎 + 𝑟𝑇+1(𝑠)

Nilim, Arnab, and Laurent El Ghaoui. "Robust control of Markov decision processes with uncertain 
transition matrices." Operations Research 53.5 (2005): 780-798.

max
𝑎∈𝒜

min
𝑝𝑡(𝑠,𝑎)∈𝒫𝑡(𝑠,𝑎)

𝑟𝑡 𝑠, 𝑎 + 

𝑠′∈𝒮

𝑝𝑡 𝑠
′ 𝑠, 𝑎 𝑣𝑡+1(𝑠)



We compared these formulations in two case studies

Machine maintenance

Cardiovascular disease management

44



Machine maintenance: Optimal timing of machine repairs
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Options:
• Do Nothing at no cost
• Minor repair at low cost
• Major repair at high cost

Operating costs depend on state of machine

61 2 3 4 5

High Quality Low Quality

RepairDo Nothing
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Value Function, v

High Variance Instance

ℙ(𝑣𝑚 𝜋 ≤ 𝑣)

The distribution of the value function across models 
varies depending on the criteria selected

Lower costHigher cost

Best we could 
possibly do



As variance in models decreases, the form of protection against 
ambiguity matters less 
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Value Function, v 

ℙ(𝑣𝑚 𝜋 ≤ 𝑣)

Low Variance Instance



Multi-model Markov decision process

▪ 64 states (HDL/TC Levels)

▪ 3 actions (Wait, low-dose, high-dose)

▪ 34 decision epochs

▪ 30 models

Case study data

▪ Longitudinal data from Mayo Clinic

▪ ACC risk calculator

▪ Disutilities from medical literature

48

☺  

Death

Heart 
Attack

Stroke

We considered these formulations to determine the optimal 
time to start statins 

Mason, J. E., Denton, B. T., Shah, N. D., & Smith, S. A. (2014). Optimizing the simultaneous management of blood 
pressure and cholesterol for type 2 diabetes patients. European Journal of Operational Research, 233(3), 727-738.



(s,a)-rect-MMDP can perform worse than all models 

49

Regret from (s,a)-
rectangular projection

Regret, ℓ (QALYs per 1000 women)

ℙ(𝒗 𝝅∗ − 𝒗 𝝅 ≤ ℓ)

40 800



Take-away messages
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• Use caution before employing the (s,a)-rectangularity property!

• MMDPs can generate superior performance in terms of expected 
rewards, regret, and other performance measures.

• Branch-and-bound can be customized to leverage MMDP structure and 
solve moderate-size problems. A fast polynomial time algorithm can 
scale up to very large problems.

• MMDPs are useful when there is significant variation among models.  
On the other hand, using an MMDP to address natural statistical 
variation in model parameters yields little benefit.
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Weight-Select-Update is an approximation algorithm 
to find a policy and model value functions

• A Markov deterministic policy

• 𝜋 = {𝜋𝑡 𝑠 ∶ 𝑡 ∈ 𝒯, 𝑠 ∈ 𝒮}

• Value functions for each model 
corresponding to the policy

• 𝑣t
𝑚 𝑠 , 𝑡 ∈ 𝒯, 𝑠 ∈ 𝒮,𝑚 ∈ ℳ

53



Weight-Select-Update generates the policy and 
model value functions in one backward pass

Initialize value-to-go in each model: 

While 𝑡 ≥ 1, for each state 𝑠 ∈ 𝒮:

▪ Conditioning on being in state s, select best action

▪ Update value-to-go in each model for policy

54

ො𝜋𝑡 𝑠 = argmax
𝑎∈𝒜



𝑚=1

𝑀

𝜆𝑚 𝑟𝑡 𝑠, 𝑎 + 

𝑠′∈𝒮

𝑝𝑚 𝑠′ 𝑠, 𝑎 ො𝑣𝑡+1
𝑚 (𝑠)

ො𝑣𝑡
𝑚 𝑠 = 𝑟𝑡 𝑠, ො𝜋𝑡 𝑠 + 

𝑠′∈𝒮

𝑝𝑚 𝑠′ 𝑠, ො𝜋𝑡(𝑠) ො𝑣𝑡+1
𝑚 (𝑠)

ො𝑣𝑇+1
𝑚 𝑠 = 𝑟𝑇+1 𝑠



Weight-Select-Update generates the policy and 
model value functions in one backward pass

Initialize value-to-go in each model: 

While 𝑡 ≥ 1, for each state 𝑠 ∈ 𝒮:

▪ Conditioning on being in state s, select best action

▪ Update value-to-go in each model for policy
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ො𝜋𝑡 𝑠 = argmax
𝑎∈𝒜



𝑚=1

𝑀

𝜆𝑚 𝑟𝑡 𝑠, 𝑎 + 

𝑠′∈𝒮

𝑝𝑚 𝑠′ 𝑠, 𝑎 ො𝑣𝑡+1
𝑚 (𝑠)

