

Predictive and Prescriptive Models for Early Detection of Prostate Cancer

November 8, 2022

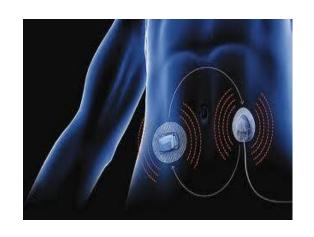
Brian Denton Stephen M. Pollock Collegiate Professor Department of Industrial and Operations Engineering University of Michigan

Chronic Diseases

Cancer

Kidney Disease

Diabetes



Heart Disease

Why prostate cancer?

- 60-80% of men will eventually develop prostate cancer
- 1 in 7 men will be diagnosed during his lifetime
- 1 in 36 men will die of prostate cancer
- The care cycle for prostate cancer is a complex stochastic process with many clinical decisions

Prostate Cancer Care Cycle

Prostate Cancer Care Stages

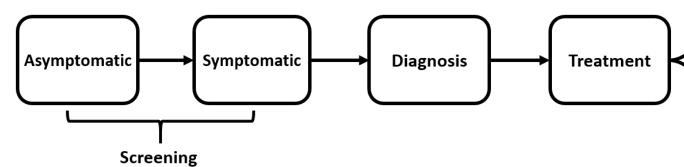
Resources:

- Primary care clinic
- Biomarkers/Labs
- Urology clinic
- Biomarkers/Labs
- Imaging/Radiology
- Urology clinic
- Biomarkers/Labs
- Imaging/Radiology
- Procedure center
- Surgery
- Radiology
- Hospital resources
- Specialty care

- Urology
- Radiology
- Biomarkers/labs

Post-Treatment Monitoring

- Follow-up test frequency
- Imaging



Decisions:

- Biomarker screening frequency
- Clinical exam frequency
- Whether or not to retest with biomarkers
- Whether to biopsy
- Whether to image
- Whether to use prognostic biomarkers to predict treatment outcomes
- Whether to image to evaluate spread of cancer
- Whether to use tissue biomarker to assess recurrence probability
- What type of treatment to pursue

- Urology
- Oncology
- Radiology

Recurrence

- Salvage radiation therapy
- Chemotherapy

Prostate Cancer Screening and Early Detection

Zhang, Z., Denton, B.T., Morgan, T., "Optimization of Active Surveillance Strategies for Heterogeneous Patients with Prostate Cancer," *Production and Operations Management* 31(11); 4021-4037, 2022, 2022.

Barnett, C., Davenport, M.S., Montgomery, J.S., Kunju, L.P., Denton, B.T., Piert, M., "18F-choline PET/mpMRI for Detection of Significant Prostate Cancer: Part 2. Cost-Effectiveness Analysis," *Journal of Nuclear Medicine*, *60*(12), 1705-1712, 2019.

Barnett, C.L., Tomlins, S.A., Underwood, D.J., Morgan, T.M., Montie, J.E., Wei, J.T., Denton, B.T., "Two-Stage Biomarker Protocols for Improving the Precision of Early Detection of Prostate Cancer," *Medical Decision Making*, *37*(7), 815-826, 2017.

Merdan, S., Tomlins, S.A., , **Barnett, C.L., Underwood, D.J.**, Morgan, T.M., Montie, J.E., Wei, J.T., Denton, B.T., "Assessment of Long Term Outcomes Associated with Urinary Prostate Cancer Antigen 3 and TMPRSS2:ERG Gene Fusion at Repeat Biopsy," *Cancer*, 122(22), 4071-4079, 2015.

Zhang, J., Denton, B.T., Balasubramanian, H., Inman, B., Shah, N., "Optimization of Prostate Biopsy Decisions," *Manufacturing & Service Operations Management*, 14(4): 529-547, 2012.

Two Examples – Diagnosis and Treatment

- 1. When should imaging be used for <u>staging</u> of prostate cancer?
- 2. What is the optimal strategy for <u>active surveillance</u> of low-risk prostate cancer?

