Keynote Address: Healthcare Analytics: Leveraging Predictive and Prescriptive Methods to Prevent and Treat Diseases

Brian Denton

University of Michigan
July 13, 2023
alchio

Brian Denton is the Stephen M. Pollock Professor of Industrial and Operations Engineering and the Chair of the Department of Industrial and Operations Engineering at the University of Michigan. His research interests are in data analytics and datadriven optimization under uncertainty with applications to medicine, public health, and healthcare delivery. He is a Professor in the Department of Urology (by courtesy) at Michigan Medicine and a member of the Institute for Healthcare Policy and Innovation and the Cancer Center at the University of Michigan. His research has been funded by the National Science Foundation, the Agency for Healthcare Research and Quality, the National Institutes of Health, the U.S. Department of Veterans Affairs, and industry research contracts. He is past President of the Institute for Operations Research and the Management Sciences (INFORMS), and he is an elected Fellow of INFORMS.

Healthcare Analytics: Predictive and Prescriptive Methods to Prevent and Treat Diseases

July 13, 2023
Brian Denton
Stephen M. Pollock Collegiate Professor
Department of Industrial and Operations Engineering University of Michigan

Healthcare Data

Randomizeasentrolled Trials

Observational Data: Patient data collected through observations of the natural healthcare delivery process during routine medical care.

Observational Data

- Demographics: age, sex, race, ethnicity, geography,...
- Encounters: blood pressure, weight, symptoms,...
- Labs: cholesterol, blood sugar, creatinine,...
- Procedures: biopsy, endoscopy, imaging,...
- Insurance claims: health services, prescription refills,...

A Whirl-Wind of Problems (Opportunities?)

Three Examples of OR \& Analytics in Medicine

1. Prevention
2. Diagnosis
3. Treatment

1. Prevention

Setting: Prevention of cardiovascular disease

OR Challenge: sequential decisions under uncertainty with sparse data

1 in 3 deaths are due to cardiovascular disease (CVD)

Cholesterol monitoring recommendations vary from 3 months to 6 years between testing

[^0]
Should CVD risk factors be used to recommend cholesterol screening?

Physician's Decision: when to recommend the patient return for cholesterol screening

Finite horizon Markov Decision Process to maximize expected societal rewards

Decision epochs: t
40-year decision horizon with quarterly decision epochs
States: s_{t}
Static and dynamic risk factors, health outcomes
Actions: a_{t}
When the patient is advised to have next cholesterol test
Transition probabilities: $p_{t}\left(s_{t+1} \mid s_{t}, a_{t}\right)$
Cholesterol, blood pressure, risk of CVD
Rewards: $r_{t}\left(s_{t}, a_{t}\right)$
Expected societal benefits and costs

Optimal Policy

State: $s_{t} \quad \longrightarrow$ Action: a_{t}
(Chol, BP, Age...)
next Chol test
(Bellman's Equations)

For complete data, transition probabilities are based on state transition frequency

$S_{i j}:=$ Number of observations from state i to state j in one epoch.

$$
P_{i j}=\frac{S_{i j}}{\sum_{k} S_{i k}} \quad \square \text { Fraction of } S_{i j} \text { over all observations of transitions from state } i .
$$

In reality, observational data are sparse

BP = Blood Pressure; Chol = Cholesterol

E-M Algorithm estimates transition probabilities for unequally spaced data

Dempster AP, Laird NM, Rubin DB (1978). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39(1):1-22.

Iterative estimation of transition probabilities using EM Algorithm

$P_{i j l, u v w}=$ Probability that a transition between i and j occurs in l epochs given the observations.
$O_{u v w}:=$ Number of observations from state u to state v in \boldsymbol{w} epochs.

$$
S_{i j}(k):=S_{i j} \text { in iteration } k
$$

$$
P_{i j}(k)=\frac{S_{i j}(k)}{\sum_{l} S_{i l}(k)}
$$

Finite horizon Markov Decision Process to maximize expected societal rewards

Decision epochs: t

40-year decision horizon with quarterly decision epochs
States: S_{t}
Static and dynamic risk factors, health outcomes
Actions: a_{t}
When the patient is advised to have next cholesterol test
Transition probabilities: $p_{t}\left(s_{t+1} \mid s_{t}, a_{t}\right)$
Cholesterol, blood pressure, risk of CVD
Rewards: $r_{t}\left(s_{t}, a_{t}\right)$
Expected societal benefits and costs

Optimal Policy

State: s_{t} Action: a_{t}
(Chol, BP, Age...) next Chol test

Optimal recommendations depend on the patient's age, race, sex, and CVD risk

Overall patient groups:
 \qquad

Recommendations depends on the patient's age and CVD risk

White men

Younger

patients \begin{tabular}{c}
More

appointments
compared to
ACC Guideline

\end{tabular}

More appointments compared to white men.

