Keynote Address: Healthcare Analytics: Leveraging Predictive and Prescriptive Methods to Prevent and Treat Diseases

Brian Denton

University of Michigan July 13, 2023

July 10-14 · SANTIAGO, CHILE

• asociación latino iberoamericana de investigación operativa

UNIVERSIDAD DE CHILI

Pontificia Universidad Católica de Chile

Brian Denton is the Stephen M. Pollock Professor of Industrial and Operations Engineering and the Chair of the Department of Industrial and Operations Engineering at the University of Michigan. His research interests are in data analytics and datadriven optimization under uncertainty with applications to medicine, public health, and healthcare delivery. He is a Professor in the Department of Urology (by courtesy) at Michigan Medicine and a member of the Institute for Healthcare Policy and Innovation and the Cancer Center at the University of Michigan. His research has been funded by the National Science Foundation, the Agency for Healthcare Research and Quality, the National Institutes of Health, the U.S. Department of Veterans Affairs, and industry research contracts. He is past President of the Institute for Operations Research and the Management Sciences (INFORMS), and he is an elected Fellow of INFORMS.

July 10-14 · SANTIAGO, CHILE

Healthcare Analytics: Predictive and Prescriptive Methods to Prevent and Treat Diseases

July 13, 2023

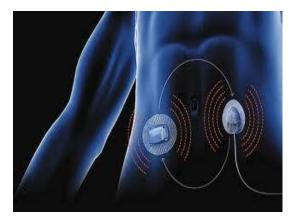
Brian Denton Stephen M. Pollock Collegiate Professor Department of Industrial and Operations Engineering University of Michigan

Chronic Diseases

Cancer

Kidney Disease

Diabetes

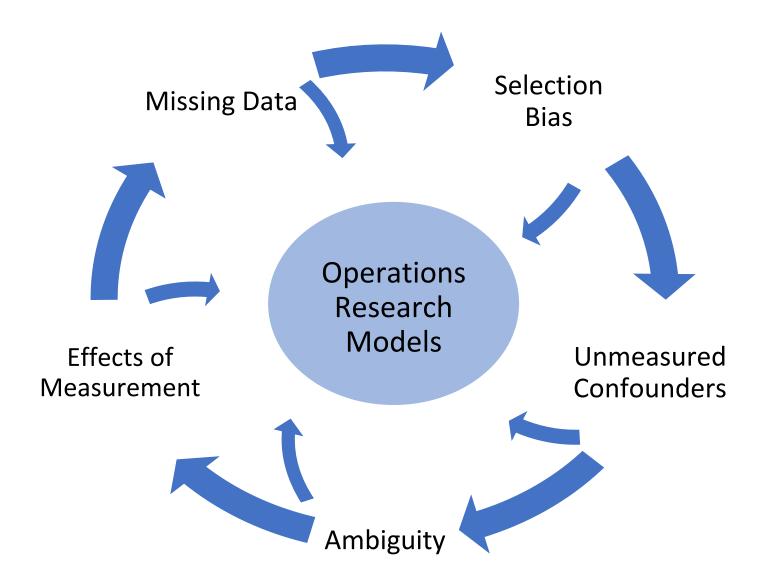


Heart Disease

Observational Data

- Demographics: age, sex, race, ethnicity, geography,...
- Encounters: blood pressure, weight, symptoms,...
- *Labs:* cholesterol, blood sugar, creatinine,...
- Procedures: biopsy, endoscopy, imaging,...
- Insurance claims: health services, prescription refills,...

A Whirl-Wind of Problems (Opportunities?)



Three Examples of OR & Analytics in Medicine

1. Prevention

2. Diagnosis

3. Treatment

1. Prevention

<u>Setting:</u> Prevention of cardiovascular disease

OR Challenge: sequential decisions with sparse data

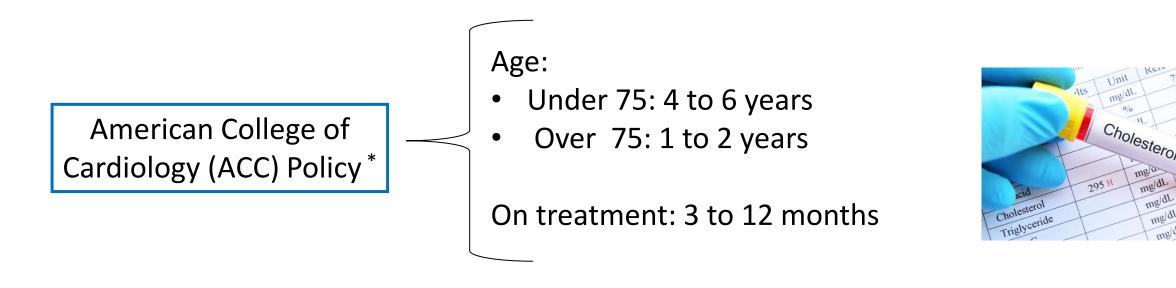
1 in 3 deaths are due to cardiovascular disease (CVD)

Percentage of people at risk of CVD in the U.S.