1. When should imaging be used for staging of prostate cancer?

Imaging modalities

Bone Scan (BS)

Detect bone metastasis

Computed Tomography (CT)

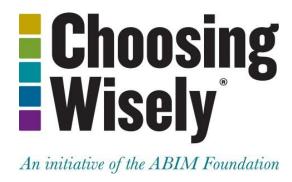
Detects lymph node metastasis

Harms of <u>not</u> imaging

- Metastatic cancer may go undetected
- Missed diagnoses subject patients to unnecessary treatments (e.g., radical prostatectomy)

 Appropriate treatment (e.g., chemotherapy) is delayed

Harms of imaging



- Potentially <u>harmful radiation</u> exposure
- Incidental findings that require <u>painful and risky</u> follow-up procedures (e.g., bone biopsy)
- Blocks access to imaging resources for other patients and unnecessarily increases healthcare costs

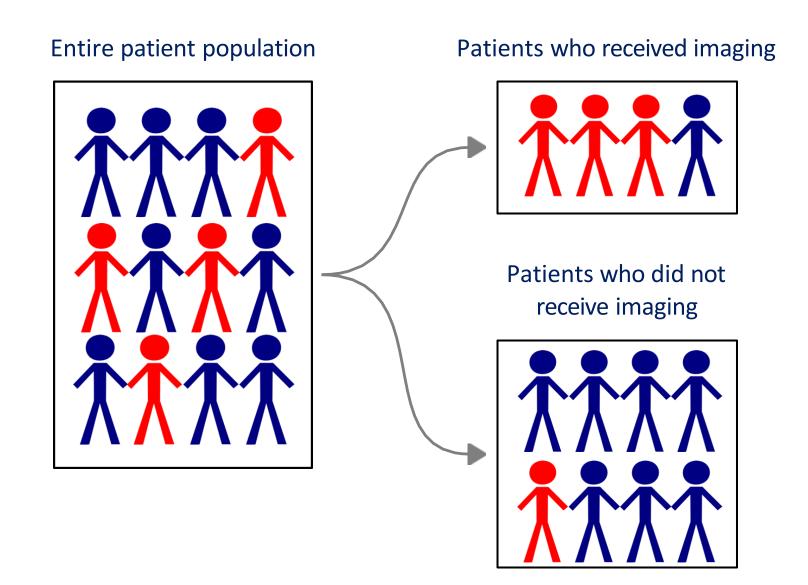
Michigan Urological Surgery Improvement Collaborative

- Physician-led, statewide collaborative
- Urology practices across Michigan (> 95% of urologists)
- Complete preoperative data for men with newlydiagnosed PCa

Factors associated with a positive BS and CT

- Age
- Race and ethnicity
- Prostate-specific antigen (PSA) (ng/ml)
- Clinical tumor stage (e.g., T1a/b/c, T2a/b/c and T3/4)
- Gleason score (GS)
- Pathology

Verification bias



Effects of verification bias

	Uncorrected		Bias-corrected	
	Sensitivity	Specificity	Sensitivity	Specificity
Clinical guidelines				
Bone scan				
EAU	97.9	33.4	84.5	75.7
AUA	97.9	43.5	81.2	82.0
NCCN	97.9	40.8	82.3	80.9
Briganti's CART	89.6	45.4	79.3	83.3
CT scan	00.4	26.5	00.0	
EAU	98.4	36.5	89.9	74.4
AUA	96.8	49.2	87.2	82.5

Begg, C. B., Greenes, R. A. "Assessment of diagnostic tests when disease verification is subject to selection bias," *Biometrics*, 39:207, 1983.