ො𝑣𝑡
𝑚 𝑠 = 𝑟𝑡 𝑠, ො𝜋𝑡 𝑠 + 

𝑠′∈𝒮

𝑝𝑚 𝑠′ 𝑠, ො𝜋𝑡(𝑠) ො𝑣𝑡+1
𝑚 (𝑠)

ො𝑣𝑇+1
𝑚 𝑠 = 𝑟𝑇+1 𝑠

Weighted value-to-go from state s



Weight-Select-Update generates the policy and 
model value functions in one backward pass

Initialize value-to-go in each model: 

While 𝑡 ≥ 1, for each state 𝑠 ∈ 𝒮:

▪ Conditioning on being in state s, select best action

▪ Update value-to-go in each model for policy
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ො𝜋𝑡 𝑠 = argmax
𝑎∈𝒜



𝑚=1

𝑀

𝜆𝑚 𝑟𝑡 𝑠, 𝑎 + 

𝑠′∈𝒮

𝑝𝑚 𝑠′ 𝑠, 𝑎 ො𝑣𝑡+1
𝑚 (𝑠)

ො𝑣𝑡
𝑚 𝑠 = 𝑟𝑡 𝑠, ො𝜋𝑡 𝑠 + 

𝑠′∈𝒮

𝑝𝑚 𝑠′ 𝑠, ො𝜋𝑡(𝑠) ො𝑣𝑡+1
𝑚 (𝑠)

ො𝑣𝑇+1
𝑚 𝑠 = 𝑟𝑇+1 𝑠

Weighted value-to-go from state s



Weight-Select-Update generates the policy and 
model value functions in one backward pass

Initialize value-to-go in each model: 

While 𝑡 ≥ 1, for each state 𝑠 ∈ 𝒮:

▪ Conditioning on being in state s, select best action

▪ Update value-to-go in each model for policy
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ො𝜋𝑡 𝑠 = argmax
𝑎∈𝒜



𝑚=1

𝑀

𝜆𝑚 𝑟𝑡 𝑠, 𝑎 + 

𝑠′∈𝒮

𝑝𝑚 𝑠′ 𝑠, 𝑎 ො𝑣𝑡+1
𝑚 (𝑠)

ො𝑣𝑡
𝑚 𝑠 = 𝑟𝑡 𝑠, ො𝜋𝑡 𝑠 + 

𝑠′∈𝒮

𝑝𝑚 𝑠′ 𝑠, ො𝜋𝑡(𝑠) ො𝑣𝑡+1
𝑚 (𝑠)

ො𝑣𝑇+1
𝑚 𝑠 = 𝑟𝑇+1 𝑠



We can bound the error on the policy found 
via Weight-Select-Update

Bound on optimality gap is based on wait-and-see



𝑚∈ℳ

𝜆𝑚𝑣𝑚 ̂ ≤ max
𝜋∈Π𝑀𝐷



𝑚∈ℳ

𝜆𝑚𝑣𝑚 𝜋

≤ σ𝑚∈ℳ 𝜆𝑚 max
𝜋∈Π𝑀𝐷

𝑣𝑚 𝜋

Performance guarantee for 2 model MMDPs:

Better than choosing “wrong” model

𝜆1𝑣
1 𝜋∗,2 + 𝜆2𝑣

2 𝜋∗,1 ≤ 𝜆1𝑣
1 ො𝜋 + 𝜆2𝑣

2 ො𝜋
58



Our algorithm provides recommendations that work well 
in both models
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Percent of Men 
Recommended to Take 
Calcium Channel Blockers

0%

25%

50%

75%

100%

55 74

ACC only

Framingham only

Age



Our algorithm provides recommendations that work well 
in both models
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Calcium Channel 
Blockers

55 74

0%

25%

50%

75%

100%

55 74

Statins ACE Inhibitors

55 74
Age Age



Our algorithm provides recommendations that work well 
in both models
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55 74
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25%

50%
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Proposition: Solving the non-adaptive 
problem for an MMDP is NP-hard.

Proof Sketch: Reduction from 3-CNF-SAT which is NP-hard.

Problem instance: 

• a set of variables U = {𝑢1, 𝑢2,…, 𝑢𝑛} 

• a formula E = 𝐶1 ∧ 𝐶2 ∧ ⋯∧ 𝐶𝑚 where each 𝐶1 is CNF with 
3 literals per clause

Question: Is there a truth assignment such that E is true?

62



Proposition: Solving the non-adaptive 
problem for an MMDP is NP-hard.