Annual cost of CVD in the U.S.

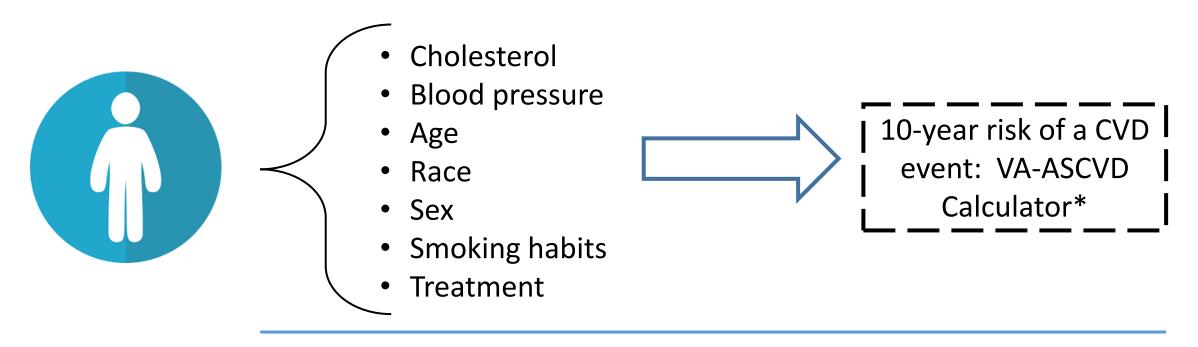
Heart Disease and Stroke Statistics - 2021 Update. American Heart Association

Cholesterol monitoring recommendations vary from 3 months to 6 years between testing



* Grundy, S. M. et al. (2018). 2018 AHA/ACC Guideline on the Management of Blood Cholesterol. American College of Cardiology 139 (25):e1082–e1143.

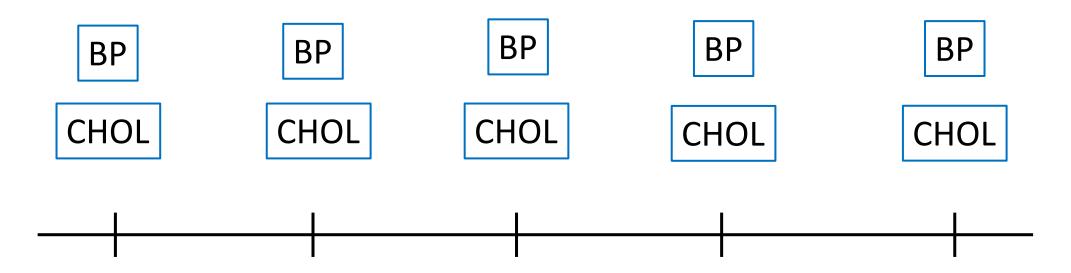
Physicians use CVD risk factors to recommend screening



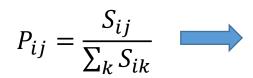
Decide when to recommend patient return for cholesterol screening

* Sussman, et al. (2017). The Veterans Affairs Cardiac Risk Score. Medical Care 55 (9),864–870

For complete data, transition probabilities are based on state transition frequency

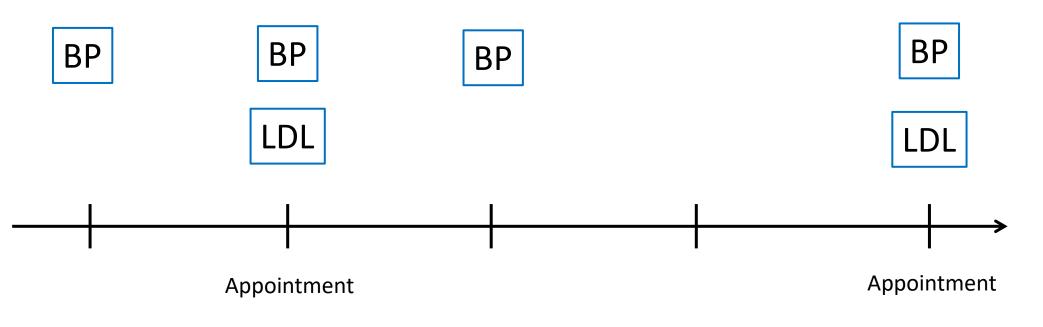


 $S_{ij} \coloneqq$ Number of observations from state *i* to state *j* in one epoch.



