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Healthcare Data

Randomized Controlled Trials

Observational Data: Patient data 
collected through observations of 
the natural healthcare delivery 
process during routine medical 
care. 



▪ Demographics: age, sex, race, ethnicity, geography,…

▪ Encounters: blood pressure, weight, symptoms,…

▪ Labs: cholesterol, blood sugar, creatinine,…

▪ Procedures: biopsy, endoscopy, imaging,…

▪ Insurance claims: health services, prescription refills,…

Observational Data



A Whirl-Wind of Problems (Opportunities?)

Selection 
Bias

Unmeasured 
Confounders

Ambiguity

Effects of 
Measurement

Missing Data

Operations 
Research 
Models



Key Points

1. Prevention

2. Diagnosis

3. Treatment

Three Examples of OR & Analytics in Medicine



Key Points

1. Prevention

 Setting: Prevention of cardiovascular disease

 OR Challenge: sequential decisions under uncertainty with 

sparse data



1 in 3 deaths are due to cardiovascular disease (CVD) 

Heart Disease and Stroke Statistics - 2021 Update. American Heart Association 

Percentage of people at 
risk of CVD in the U.S.

48%

Annual cost of 
CVD in the U.S.

$407 Billion



Cholesterol monitoring recommendations vary from 3 
months to 6 years between testing

American College of 
Cardiology (ACC) Policy *

Age:
• Under 75: 4 to 6 years
•  Over  75: 1 to 2 years

On treatment: 3 to 12 months

* Grundy, S. M. et al. (2018). 2018 AHA/ACC Guideline  on  the  Management  of  Blood Cholesterol. American College 
of Cardiology 139 (25):e1082–e1143.



Should CVD risk factors be used to recommend 
cholesterol screening?

• Cholesterol
• Blood pressure
• Age
• Race
• Sex
• Smoking habits
• Treatment

10-year risk of a 
heart attack or stroke

Physician’s Decision: when to recommend 
the patient return for cholesterol screening

Risk Calculator



Finite horizon Markov Decision Process to maximize 
expected societal rewards

Decision epochs: 𝑡

40-year decision horizon with quarterly decision epochs

Static and dynamic risk factors, health outcomes

States: 𝑠𝑡

Cholesterol, blood pressure, risk of CVD 

Transition probabilities: 𝑝𝑡(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

When the patient is advised to have next cholesterol test

Actions: 𝑎𝑡

Expected societal benefits and costs

Rewards: 𝑟𝑡(𝑠𝑡 , 𝑎𝑡)

Optimal Policy

State: 𝑠𝑡   Action: 𝑎𝑡 
 
(Chol, BP, Age…)   next Chol test 

  

(Bellman’s Equations)



For complete data, transition probabilities are based on 
state transition frequency

CHOL

BP BP BP BP

CHOL

BP

CHOLCHOLCHOL

𝑆𝑖𝑗 ≔ Number of observations from state 𝑖 to state 𝑗 in one epoch.

𝑃𝑖𝑗 =
𝑆𝑖𝑗

σ𝑘 𝑆𝑖𝑘

Fraction of 𝑆𝑖𝑗 over all observations of transitions from state 𝑖.

time



In reality, observational data are sparse

Chol Chol

BP BP BP BP

Appointment
+ Chol Test

Appointment Appointment
+ Chol Test

Appointment

time

BP = Blood Pressure;  Chol = Cholesterol



E-M Algorithm estimates transition probabilities for 
unequally spaced data

VA 
EHR

epoch

E - Step

Markov 
Chain M - Step

epoch

Dempster AP, Laird NM, Rubin DB (1978). Maximum likelihood from incomplete data via the EM algorithm. Journal of 

the Royal Statistical Society, 39(1):1-22.



E - Step

M - Step

𝑂𝑢𝑣𝑤 ≔ Number of observations from 
state 𝑢 to state 𝑣 in 𝒘 epochs.