Correcting for verification bias

Estimate sensitivity and specificity based on the entire population:

 $Pr(Disease\ Present|G+)P(G+) + P(Disease\ Present|G-)P(G-)$

$$P(G + | Disease\ Present) = \frac{P(Disease\ Present|G +)P(G +)}{P(Disease\ Present|G +)P(G +)}$$

$$Pr(Disease\ not\ Present|G +)P(G +) + P(Disease\ not\ Present|G -)P(G -)$$

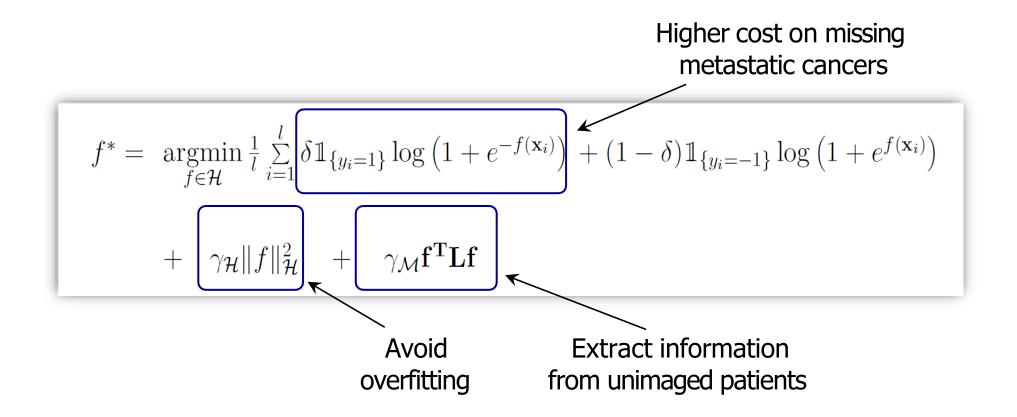
$$P(G - | Disease \ not \ Present) = \frac{P(Disease \ not \ Present | G -)P(G -)}{P(Disease \ not \ Present)}$$

Main Assumptions: Data missing at random; Factors considered by the guideline are the only factors that influence imaging decisions.

Optimizing clinical guidelines, accounting for verification bias

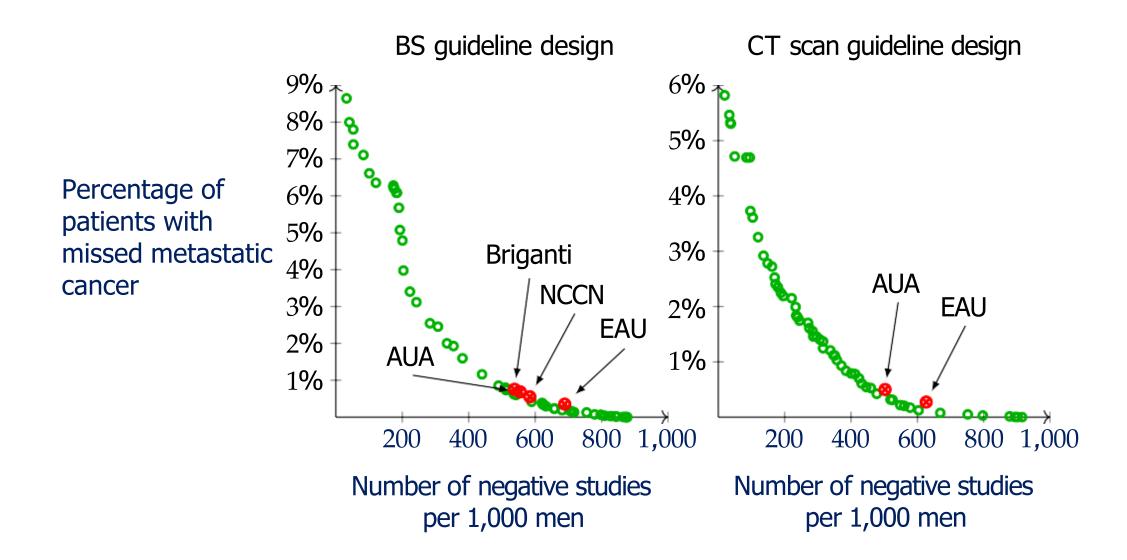
- Two important challenges:
 - Learning from <u>unlabeled data</u>
 - In practice not all patients receive imaging at diagnosis
 - Learning from <u>imbalanced data</u>
 - A minority of patients has metastatic cancer
- To address these challenges, we combined:
 - Semi-supervised learning
 - Cost-sensitive learning