Fewer appointments compared to white men.

2. Diagnosis

Setting: Imaging to detect metastatic cancer in patients diagnosed with prostate cancer

OR Challenge: machine learning, selection bias, class imbalance

Imaging modalities to detect metastases in newly diagnosed prostate cancer patients

Bone Scan (BS)

- Detect bone metastasis

Computed Tomography (CT)

- Detects lymph node metastasis

Harms of not imaging

- Metastatic cancer may go undetected
- Missed diagnoses subject patients to unnecessary treatments (e.g., radical prostatectomy)

- Appropriate treatment (e.g., chemotherapy) is delayed

Harms of imaging

An initiative of the ABIM Foundation

- Potentially harmful radiation exposure
- Incidental findings that require painful and risky follow-up procedures (e.g., bone biopsy)
- Blocks access to imaging resources for other patients and unnecessarily increases healthcare costs

How can risk factors for metastatic cancer help decide which patients to recommend for imaging?

- Age
- Race and ethnicity
- Biomarkers
- Pathology

- Clinical tumor stage (e.g., T1a/b/c, T2a/b/c, T3/4)

Physician's Decision: when to recommend imaging for patients newly diagnosed with prostate cancer

Selection bias

Effects of selection bias

	Uncorrected		Bias-corrected	
Guidelines (G)	Sensitivity Specificity	Sensitivity Specificity		
Bone scan				
EAU	97.9	33.4	84.5	75.7
AUA	97.9	43.5	81.2	82.0
CT scan	98.4	36.5	89.9	74.4
EAU	96.8	49.2	87.2	82.5
AUA				

EAU: European Association of Urology; AUA: American Urology Association

Begg, C. B., Greenes, R. A. "Assessment of diagnostic tests when disease verification is subject to selection
bias," Biometrics, 39:207, 1983.

Effects of verification bias

	Uncorrected		Bias-corrected	
Guidelines (G)	Sensitivity Specificity	Sensitivity Specificity		
Bone scan EAU				
AUA	97.9	33.4	84.5	
CT scan	97.9	$\mathbf{4 3 . 5}$	$\mathbf{8 1 . 2}$	
EAU	98.4	36.5	89.7	
AUA	96.8	49.2	87.2	

Begg, C. B., Greenes, R. A. "Assessment of diagnostic tests when disease verification is subject to selection

Correcting for selection bias

Estimate sensitivity and specificity based on the entire population:
$\operatorname{Pr}($ Disease Present $\mid G+) P(G+)+P($ Disease Present $\mid G-) P(G-)$

$$
P(G+\mid \text { Disease Present })=\frac{P(\text { Disease Present } \mid G+) P(G+)}{P(\text { Disease Present })}
$$

$\operatorname{Pr}($ Disease not Present $\mid G+) P(G+)+P($ Disease not Present $\mid G-) P(G-)$

$$
P(G-\mid \text { Disease not Present })=\frac{P(\text { Disease not Present } \mid G-) P(G-)}{P(\text { Disease not Present })}
$$

Main Assumptions: Data missing at random; Factors considered by the guideline are the only factors that influence imaging decisions.

Guideline optimization - which patients should be imaged?

- Two important challenges:
- Learning from unlabeled data
- Not all patients receive imaging at diagnosis
- Learning from imbalanced data
- A minority of patients have metastatic cancer
- To address these challenges, we combined semi-supervised and cost-sensitive learning

Cost-sensitive Laplacian Kernel Logistic Regression

Higher cost on missing
metastatic cancers

Optimized imaging guideline performance for varying δ

CT scan guideline design

Number of negative studies per 1,000 men

Michigan state-wide decrease in imaging

Merdan, S., Barnett, C., Miller, D.C., Montie, J.E., Denton, B.T. "Data Analytics for Optimal Detection of Metastatic Prostate Cancer," Operations Research, 69 (3), 774-794, 2021

3. Treatment

Setting: Treatment of Type 2 diabetes
OR Challenge: ambiguity in risk estimates; stochastic integer programming

Markov decision process sequence of steps

Well-established clinical studies give conflicting estimates about CVD risk

Multi-model Markov Decision Process notation

Generalizes a standard Markov decision process

- States, $\mathcal{S} \equiv\{1, \ldots, S\}$
- Decision epochs, $\mathcal{T} \equiv\{1, \ldots, T\}$
- Actions, $\mathcal{A} \equiv\{1, \ldots, A\}$
- Rewards, $R \in \mathbb{R}^{S \times A \times T}$

Finite set of models, $\mathcal{M}=\{1, \ldots,|\mathcal{M}|\}$

- Model $m: \operatorname{An} \operatorname{MDP}\left(\mathcal{S}, \mathcal{A}, \mathcal{T}, R, P^{m}\right)$
- Transition probabilities P^{m} are model-specific
- Model weights: $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{|\mathcal{M}|}$

The weighted value problem seeks a single policy (π) that performs across all MDPs

Performance of policy π in model m :

$$
v^{m}(\pi)=\mathbb{E}^{\pi, P^{m}}\left[\sum_{t=1}^{T} r_{t}\left(s_{t}, a_{t}\right)+r_{T+1}\left(s_{T+1}\right)\right]
$$

Weighted value problem:

$$
W^{*}=\max _{\pi \in \Pi} \sum_{m \in \mathcal{M}} \lambda_{m} v^{m}(\pi)
$$

The weighted value problem is hard

The MMDP is a special case of a partially-observable MDP.

