
ADVANCED ANALYTICS FOR A BETTER WORLD

Brian Denton

University of Michigan
July 13, 2023

Keynote Address:
Healthcare Analytics: 
Leveraging Predictive and 
Prescriptive Methods to 
Prevent and Treat Diseases



Brian Denton is the Stephen M. Pollock Professor of Industrial and 

Operations Engineering and the Chair of the Department of 

Industrial and Operations Engineering at the University of 

Michigan. His research interests are in data analytics and data-

driven optimization under uncertainty with applications to 

medicine, public health, and healthcare delivery. He is a Professor 

in the Department of Urology (by courtesy) at Michigan Medicine 

and a member of the Institute for Healthcare Policy and Innovation 

and the Cancer Center at the University of Michigan. His research 

has been funded by the National Science Foundation, the Agency 

for Healthcare Research and Quality, the National Institutes of 

Health, the U.S. Department of Veterans Affairs, and industry 

research contracts. He is past President of the Institute for 

Operations Research and the Management Sciences (INFORMS), 

and he is an elected Fellow of INFORMS.



Healthcare Analytics: Predictive and Prescriptive 
Methods to Prevent and Treat Diseases

July 13, 2023

Brian Denton
Stephen M. Pollock Collegiate Professor
Department of Industrial and Operations Engineering
University of Michigan



OR in Medicine
Cancer Diabetes 

Kidney Disease Heart Disease 

Chronic Diseases



▪ Demographics: age, sex, race, ethnicity, geography,…

▪ Encounters: blood pressure, weight, symptoms,…

▪ Labs: cholesterol, blood sugar, creatinine,…

▪ Procedures: biopsy, endoscopy, imaging,…

▪ Insurance claims: health services, prescription refills,…

Observational Data



A Whirl-Wind of Problems (Opportunities?)

Selection 
Bias

Unmeasured 
Confounders

Ambiguity

Effects of 
Measurement

Missing Data

Operations 
Research 
Models



Key Points

1. Prevention

2. Diagnosis

3. Treatment

Three Examples of OR & Analytics in Medicine



Key Points

1. Prevention

 Setting: Prevention of cardiovascular disease

 OR Challenge: sequential decisions with sparse data



1 in 3 deaths are due to cardiovascular disease (CVD) 

Heart Disease and Stroke Statistics - 2021 Update. American Heart Association 

Percentage of people at 
risk of CVD in the U.S.

48%

Annual cost of 
CVD in the U.S.

$407 Billion



Cholesterol monitoring recommendations vary from 3 
months to 6 years between testing

American College of 
Cardiology (ACC) Policy *

Age:
• Under 75: 4 to 6 years
•  Over  75: 1 to 2 years

On treatment: 3 to 12 months

* Grundy, S. M. et al. (2018). 2018 AHA/ACC Guideline  on  the  Management  of  Blood Cholesterol. American College 
of Cardiology 139 (25):e1082–e1143.



Physicians use CVD risk factors to recommend screening

• Cholesterol
• Blood pressure
• Age
• Race
• Sex
• Smoking habits
• Treatment

10-year risk of a CVD 
event:  VA-ASCVD 

Calculator*

Decide when to recommend patient 
return for cholesterol screening

* Sussman, et al. (2017).  The Veterans Affairs Cardiac Risk Score. Medical Care 55 (9),864–870



For complete data, transition probabilities are based on 
state transition frequency

CHOL

BP BP BP BP

CHOL

BP

CHOLCHOLCHOL

𝑆𝑖𝑗 ≔ Number of observations from state 𝑖 to state 𝑗 in one epoch.

𝑃𝑖𝑗 =
𝑆𝑖𝑗

σ𝑘 𝑆𝑖𝑘

Fraction of 𝑆𝑖𝑗 over all observations of transitions from state 𝑖.



In reality, observational data are sporadic

LDL LDL

BP BP BP BP

Appointment Appointment

BP LDL • Blood pressure (BP), gathered at each physician encounter.
• LDL (Cholesterol), gathered based on physician recommendations.



EM Algorithm estimates transition probabilities for 
unequally spaced data

EHR

epoch

E - Step

Markov 
Chain M - Step

epoch

Yeh, H.W., et al (2010). Estimating transition probabilities for ignorable intermittent missing data in a discrete-time Markov 
chain. Communications in Statistics: Simulation and Computation 39(2):433–448.



Iterative estimation of transition probabilities using EM 
Algorithm

E - Step

M - Step 

𝑂𝑢𝑣𝑤 ≔ Number of observations 
from state 𝑢 to state 𝑣 in 𝒘 epochs.