Cost-sensitive Laplacian Kernel Logistic Regression



Merdan, S., Barnett, C., Miller, D.C., Montie, J.E., Denton, B.T. "Data Analytics for Optimal Detection of Metastatic Prostate Cancer," *Operations Research*, 69 (3), 774-794, 2021

Imaging guideline performance



MUSIC state-wide decrease in imaging

Imaging rates for patients not fitting the criteria 10%

Target=10%

7.6%

Bone Scan

20%

Post implementation

***p-value < 0.001

CT Scan

Baseline

2. What is the optimal strategy for <u>active</u> surveillance of low-risk prostate cancer?

Movember Foundation

Global database for active surveillance:

- Includes >15,000 patients from 25 established AS cohorts worldwide
- Longitudinal observations of clinical and demographic characteristics

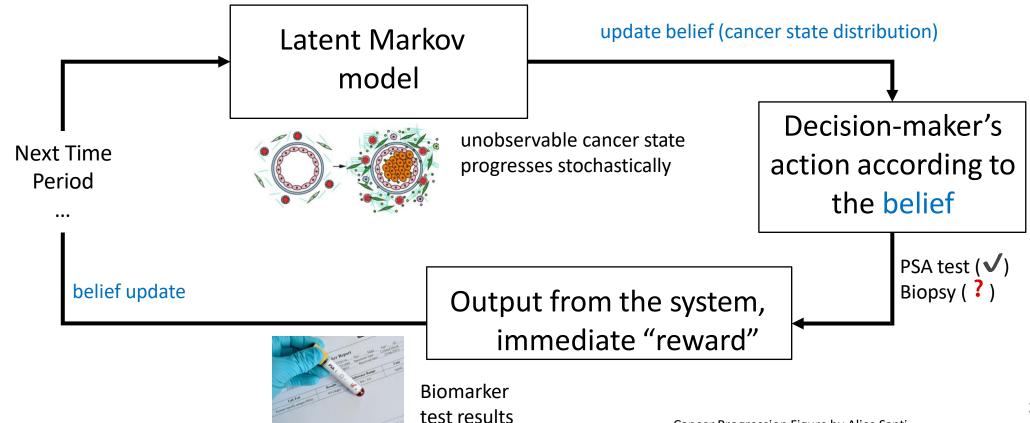
We used the four most well known studies:

- Johns Hopkins (JH)
- University of California San Francisco (UCSF)
- University of Toronto (U of T)
- Prostate Cancer Research International Active Surveillance (PRIAS) project

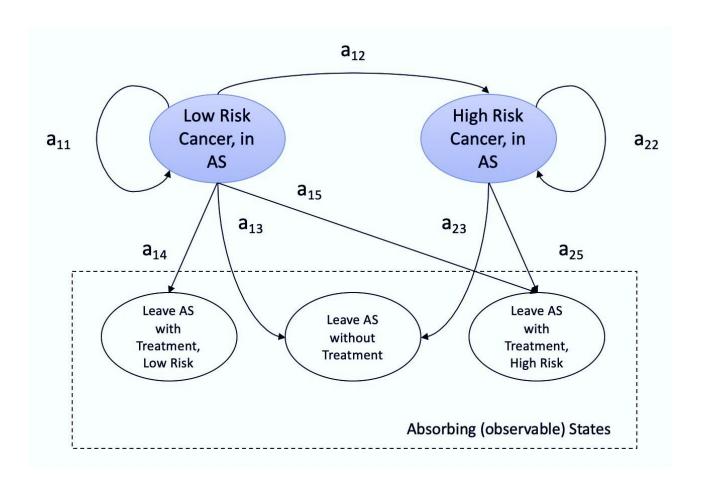
Movember Foundation initiative

Active surveillance

Active Surveillance (AS): monitoring "low-risk" prostate cancer patients with biomarkers and biopsies.