𝑃𝑖𝑗(𝑘) =
𝑆𝑖𝑗(𝑘)

σ𝑙 𝑆𝑖𝑙(𝑘)

𝑆𝑖𝑗(𝑘) ≔ 𝑆𝑖𝑗 in iteration 𝑘

Observations in 𝑤Observations in 𝑤 − 𝑙

𝑖
𝑗𝑢 𝑣

Iterative estimation of transition probabilities using EM 
Algorithm

𝑃𝑖𝑗𝑙,𝑢𝑣𝑤 = Probability that a transition between 𝑖 

and 𝑗 occurs in 𝑙 epochs given the observations.

Yeh, H.W., et al (2010). Estimating transition probabilities for ignorable intermittent missing data in a discrete-time Markov 
chain. Communications in Statistics: Simulation and Computation 39(2):433–448.



Finite horizon Markov Decision Process to maximize 
expected societal rewards

Decision epochs: 𝑡

40-year decision horizon with quarterly decision epochs

Static and dynamic risk factors, health outcomes

States: 𝑠𝑡

Cholesterol, blood pressure, risk of CVD 

Transition probabilities: 𝑝𝑡(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

When the patient is advised to have next cholesterol test

Actions: 𝑎𝑡

Expected societal benefits and costs

Rewards: 𝑟𝑡(𝑠𝑡 , 𝑎𝑡)

Optimal Policy

State: 𝑠𝑡   Action: 𝑎𝑡 
 
(Chol, BP, Age…)   next Chol test 

  

(Bellman’s Equations)



Optimal recommendations depend on the patient’s age, 
race, sex, and CVD risk

White men Black men

More appointments compared 
to white men. 

White women

Fewer appointments compared 
to white men.

Younger 
patients

More 
appointments 
compared to 

ACC Guideline 

Recommendations depends 
on the patient’s age and 

CVD risk

Overall patient groups: 

Otero-Leon, D, Lavieri, M., Denton, B., Sussman, J., Hayward, R. "Monitoring policy in the context of preventive 

treatment of cardiovascular disease." Health Care Management Science 26, no. 1 (2023): 93-116.



Key Points

2. Diagnosis

 Setting: Imaging to detect metastatic cancer in 

patients diagnosed with prostate cancer

 OR Challenge: machine learning, selection bias, 

class imbalance

 



Imaging modalities to detect metastases in newly 

diagnosed prostate cancer patients

Bone Scan (BS)

▪ Detect bone metastasis

Computed Tomography (CT)

▪ Detects lymph node metastasis



Harms of not imaging

▪ Metastatic cancer may go undetected

▪ Missed diagnoses subject patients to 

unnecessary treatments (e.g., radical 

prostatectomy)

▪ Appropriate treatment (e.g., chemotherapy) 

is delayed



Harms of imaging

▪ Potentially harmful radiation exposure

▪ Incidental findings that require painful and risky follow-up 

procedures (e.g., bone biopsy)

▪ Blocks access to imaging resources for other patients and 

unnecessarily increases healthcare costs



How can risk factors for metastatic cancer help decide 

which patients to recommend for imaging?

▪ Age

▪ Race and ethnicity

▪ Biomarkers

▪ Pathology 

▪ Clinical tumor stage (e.g., T1a/b/c, T2a/b/c, T3/4) 

Physician’s Decision: when to recommend imaging 
for patients newly diagnosed with prostate cancer



Selection bias

Entire patient population Patients who received imaging

Patients who did not 
receive imaging

Metastatic Cancer

No Metastatic Cancer



Effects of selection bias

Uncorrected Bias-corrected

Guidelines (G)

Sensitivity Specificity Sensitivity Specificity

Bone scan
 
  EAU 97.9 33.4 84.5 75.7
AUA 97.9 43.5 81.2 82.0

CT scan
 
  EAU 98.4 36.5 89.9 74.4

AUA 96.8 49.2 87.2 82.5

Begg, C. B., Greenes, R. A. "Assessment of diagnostic tests when disease verification is subject to selection 

bias,” Biometrics, 39:207, 1983.