𝑃𝑖𝑗
(𝑘)

=
𝑆𝑖𝑗

(𝑘)

σ𝑙 𝑆𝑖𝑙
(𝑘)

𝑆𝑖𝑗
(𝑘)

≔ 𝑆𝑖𝑗 in iteration 𝑘

Probability given 
the observations.

epoch



E - Step

M - Step

𝑂𝑢𝑣𝑤 ≔ Number observations from 
state 𝑢 to state 𝑣 in 𝒘 epochs.

𝑃𝑖𝑗(𝑘) =
𝑆𝑖𝑗(𝑘)

σ𝑙 𝑆𝑖𝑙(𝑘)

𝑆𝑖𝑗(𝑘) ≔ 𝑆𝑖𝑗 in iteration 𝑘

𝑃𝑖𝑗𝑙,𝑢𝑣𝑤 = Probability that a transition between 𝑖 

and 𝑗 occurs in 𝑙 epochs given the observations.

Observations in 𝑤Observations in 𝑤 − 𝑙
𝑢 𝑣

Iterative estimation of transition probabilities using EM 
Algorithm



E - Step

M - Step

𝑂𝑢𝑣𝑤 ≔ Number of observations from 
state 𝑢 to state 𝑣 in 𝒘 epochs.

𝑃𝑖𝑗(𝑘) =
𝑆𝑖𝑗(𝑘)

σ𝑙 𝑆𝑖𝑙(𝑘)

𝑆𝑖𝑗(𝑘) ≔ 𝑆𝑖𝑗 in iteration 𝑘

Observations in 𝑤Observations in 𝑤 − 𝑙

𝑖
𝑗𝑢 𝑣

𝑃𝑖𝑗𝑙,𝑢𝑣𝑤 = The different paths between 

     𝑤 − 𝑙 and 𝑤, where the patient went 
    from 𝑖 to 𝑗.

Iterative estimation of transition probabilities using EM 
Algorithm



Finite horizon MDP model, which maximizes societal 
rewards

Life expectancy after planning horizon

Terminal condition: 𝑟𝑇 𝑠𝑇

Decision epochs: 𝑡

40-year decision horizon with quarterly decision epochs

Demographic information, risk factors, and general health condition

States: 𝑠𝑡

Risk of CVD, treatment effects, and patient’s risk factors 

Transition probabilities: 𝑝𝑡(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

Number of months patient is advised to have another cholesterol test

Actions: 𝑎𝑡

Expected societal benefits and costs

Rewards: 𝑟𝑡(𝑠𝑡 , 𝑎𝑡)

Policy

State: 𝑠𝑡      Action: 𝑎𝑡 
 
(LDL, BP, age,…)       next test 
  



The MDP policy changes depending on the patient’s age, 
race, sex, and CVD risk.

White men

1.  

2.  

 

Black men

1.  

2. More appointments compared           
to white men. 

White women

1.  

2. Fewer appointments compared to 
white men.

Younger 
patients

More 
appointments

Depends on the 
patient’s age and 

CVD risk

Not a big 
difference

More 
appointments for 
treated patients

Overall patient groups: 

Otero-Leon, D, Lavieri, M., Denton, B., Sussman, J., Hayward, R. "Monitoring policy in the context of preventive 

treatment of cardiovascular disease." Health Care Management Science 26, no. 1 (2023): 93-116.



Key Points

2. Diagnosis

 Setting: Imaging to detect metastatic cancer

 OR Challenge: selection bias, class imbalance

 



Imaging modalities to detect metastatic 

prostate cancer

Bone Scan (BS)

▪ Detect bone metastasis

Computed Tomography (CT)

▪ Detects lymph node metastasis



Harms of not imaging

▪ Metastatic cancer may go undetected

▪ Missed diagnoses subject patients to 

unnecessary treatments (e.g., radical 

prostatectomy)

▪ Appropriate treatment (e.g., chemotherapy) 

is delayed



Harms of imaging

▪ Potentially harmful radiation exposure

▪ Incidental findings that require painful and risky follow-up 

procedures (e.g., bone biopsy)

▪ Blocks access to imaging resources for other patients and 

unnecessarily increases healthcare costs



Factors associated with a positive Bone Scan 

and CT Scan

▪ Age

▪ Race and ethnicity

▪ Prostate-specific antigen (PSA) (ng/ml)

▪ Gleason score (GS)

▪ Pathology 

▪ Clinical tumor stage (e.g., T1a/b/c, T2a/b/c, T3/4) 



Verification bias

Entire patient population Patients who received imaging

Patients who did not 
receive imaging



Effects of verification bias

Uncorrected Bias-corrected

Clinical guidelines

Sensitivity Specificity Sensitivity Specificity

Bone scan
 
  EAU 97.9 33.4 84.5 75.7
AUA 97.9 43.5 81.2 82.0
NCCN 97.9 40.8 82.3 80.9
Briganti’s CART 89.6 45.4 79.3 83.3

CT scan
 
  EAU 98.4 36.5 89.9 74.4

AUA 96.8 49.2 87.2 82.5

Begg, C. B., Greenes, R. A. "Assessment of diagnostic tests when disease verification is 

subject to selection bias,” Biometrics, 39:207, 1983.