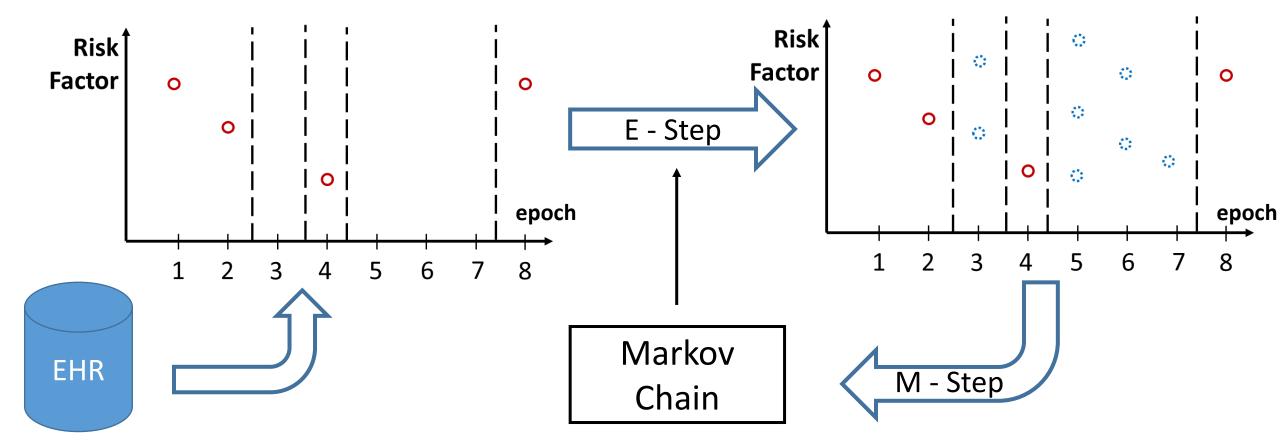
Fraction of S_{ij} over all observations of transitions from state i.

In reality, observational data are sporadic



- Blood pressure (BP), gathered at each physician encounter.
- LDL (Cholesterol), gathered based on physician recommendations.

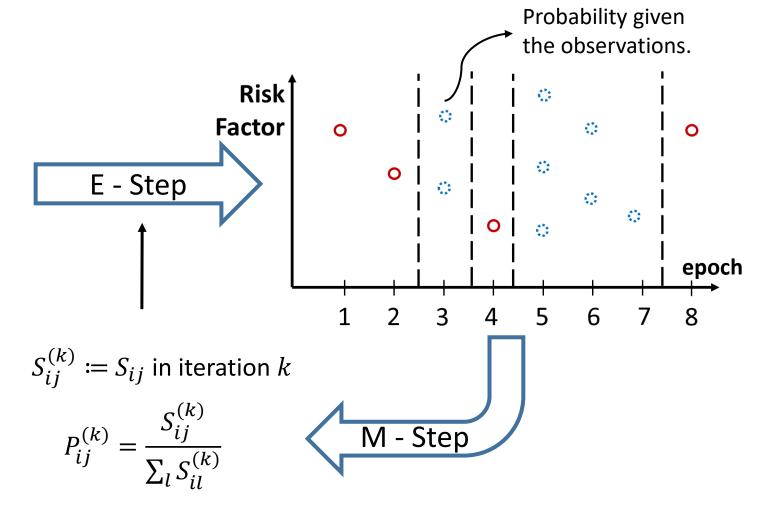
EM Algorithm estimates transition probabilities for unequally spaced data



Yeh, H.W., et al (2010). Estimating transition probabilities for ignorable intermittent missing data in a discrete-time Markov chain. Communications in Statistics: Simulation and Computation 39(2):433–448.

Iterative estimation of transition probabilities using EM Algorithm

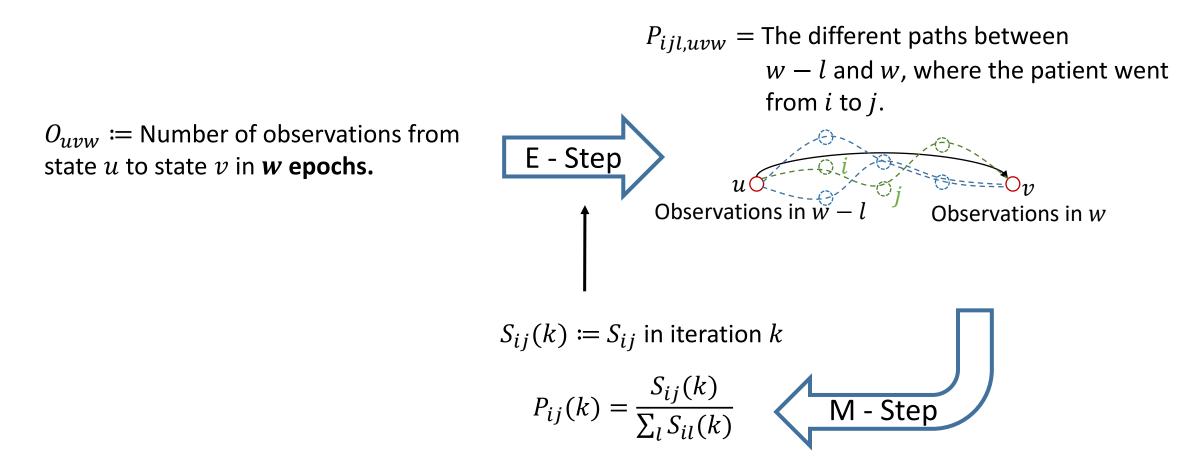
 $O_{uvw} \coloneqq$ Number of observations from state u to state v in w epochs.