Proposition: The optimal policy may be history-dependent.

Proof by contradiction

Proposition: In general, the Weighted Value Problem is PSPACE-hard.
Reduction from Quantified Satisfiability

MMDPs can be formulated as two-stage stochastic integer program

Stochastic program	MMDP
Scenarios	Model of MDP
Binary first-stage decision variables	Policy
Continuous second-stage decision variables	MDP model value functions

Example: treatment for cardiovascular disease for patients with type 2 diabetes

Multi-model Markov decision process

- 4,096 states
- 64 actions: combinations of medication
- 40 decision epochs
- 2 models

Case study data

- Longitudinal data from Mayo Clinic
- Framingham, ACC risk calculators
- Disutilities from medical literature

A comparison of MMDP policy to MDP policies that ignore model ambiguity

Quality-Adjusted Life Years Gained Over No Treatment, per 1000 Men

Optimal Decisions for FHS Model

MMDP Decisions
Optimal Decisions for ACC Model

In some cases, ignoring ambiguity has relatively minor implications

Quality-Adjusted Life Years Gained
Over No Treatment, per 1000 Men
Optimal Decisions for FHS Model 1,881

Framingham Heart Study Model

In some cases, ignoring ambiguity has relatively minor implications

Quality-Adjusted Life Years Gained
Over No Treatment, per 1000 Men

Optimal Decisions for FHS Model
1,881

Optimal Decisions for ACC Model
1,789 (-3\%)

Framingham Heart Study Model

In some cases, ignoring ambiguity has relatively minor implications

Quality-Adjusted Life Years Gained
Over No Treatment, per 1000 Men
Optimal Decisions for FHS Model
1,881

MMDP Decisions
1,841 (-2\%)
Optimal Decisions for ACC Model
1,789 (-3\%)

Framingham Heart Study Model

But in other cases, ignoring ambiguity can have major implications

Quality-Adjusted Life Years GainedOver No Treatment, per 1000 Men
Optimal Decisions for ACC Model 695.9
MMDP Decisions 679.3 (-2\%)
Optimal Decisions for FHS Model 561.5 (-19\%)
American College of Cardiology Model

Recent articles on MMDPs and extensions

Models for chronic disease to help resolve model ambiguity

1. Steimle, L., Kauffman, D., Denton, B.T., "Multi-model Markov Decision Processes: A New Method for Mitigating Parameter Ambiguity," IISE Transactions, 53(10):1124-39, 2021
2. Steimle, L., Ahluwalia, V., Kamdar, C., Denton, B.T., "Decomposition Methods for Solving Multi-model Markov Decision Processes," IISE Transactions, 53 (12), 1295-1310, 2021

A recent study that addresses ambiguity for active surveillance of prostate cancer:

Li, W., Denton, B.T., "Multi-model Partially Observable Markov Decision
Processes," Working Paper, 2023, (available on Optimization Online)

Recap

1. Prevention of cardiovascular events; Markov decision process (MDP) with sparse data
2. Diagnosis of cancer; machine learning, selection bias, and class imbalance
3. Treatment of diabetes; MMDP, stochastic programming, ambiguity in risk models

Parting Thoughts

- Observational data present challenges and opportunities for Medicine and OR
- OR is still underutilized in medicine; there are many unexplored opportunities at the intersection of OR \& Analytics

Acknowledgments

Students
Christine Barnett, PhD
Weiyu Li, PhD
Selin Merdan, PhD
Daniel Otero, PhD
Erkin Otles, PhD
Lauren Steimle, PhD
Zheng Zhang, PhD

Collaborators

Rod Hayward, MD
David Kauffman, PhD
Mariel Lavieri, PhD
David C. Miller, MD
James E. Montie, MD
Todd Morgan, MD
Jeremy Sussman, MD

Brian Denton

Industrial and Operations Engineering
University of Michigan

btdenton@umich.edu

Find these slides and related articles on my website

[^0]: * Grundy, S. M. et al. (2018). 2018 AHA/ACC Guideline on the Management of Blood Cholesterol. American College of Cardiology 139 (25):e1082-e1143.