EAU: European Association of Urology;   AUA: American Urology Association



Effects of verification bias

Uncorrected Bias-corrected

Guidelines (G)

Sensitivity Specificity Sensitivity Specificity

Bone scan
 
  EAU 97.9 33.4 84.5 75.7
AUA 97.9 43.5 81.2 82.0

CT scan
 
  EAU 98.4 36.5 89.9 74.4

AUA 96.8 49.2 87.2 82.5

Begg, C. B., Greenes, R. A. "Assessment of diagnostic tests when disease verification is subject to selection 

bias,” Biometrics, 39:207, 1983.



Correcting for selection bias

Estimate sensitivity and specificity based on the entire population:

𝑃 𝐺 + 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑃𝑟𝑒𝑠𝑒𝑛𝑡) =
𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐺 + 𝑃(𝐺+)

𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑃𝑟𝑒𝑠𝑒𝑛𝑡

𝑃 𝐺 − 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝒏𝒐𝒕 𝑃𝑟𝑒𝑠𝑒𝑛𝑡) =
𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝒏𝒐𝒕 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐺 − 𝑃(𝐺−)

𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝒏𝒐𝒕 𝑃𝑟𝑒𝑠𝑒𝑛𝑡

Main Assumptions: Data missing at random; Factors considered by the guideline are 

the only factors that influence imaging decisions.

Begg, C. B., Greenes, R. A. "Assessment of diagnostic tests when disease verification is subject to selection bias,” Biometrics, 

39:207, 1983.



Guideline optimization – which patients should 

be imaged?

Two important challenges:

• Learning from unlabeled data

– Not all patients receive imaging at diagnosis

• Learning from imbalanced data

– A minority of patients have metastatic cancer

To address these challenges, we combined semi-supervised and 
cost-sensitive learning



Cost-sensitive Laplacian Kernel Logistic Regression

Higher cost on missing 
metastatic cancers

Avoid 
overfitting

Extract information 
from unimaged patients



Optimized imaging guideline performance for 

varying 𝛿

9%

8%

7%

6%

5%

4%

3%

2%

1%
AUA

200 400 600 800 1,000

Number of negative studies 
per 1,000 men

EAU    
2%

     1%

BS guideline design                        CT scan guideline design

6%

5%

4%

3%
AUA

EAU

200 400 600 800 1,000

Number of negative studies 
per 1,000 men

Percentage of 
patients with 
missed metastatic 
cancer



Michigan state-wide decrease in imaging

5%

10%

15%

20%

Target=10%

11%***

***p-value < 0.001

14.7%***

6.3%
7.6%

Imaging rates for 
patients not 
recommended by 
the guideline

CT ScanBone Scan

After

Before

Merdan, S., Barnett, C., Miller, D.C., Montie, J.E., Denton, B.T. “Data Analytics for Optimal Detection of 

Metastatic Prostate Cancer,” Operations Research, 69 (3), 774-794, 2021



Key Points
3. Treatment

 Setting: Treatment of Type 2 diabetes

 OR Challenge: ambiguity in risk estimates; 

stochastic integer programming



Markov decision process sequence of steps

Markov Process
𝑃 𝑎𝑡

Decision-Maker’s Policy
𝜋 𝑠𝑡

State
 𝑠𝑡

Action
 𝑎𝑡

Statins
Fibrates
ACE Inhibitors
ARBs
Beta Blockers
Thiazide



Well-established clinical studies give conflicting 
estimates about CVD risk

17.8%



Multi-model Markov Decision Process notation

Generalizes a standard Markov decision process

▪ States, 𝒮 ≡ {1, … , 𝑆}

▪ Decision epochs, 𝒯 ≡ {1, … , 𝑇}

▪ Actions, 𝒜 ≡ {1, … , 𝐴}

▪ Rewards, 𝑅 ∈ ℝ𝑆×𝐴×𝑇

Finite set of models,  ℳ = 1, … , |ℳ|

▪ Model 𝑚: An MDP (𝒮, 𝒜, 𝒯, 𝑅, 𝑃𝑚)

▪ Transition probabilities 𝑃𝑚 are model-specific

▪ Model weights: 𝜆1, 𝜆2, … , 𝜆|ℳ|

Steimle, L. N., Kaufman, D.L., and Denton B.T.  “Multi-model Markov Decision Processes.” IISE Transactions, 2021.