Iterative estimation of transition probabilities using EM Algorithm

 $P_{ijl,uvw}$ = Probability that a transition between *i* and j occurs in l epochs given the observations. $O_{uvw} \coloneqq$ Number observations from E - Step state *u* to state *v* in *w* epochs. Observations in w-Observations in w $S_{ij}(k) \coloneqq S_{ij}$ in iteration k $P_{ij}(k) = \frac{S_{ij}(k)}{\sum_{l} S_{il}(k)}$ M - Step

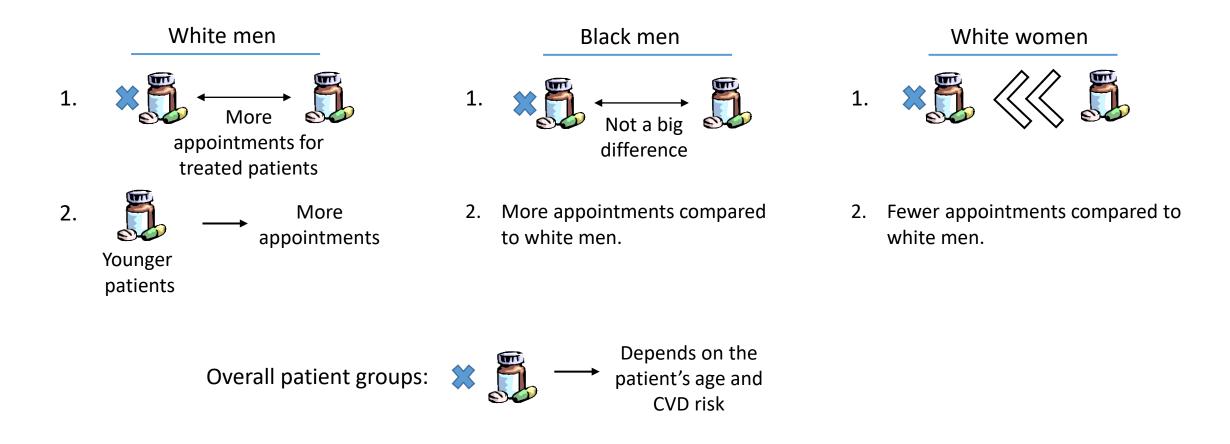
Iterative estimation of transition probabilities using EM Algorithm



Finite horizon MDP model, which maximizes societal rewards

Decision epochs: t]				
40-year decision horizon with quarterly decision epochs					
States: <i>s</i> _{<i>t</i>} Demographic information, risk factors, and general health condition		Policy			
Actions: a_t Number of months patient is advised to have another cholesterol test		State: s _t		Action: a_t	
Transition probabilities: $p_t(s_{t+1} s_t, a_t)$ Risk of CVD, treatment effects, and patient's risk factors		(LDL, BP, age,)		next test	
Rewards: $r_t(s_t, a_t)$					
Expected societal benefits and costs					
Terminal condition: $r_T(s_T)$ Life expectancy after planning horizon					

The MDP policy changes depending on the patient's age, race, sex, and CVD risk.



Otero-Leon, D, Lavieri, M., Denton, B., Sussman, J., Hayward, R. "Monitoring policy in the context of preventive treatment of cardiovascular disease." *Health Care Management Science* 26, no. 1 (2023): 93-116.

Setting: Imaging to detect metastatic cancer

OR Challenge: selection bias, class imbalance

Imaging modalities to detect metastatic prostate cancer

Bone Scan (BS)

Detect bone metastasis

Computed Tomography (CT)

Detects lymph node metastasis

Harms of <u>not</u> imaging

- Metastatic cancer may go undetected
- Missed diagnoses subject patients to unnecessary treatments (e.g., radical prostatectomy)

 Appropriate treatment (e.g., chemotherapy) is delayed

Harms of imaging

An initiative of the ABIM Foundation

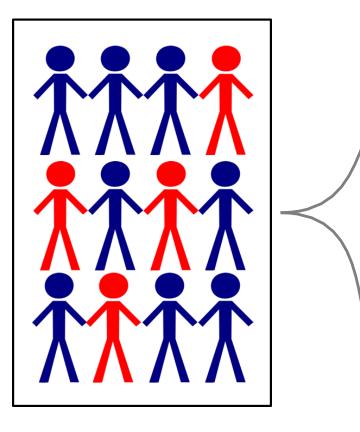
- Potentially <u>harmful radiation</u> exposure
- Incidental findings that require <u>painful and risky</u> follow-up procedures (e.g., bone biopsy)
- Blocks access to imaging resources for other patients and unnecessarily increases healthcare costs

Factors associated with a positive Bone Scan and CT Scan

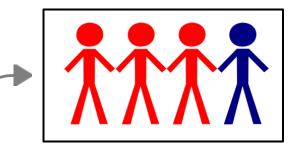
- Age
- Race and ethnicity
- Prostate-specific antigen (PSA) (ng/ml)
- Gleason score (GS)
- Pathology
- Clinical tumor stage (e.g., T1a/b/c, T2a/b/c, T3/4)