Correcting for verification bias

Estimate sensitivity and specificity based on the entire population:

𝑃 𝐺 + 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑃𝑟𝑒𝑠𝑒𝑛𝑡) =
𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐺 + 𝑃(𝐺+)

𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑃𝑟𝑒𝑠𝑒𝑛𝑡

𝑃 𝐺 − 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝒏𝒐𝒕 𝑃𝑟𝑒𝑠𝑒𝑛𝑡) =
𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝒏𝒐𝒕 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐺 − 𝑃(𝐺−)

𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝒏𝒐𝒕 𝑃𝑟𝑒𝑠𝑒𝑛𝑡

Main Assumptions: Data missing at random; Factors considered by the guideline are 

the only factors that influence imaging decisions.

Begg, C.B., Greenes, R.A. Assessment of diagnostic tests when disease verification is subject to selection bias, Biometrics, 39 (207), 1983



Guideline optimization – which patients should 

be imaged?

Two important challenges:

• Learning from unlabeled data

– In practice not all patients receive imaging at diagnosis

• Learning from imbalanced data

– A minority of patients has metastatic cancer

To address these challenges, we combined:

• Semi-supervised learning

• Cost-sensitive learning



Cost-sensitive Laplacian Kernel Logistic Regression

Higher cost on missing 
metastatic cancers

Avoid 
overfitting

Extract information 
from unimaged patients

Merdan, S., Barnett, C., Miller, D.C., Montie, J.E., Denton, B.T. “Data Analytics for Optimal Detection of 

Metastatic Prostate Cancer,” Operations Research, 69 (3), 774-794, 2021



Optimized imaging guideline performance

9%

8%

7%

6%

5%

4%

3%

2%

1%
AUA

NCCN

Briganti

200 400 600 800 1,000

Number of negative studies 
per 1,000 men

EAU    
2%

     1%

BS guideline design                        CT scan guideline design

6%

5%

4%

3%
AUA

EAU

200 400 600 800 1,000

Number of negative studies 
per 1,000 men

Percentage of 
patients with 
missed metastatic 
cancer



MUSIC state-wide decrease in imaging

5%

10%

15%

20%

Target=10%

11%***

***p-value < 0.001

14.7%***

6.3%
7.6%

Imaging rates for 
patients not 
fitting the criteria

CT ScanBone Scan

After

Before



Key Points
3. Treatment

 Setting: Treatment of Type 2 diabetes

 OR Challenge: ambiguity in risk estimates



Markov decision process sequence of steps

Markov Process
𝑃 𝑎𝑡

Decision-Maker’s Policy
𝜋 𝑠𝑡

State
 𝑠𝑡

Action
 𝑎𝑡



Well-established clinical studies give conflicting estimates 
about CVD risk

17.8%



Robust optimization approach to ambiguity in MDPs

➢Decision-maker selects an action to maximize expected rewards

➢Adversary selects transition probabilities to minimize DM’s expected rewards

max
𝑎∈𝒜

min
𝑝𝑡(𝑠,𝑎)∈𝒫𝑡(𝑠,𝑎)

𝑟𝑡 𝑠, 𝑎 + σ𝑠′∈𝒮 𝑝𝑡 𝑠′ 𝑠, 𝑎 𝑣𝑡+1(𝑠)  

(s,a)-rectangularity property gives a tractable model by assuming the adversary 
can select each row independently

Nilim, A. and El Ghaoui, L. "Robust control of Markov decision processes with uncertain transition matrices." Operations Research 53.5 (2005): 780-798.
Iyengar, G. "Robust dynamic programming." Mathematics of Operations Research 30.2 (2005): 257-280.