Latent Markov model for prostate cancer AS



Learned Model Parameters

- Initial distribution at diagnosis
- Transition probability matrix
- Observation probabilities

Li, W. et al. "Comparison of biopsy under-sampling and annual progression using hidden Markov models to learn from prostate cancer active surveillance studies," *Cancer Medicine*, 9(24):9611-9619, 2020

Partially observable Markov decision process

Belief Vector:

$$b_i^t = P(S_t = i), \qquad i \in \{\text{Low Risk, High Risk}\}\$$

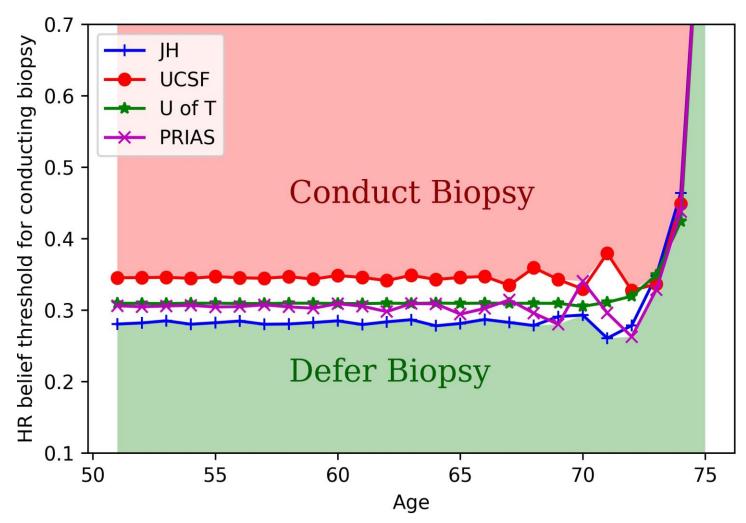
Optimality Equations:

$$V_t(b^t) = \max_{a_t} \{b^t r(a_t) + \sum_{o_t \in O} P(o_t | b^t, a_t) V_{t+1}(b^{t+1}(b^t | a_t, o_t))\}, \forall t, b_t$$

Optimal Decision:

$$a_t^*(b^t) = \arg\max_{a_t} \{b^t r(a_t) + \sum_{o_t \in O} P(o_t | b^t, a_t) V_{t+1}(b^{t+1}(b^t | a_t, o_t))\}$$

Optimal policies



Li W., Denton B.T., Morgan T.M.. "Optimizing Active Surveillance for Prostate Cancer Using Partially Observable Markov Decision Processes," *European Journal of Operational Research*, 350(1), 386-399, 2022.

Recent adventures optimizing under ambiguity

Models for chronic disease to help resolve model ambiguity

- **1. Steimle, L.**, Kauffman, D., Denton, B.T., "Multi-model Markov Decision Processes: A New Method for Mitigating Parameter Ambiguity," IISE *Transactions*, 53(10):1124-39, 2021
- **2. Steimle, L.**, Ahluwalia, V., Kamdar, C., Denton, B.T., "Decomposition Methods for Solving Multi-model Markov Decision Processes," *IISE Transactions*, 53 (12), 1295-1310, 2021

A forthcoming study addresses this for active surveillance:

Li, W., Denton, B.T., "Multi-model Partially Observable Markov Decision Processes," Submitted to *INFORMS Journal On Computing*, 2023

Recap

- 1. When should imaging be used for <u>staging</u> of prostate cancer?
- 2. What is the optimal strategy for <u>active surveillance</u> of low-risk prostate cancer?

Theme: personalization of medical decisions matters!

Acknowledgments

Students

Christine Barnett, PhD

Weiyu Li, PhD

Selin Merdan, PhD

Erkin Otles, PhD

Lauren Steimle, PhD

Rachel Risko, BSE

Haipeng Li, BSE

Zheng Zhang, PhD

Medical Collaborators

Susan Linsell, MSHA

David C. Miller, MD

James E. Montie, MD

Todd Morgan, MD

Karandeep Singh, MD

Scott Tomlins, MD, PhD

John Wei, MD

MUSIC Collaborative

Brian Denton
Industrial and Operations Engineering
University of Michigan

btdenton@umich.edu

Slides and papers are on are on my website