Verification bias

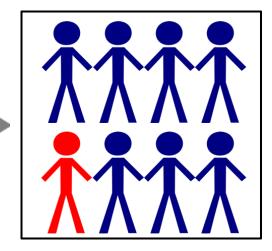
Entire patient population



Patients who received imaging



Patients who did not receive imaging



Effects of verification bias

Uncorrected

Bias-corrected

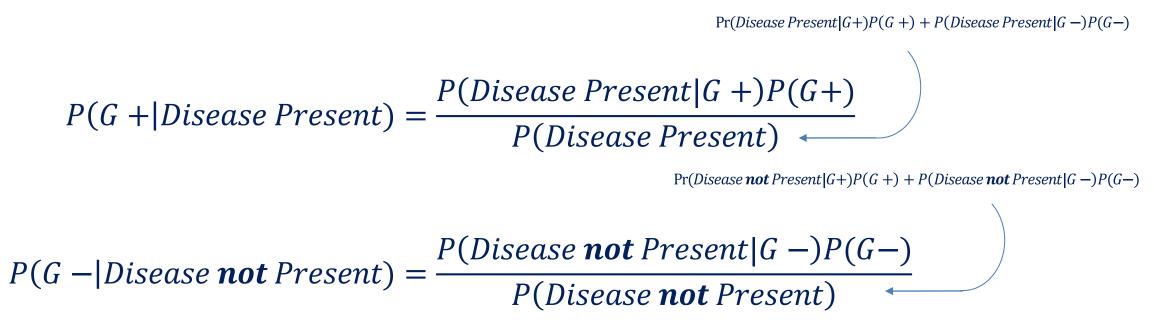
Sensitivity	Specificity	Sensitivity	Specificity
-------------	-------------	-------------	-------------

Clinical guidelines				
Bone scan				
EAU	97.9	33.4	84.5	75.7
AUA 🤍	97.9	43.5	81.2	82.0
NCCN	97.9	40.8	82.3	80.9
Briganti's CART	89.6	45.4	79.3	83.3
CT coop				
CT scan EAU	98.4	36.5	89.9	74.4
AUA	96.8	49.2	87.2	82.5

Begg, C. B., Greenes, R. A. "Assessment of diagnostic tests when disease verification is subject to selection bias," *Biometrics*, 39:207, 1983.

Correcting for verification bias

Estimate sensitivity and specificity based on the entire population:



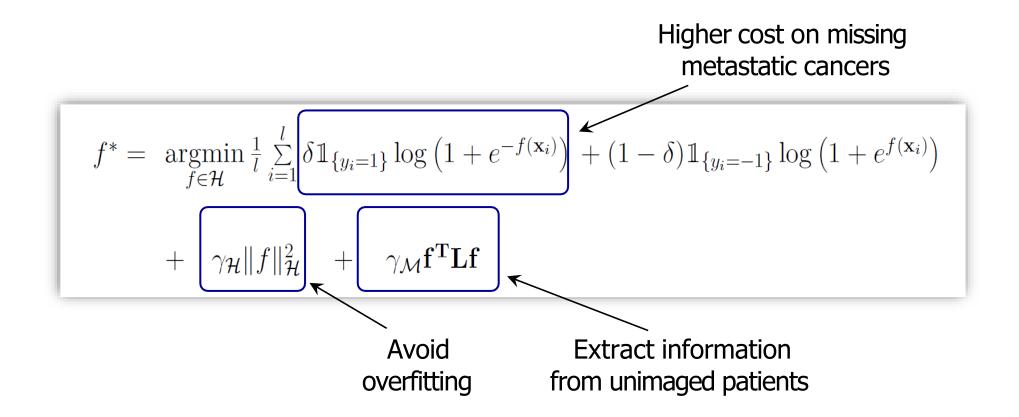
Main Assumptions: Data missing at random; Factors considered by the guideline are the only factors that influence imaging decisions.

Begg, C.B., Greenes, R.A. Assessment of diagnostic tests when disease verification is subject to selection bias, *Biometrics*, 39 (207), 1983

Guideline optimization – which patients should be imaged?