63

Example: 𝐸 = ! 𝑢1⋁ ! 𝑢2⋁𝑢3
∧ (𝑢1⋁𝑢2⋁𝑢4)

𝑢1 𝑢1

𝑢2

𝑢3

𝑢4

𝑇

𝐹

𝑢2

𝑢3

𝑢4

𝑇

𝐹

Set True

Set False

Reward: 0

Reward: -1 Reward: -1

Reward:0

Model 1 Model 2

E is true IFF there exists a Markov 
deterministic policy that achieves a 
weighted value > 0 in the MMDP



Ranges for TC, HDL, SBP states

L M H V

TC (mg/dL) <160 [160,200) [200, 240) ≥240

HDL (mg/dL) <40 [40,50) [50, 60) ≥60

SBP (mmHg) <120 [120,140) [140, 160) ≥160
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Mason, J. E., Denton, B. T., Shah, N. D., & Smith, S. A. (2014). Optimizing the simultaneous 
management of blood pressure and cholesterol for type 2 diabetes patients. European Journal 
of Operational Research, 233(3), 727-738.



Linear programming can also be used to solve Markov decision 
processes

max𝑣 

𝑠∈𝒮

𝜇 𝑠 𝑣 𝑠

s.t. 𝑣 𝑠 = max
𝑎
{𝑣(𝑠, 𝑎)} , ∀𝑠 ∈ 𝒮

65

𝑣 𝑠, 𝑎

𝑎

𝑣(𝑠) = value-to-go from state s

min𝑣 

𝑠∈𝒮

𝜇 𝑠 𝑣 𝑠

s.t. 𝑣 𝑠 ≥ 𝑣 𝑠, 𝑎 , ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜



𝑣𝑡
𝑚(𝑠) = value to go from state s in epoch t in model m

The MMDP can be solved by a MIP with Big-Ms to 
enforce logic constraints
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Introduce binary decision variables to represent policy

𝑀𝜋𝑡 𝑎 𝑠 + 𝑣𝑡
𝑚 𝑠 − 

𝑠′∈𝒮

𝑝𝑡
𝑚 𝑠′ 𝑠, 𝑎 𝑣𝑡+1

𝑚 𝑠′ ≤ 𝑟𝑡 𝑠, 𝑎 + 𝑀,

𝜋𝑡 𝑎 𝑠 = ቊ
1 if policy take action a in state 𝑠 at epoch 𝑡
0 otherwise if policy take action a in state

Model-specific continuous value function decision variables

Constraints enforce value function estimates correspond to policy

∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜, 𝑡 ∈ 𝒯,𝑚 ∈ ℳ



Connections to stochastic programming give insight into 
exact solution methods
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𝜋

Performance of policy 𝜋 in model 1

Performance of policy 𝜋 in model 2

Performance of policy 𝜋 in model |ℳ|

⋮

Stochastic program MMDP

Scenarios Model of MDP

Binary first-stage decision variables Policy 

Continuous second-stage decision variables MDP model value functions



We used the Dirichlet distribution to control the 
variance among 100 models
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Worsens

Higher variance

Stays the 
same

Improves

Lower variance



Different model suggest different maintenance 
recommendations

69

Overlay of 100 Policies 
from MDPs

Do Nothing

Minor 
Repair

All Models Agree to 
Do Nothing

All Models Agree 
Major Repair

Time of Decision

High 

Low

Quality of 
Machine



Alternate measures of protection against 
ambiguity may offer different policies

70

(s,a)-rect-MMDP

Major Repair

MVP-MMDP
WVP-MMDP

Do Nothing

Minor Repair

Minor Repair

Max-min-MMDP

Quality State

Time of Decision



We used the Dirichlet distribution to control the variance 
among 30 models

71

ℙ(𝐿|𝐿) ℙ(𝑀|𝐿) ℙ(𝐻|𝐿) ℙ(𝑉|𝐿)

Number 
of Models

30

10

20

Lower variance

ℙ(𝐿|𝐿) ℙ(𝑀|𝐿) ℙ(𝐻|𝐿)

Number 
of Models

30

10

20

Higher variance

ℙ(𝑉|𝐿)



Recommendations can be sensitive to 
which model is used
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Not on
a statin

74   

Lower risk 

Higher risk

On a 
low-dose 
statin

ç

40

HDL/TC State

M/V
L/H
L/V

L/V

74Age



In some cases, MVP performs well on many 
metrics

73

Value Function, v (QALYs)

ℙ(𝒗𝒎 𝝅 ≤ 𝒗)



Stochastic dynamic optimization 
under ambiguity

Multi-model Markov decision processes

Decomposition methods

Other ambiguity-aware formulations
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There are interesting opportunities to extend this work

75

Infinite-horizon Markov decision processes with ambiguity

Extension: Modify relaxation in B&B

Existence of sufficient conditions for monotone policies

Extension: Sufficient conditions for monotone policy 
that is optimal for the MMDP 

Ambiguous state-space definitions

Extension: Branching on mappings of actions in B&B
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