Multi-model Markov Decision Process notation

Generalizes a standard Markov decision process

▪ State space, 𝒮 ≡ {1, … , 𝑆}

▪ Decision epochs, 𝒯 ≡ {1, … , 𝑇}

▪ Action space, 𝒜 ≡ {1, … , 𝐴}

▪ Rewards, 𝑅 ∈ ℝ𝑆×𝐴×𝑇

Finite set of models,  ℳ = 1, … , |ℳ|

▪ Model 𝑚: An MDP (𝒮, 𝒜, 𝒯, 𝑅, 𝑃𝑚)

▪ Transition probabilities 𝑃𝑚 are model-specific

▪ Model weights: 𝜆1, 𝜆2, … , 𝜆|ℳ|

Steimle, L. N., Kaufman, D.L., and Denton B.T.  “Multi-model Markov Decision Processes.” IISE Transactions, 2021.



The weighted value problem seeks a single policy that 
performs well in expectation

Performance of policy 𝜋 in model 𝑚:

𝑣𝑚 𝜋 =  𝔼𝜋,𝑃𝑚


𝑡=1

𝑇

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝑟𝑇+1(𝑠𝑇+1)

Weighted value problem:

 𝑊∗= max
𝜋∈Π



𝑚∈ℳ

 

𝜆𝑚𝑣𝑚 𝜋



The weighted value problem is hard

The MMDP is a special case of a partially-observable MDP. 

Proposition: The optimal policy may be history-dependent. 

Proof by contradiction

Proposition: In general, the Weighted Value Problem is PSPACE-hard.

Reduction from Quantified Satisfiability

MDP MMDP POMDP



The connection between MMDP and two-stage 
stochastic integer program

𝜋

Performance of policy 𝜋 in model 1

Performance of policy 𝜋 in model 2

Performance of policy 𝜋 in model |ℳ|

⋮

Stochastic program MMDP

Scenarios Model of MDP

Binary first-stage decision variables Policy 

Continuous second-stage decision variables MDP model value functions

𝜆1

𝜆2

𝜆|ℳ|



Multi-model Markov decision process

▪ 4,096 states

▪ 64 actions: combinations of medication

▪ 40 decision epochs

▪ 2 models

Case study data

▪ Longitudinal data from Mayo Clinic

▪ Framingham, ACC risk calculators

▪ Disutilities from medical literature

☺  

Death

Heart 
Attack

Stroke

Example: treatment for cardiovascular disease for 
patients with type 2 diabetes

Mason, J. E., Denton, B. T., Shah, N. D., & Smith, S. A. (2014). Optimizing the simultaneous management of blood 
pressure and cholesterol for type 2 diabetes patients. European Journal of Operational Research, 233(3), 727-738.



A comparison of  MMDP policy to MDP policies that 
ignore model ambiguity

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

Optimal Decisions for ACC Model

MMDP Decisions

Optimal Decisions for FHS Model



In some cases, ignoring ambiguity has relatively minor 
implications

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

1,881

Framingham Heart Study Model

Optimal Decisions for FHS Model



In some cases, ignoring ambiguity has relatively minor 
implications

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

1,881

Framingham Heart Study Model

Optimal Decisions for ACC Model

Optimal Decisions for FHS Model

1,789 (-3%)



In some cases, ignoring ambiguity has relatively minor 
implications

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

1,881

Framingham Heart Study Model

Optimal Decisions for ACC Model

MMDP Decisions

Optimal Decisions for FHS Model

1,841 (-2%)

1,789 (-3%)



But in other cases, ignoring ambiguity can have major 
implications

695.9 

679.3 (-2%)

561.5 (-19%)

Optimal Decisions for ACC Model

MMDP Decisions

Optimal Decisions for FHS Model

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

American College of Cardiology Model



Recent articles on MMDPs and extensions

Models for chronic disease to help resolve model ambiguity

1. Steimle, L., Kauffman, D., Denton, B.T., “Multi-model Markov Decision Processes: A New 

Method for Mitigating Parameter Ambiguity,” IISE Transactions, 53(10):1124-39,  2021

2. Steimle, L., Ahluwalia, V., Kamdar, C., Denton, B.T., “Decomposition Methods for Solving 

Multi-model Markov Decision Processes,” IISE Transactions, 53 (12), 1295-1310, 2021

A recent study addresses this for active surveillance:

 Li, W., Denton, B.T., “Multi-model Partially Observable Markov Decision

 Processes,” Working Paper, 2023, (available on Optimization Online)



Key Points

1. Prevention of cardiovascular events; Markov decision 

process (MDP) with sparse data 

2. Diagnosis of cancer; machine learning, selection bias, and 

class imbalance

3. Treatment of diabetes; MMDP, stochastic programming, 

ambiguity in risk models

Recap



Key Points

▪ OR can improve medical 

decision-making and vice 

versa 

▪ OR is still underutilized in 

medicine and there are 

many unexplored 

opportunities

Parting Thoughts
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