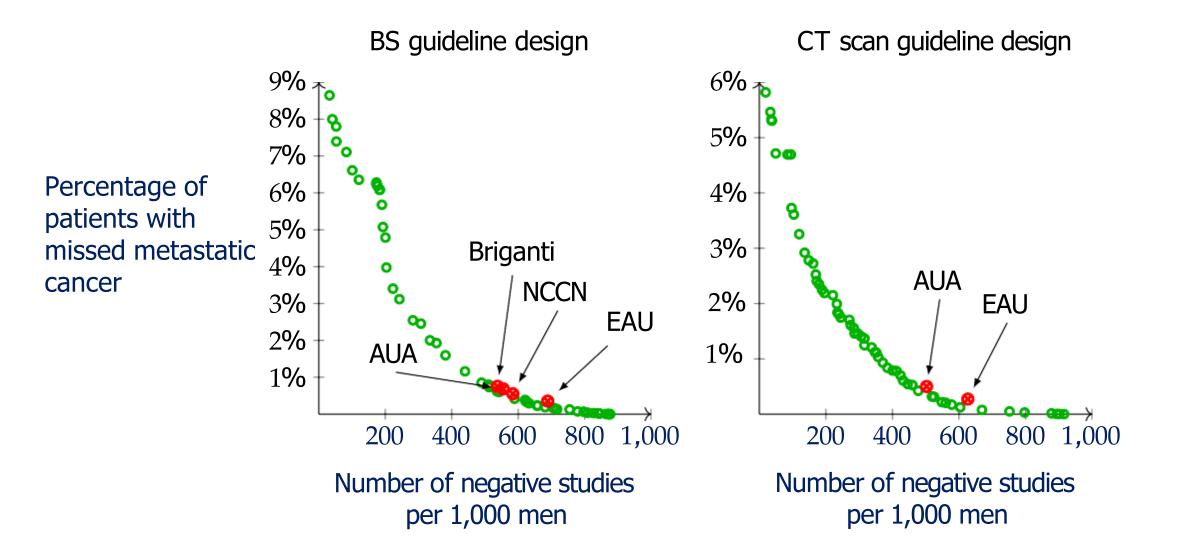
- Two important challenges:
 - Learning from <u>unlabeled data</u>
 - In practice not all patients receive imaging at diagnosis
 - Learning from imbalanced data
 - A minority of patients has metastatic cancer
- To address these challenges, we combined:
 - <u>Semi-supervised</u> learning
 - <u>Cost-sensitive</u> learning

Cost-sensitive Laplacian Kernel Logistic Regression

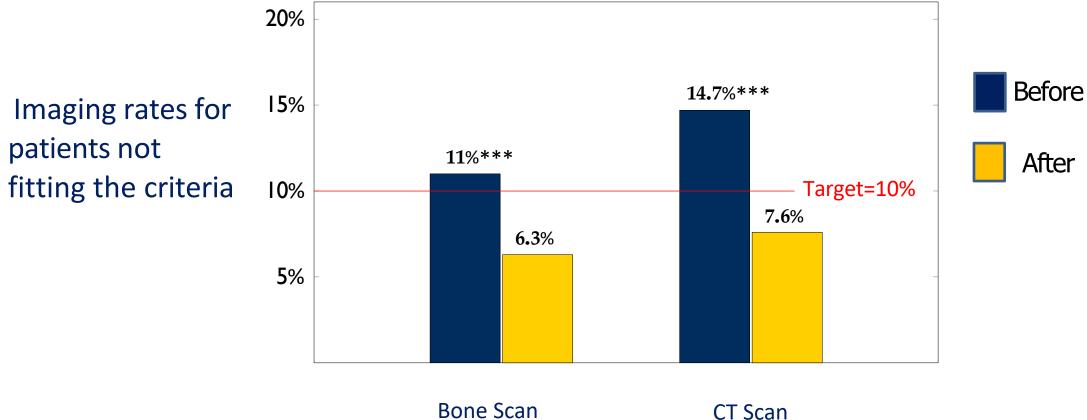


Merdan, S., Barnett, C., Miller, D.C., Montie, J.E., Denton, B.T. "Data Analytics for Optimal Detection of Metastatic Prostate Cancer," *Operations Research*, 69 (3), 774-794, 2021