The weighted value problem seeks a single 
policy (𝜋) that performs across all MDPs

Performance of policy 𝜋 in model 𝑚:

𝑣𝑚 𝜋 =  𝔼𝜋,𝑃𝑚
෍

𝑡=1

𝑇

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝑟𝑇+1(𝑠𝑇+1)

Weighted value problem:

 𝑊∗= max
𝜋∈Π

෍

𝑚∈ℳ

 

𝜆𝑚𝑣𝑚 𝜋



The weighted value problem is hard

The MMDP is a special case of a partially-observable MDP. 

Proposition: The optimal policy may be history-dependent. 

Proof by contradiction

Proposition: In general, the Weighted Value Problem is PSPACE-hard.

Reduction from Quantified Satisfiability

MDP MMDP POMDP



MMDPs can be formulated as two-stage stochastic 
integer program

𝜋

Performance of policy 𝜋 in model 1

Performance of policy 𝜋 in model 2

Performance of policy 𝜋 in model |ℳ|

⋮

Stochastic program MMDP

Scenarios Model of MDP

Binary first-stage decision variables Policy 

Continuous second-stage decision variables MDP model value functions

𝜆1

𝜆2

𝜆|ℳ|



Multi-model Markov decision process

▪ 4,096 states

▪ 64 actions: combinations of medication

▪ 40 decision epochs

▪ 2 models

Case study data

▪ Longitudinal data from Mayo Clinic

▪ Framingham, ACC risk calculators

▪ Disutilities from medical literature

☺  

Death

Heart 
Attack

Stroke

Example: treatment for cardiovascular disease 
for patients with type 2 diabetes

Mason, J. E., Denton, B. T., Shah, N. D., & Smith, S. A. (2014). Optimizing the simultaneous management of blood 
pressure and cholesterol for type 2 diabetes patients. European Journal of Operational Research, 233(3), 727-738.



A comparison of  MMDP policy to MDP policies 
that ignore model ambiguity

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

Optimal Decisions for ACC Model

MMDP Decisions

Optimal Decisions for FHS Model



In some cases, ignoring ambiguity has relatively minor 
implications

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

1,881

Framingham Heart Study Model

Optimal Decisions for FHS Model



In some cases, ignoring ambiguity has relatively minor 
implications

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

1,881

Framingham Heart Study Model

Optimal Decisions for ACC Model

Optimal Decisions for FHS Model

1,789 (-3%)



In some cases, ignoring ambiguity has relatively minor 
implications

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

1,881

Framingham Heart Study Model

Optimal Decisions for ACC Model

MMDP Decisions

Optimal Decisions for FHS Model

1,841 (-2%)

1,789 (-3%)



But in other cases, ignoring ambiguity can have 
major implications

695.9 

679.3 (-2%)

561.5 (-19%)

Optimal Decisions for ACC Model

MMDP Decisions

Optimal Decisions for FHS Model

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

American College of Cardiology Model



Recent articles on MMDPs and extensions

Models for chronic disease to help resolve model ambiguity

1. Steimle, L., Kauffman, D., Denton, B.T., “Multi-model Markov Decision Processes: A New 

Method for Mitigating Parameter Ambiguity,” IISE Transactions, 53(10):1124-39,  2021

2. Steimle, L., Ahluwalia, V., Kamdar, C., Denton, B.T., “Decomposition Methods for Solving 

Multi-model Markov Decision Processes,” IISE Transactions, 53 (12), 1295-1310, 2021

A recent study that addresses ambiguity for active 

surveillance of prostate cancer:

 Li, W., Denton, B.T., “Multi-model Partially Observable Markov Decision

 Processes,” Working Paper, 2023, (available on Optimization Online)



Key Points

1. Prevention of cardiovascular events; Markov decision 

process (MDP) with sparse data 

2. Diagnosis of cancer; machine learning, selection bias, and 

class imbalance

3. Treatment of diabetes; MMDP, stochastic programming, 

ambiguity in risk models

Recap



Key Points

▪ Observational data 

present challenges and 

opportunities for Medicine 

and OR 

▪ OR is still underutilized in 

medicine; there are many 

unexplored opportunities 

at the intersection of OR & 

Analytics

Parting Thoughts
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