Optimized imaging guideline performance



MUSIC state-wide decrease in imaging

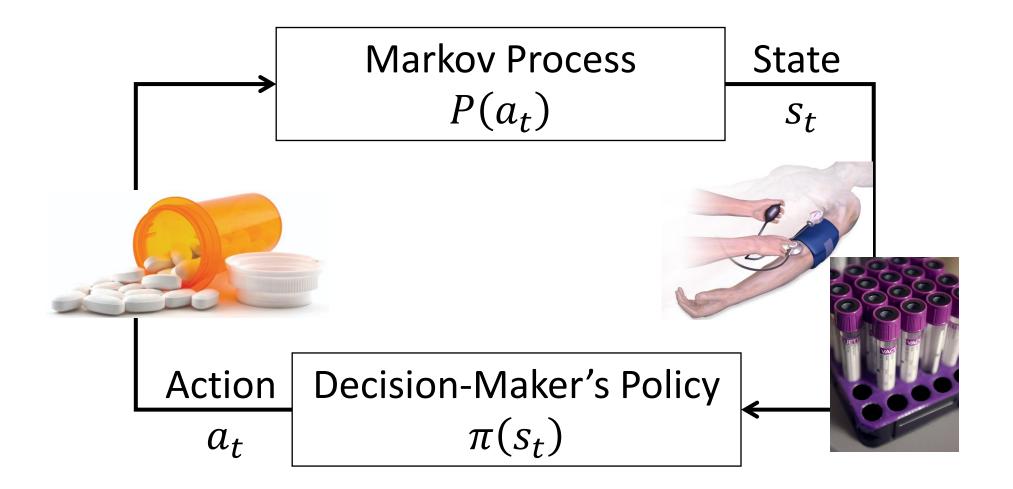


Bone Scan

Setting: Treatment of Type 2 diabetes

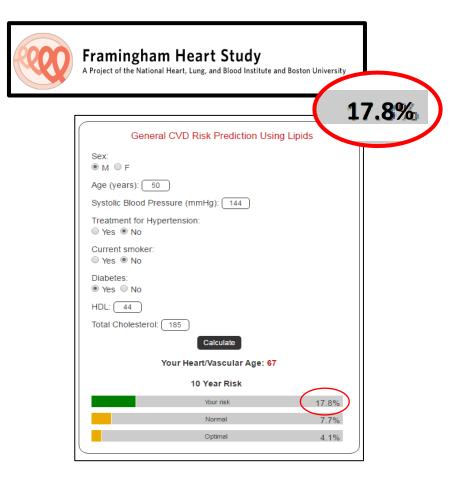
OR Challenge: ambiguity in risk estimates

Markov decision process sequence of steps



Well-established clinical studies give conflicting estimates about CVD risk

AMERICAN COLLEGE of CARDIOLOGY	, ASCVI	O Risk Estir		
MERICAN COLLEGE of COLLEGE of COLLEGE OF	D Risk Estimator Plus	Estimate Risk	3.2%	Advi
Current 10-Year ASCVD Risk	8.2%)	Previous 1 ASCVD Ris		
	Lifetime	ASCVD Risk 50%		
Patient Demog	raphics			
Current Age 50 Age must be between 40-79	Sex 🗸 Male	Race	African American	Other
Current Labs/E	zam			
Total Cholesterol (mg/aL) 185 Volue must be between 130 - 320	HDL Cholesterol (mg/dL) 44 Volue must be between 20 - 100	LDL Cholesterol (mg/dL) 80 Value must be between 30-300	Systolic Blood Pressure 144 Volue must be between 90-200	(mm of Hg)
Personal Histo	rv			
	- /			



Robust optimization approach to ambiguity in MDPs

Decision-maker selects an action to maximize expected rewards

>Adversary selects transition probabilities to minimize DM's expected rewards

$$\max_{a \in \mathcal{A}} \min_{p_t(s,a) \in \mathcal{P}_t(s,a)} \left\{ r_t(s,a) + \sum_{s' \in \mathcal{S}} p_t(s'|s,a) v_{t+1}(s) \right\}$$

(*s*,*a*)-*rectangularity property* gives a tractable model by assuming the adversary can select each row independently

Nilim, A. and El Ghaoui, L. "Robust control of Markov decision processes with uncertain transition matrices." *Operations Research* 53.5 (2005): 780-798. Iyengar, G. "Robust dynamic programming." *Mathematics of Operations Research* 30.2 (2005): 257-280.

Multi-model Markov Decision Process notation

Generalizes a standard Markov decision process

- State space, $S \equiv \{1, \dots, S\}$
- Decision epochs, $T \equiv \{1, \dots, T\}$
- Action space, $\mathcal{A} \equiv \{1, \dots, A\}$
- Rewards, $R \in \mathbb{R}^{S \times A \times T}$

Finite set of models, $\mathcal{M} = \{1, ..., |\mathcal{M}|\}$

- Model m: An MDP (S, A, T, R, P^m)
- Transition probabilities P^m are model-specific
- Model weights: $\lambda_1, \lambda_2, \dots, \lambda_{|\mathcal{M}|}$

The **weighted value problem** seeks a single policy that performs well in expectation

Performance of policy π in model m:

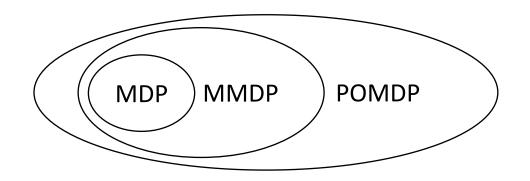
$$v^{m}(\pi) = \mathbb{E}^{\pi, P^{m}} \left[\sum_{t=1}^{T} r_{t}(s_{t}, a_{t}) + r_{T+1}(s_{T+1}) \right]$$

-

Weighted value problem:

$$W^* = \max_{\pi \in \Pi} \sum_{m \in \mathcal{M}} \lambda_m v^m(\pi)$$

The weighted value problem is hard

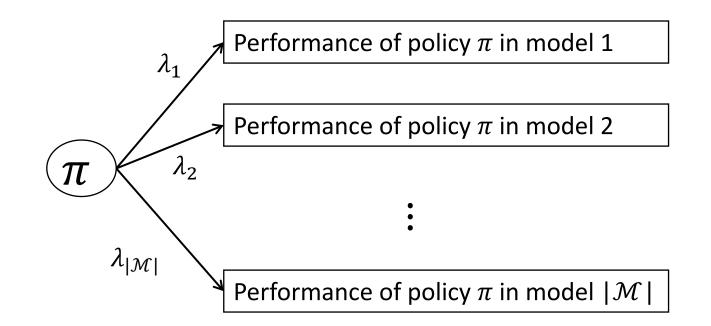


The MMDP is a special case of a partially-observable MDP.

Proposition: The optimal policy may be history-dependent. Proof by contradiction

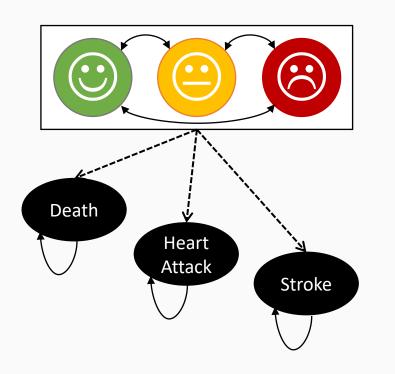
Proposition: In general, the Weighted Value Problem is PSPACE-hard. Reduction from *Quantified Satisfiability*

The connection between MMDP and two-stage stochastic integer program



MMDP
Model of MDP
Policy
MDP model value functions

Example: treatment for cardiovascular disease for patients with type 2 diabetes



Multi-model Markov decision process

- 4,096 states
- 64 actions: combinations of medication
- 40 decision epochs
- 2 models

Case study data

- Longitudinal data from Mayo Clinic
- Framingham, ACC risk calculators
- Disutilities from medical literature

Mason, J. E., Denton, B. T., Shah, N. D., & Smith, S. A. (2014). Optimizing the simultaneous management of blood pressure and cholesterol for type 2 diabetes patients. *European Journal of Operational Research*, 233(3), 727-738.

A comparison of MMDP policy to MDP policies that ignore model ambiguity

Quality-Adjusted Life Years Gained Over No Treatment, per 1000 Men

Optimal Decisions for FHS Model MMDP Decisions

Optimal Decisions for ACC Model

In some cases, ignoring ambiguity has relatively minor implications

Quality-Adjusted Life Years Gained Over No Treatment, per 1000 Men

Optimal Decisions for FHS Model

1,881

Framingham Heart Study Model

In some cases, ignoring ambiguity has relatively minor implications

Quality-Adjusted Life Years Gained Over No Treatment, per 1000 Men

Optimal Decisions for FHS Model 1,881

Optimal Decisions for ACC Model

1,789 (-3%)

Framingham Heart Study Model

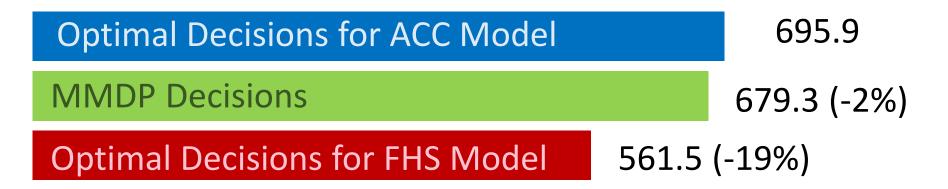
In some cases, ignoring ambiguity has relatively minor implications

Quality-Adjusted Life Years Gained Over No Treatment, per 1000 Men

Framingham Heart Study Model

But in other cases, ignoring ambiguity can have major implications

Quality-Adjusted Life Years Gained Over No Treatment, per 1000 Men



American College of Cardiology Model

Recent articles on MMDPs and extensions

Models for chronic disease to help resolve model ambiguity

- 1. Steimle, L., Kauffman, D., Denton, B.T., "Multi-model Markov Decision Processes: A New Method for Mitigating Parameter Ambiguity," IISE *Transactions*, 53(10):1124-39, 2021
- 2. Steimle, L., Ahluwalia, V., Kamdar, C., Denton, B.T., "Decomposition Methods for Solving Multi-model Markov Decision Processes," *IISE Transactions*, 53 (12), 1295-1310, 2021

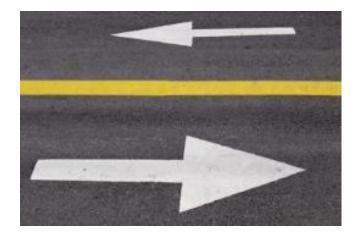
A recent study addresses this for active surveillance:

Li, W., Denton, B.T., "Multi-model Partially Observable Markov Decision Processes," Working Paper, 2023, (available on Optimization Online)

- 1. <u>Prevention</u> of cardiovascular events; Markov decision process (MDP) with sparse data
- 2. <u>Diagnosis</u> of cancer; machine learning, selection bias, and class imbalance
- 3. <u>Treatment</u> of diabetes; MMDP, stochastic programming, ambiguity in risk models

Parting Thoughts

 OR can improve medical decision-making and vice versa



 OR is still <u>underutilized</u> in medicine and there are many unexplored opportunities

Acknowledgments

Students

Christine Barnett, PhD

Weiyu Li, PhD

Selin Merdan, PhD

Daniel Otero, PhD

Erkin Otles, PhD

Lauren Steimle, PhD

Zheng Zhang, PhD

Collaborators

Rod Hayward, MD

David Kauffman, PhD

Susan Linsell, MSHA

David C. Miller, MD

James E. Montie, MD

Todd Morgan, MD

Jeremy Sussman, MD

MUSIC Collaborative

Brian Denton Industrial and Operations Engineering University of Michigan

btdenton@umich.edu

Find these slides and related articles on my website