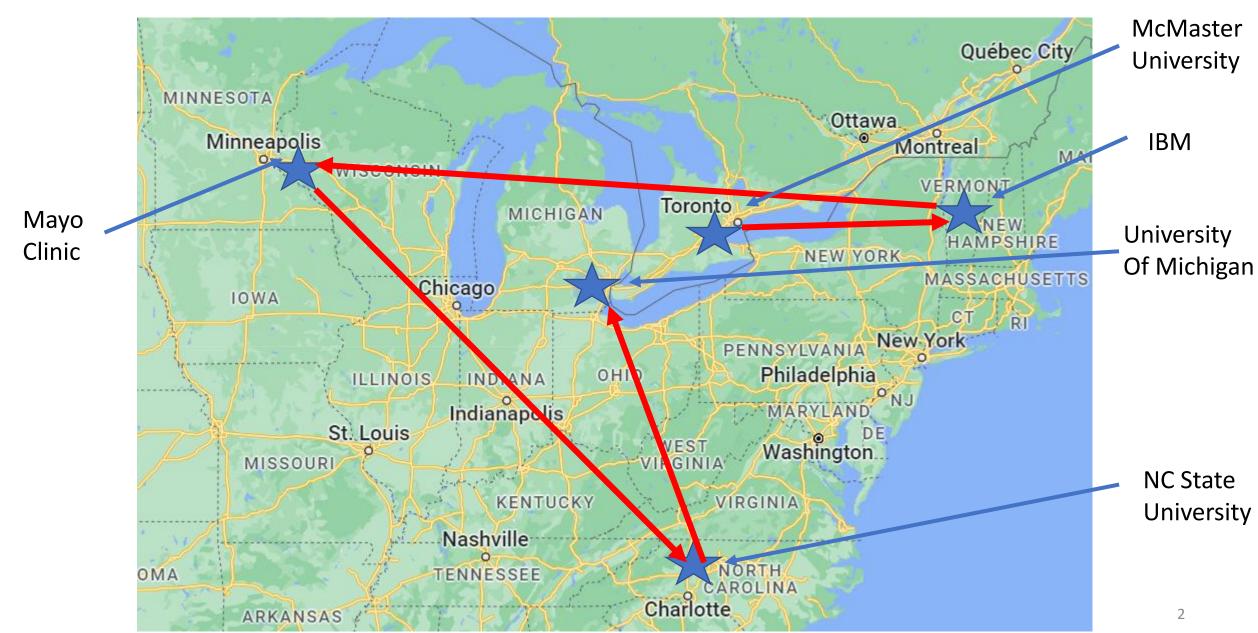
Optimization of Markov Decision Processes with Model Ambiguity

Brian Denton

Department of Industrial and Operations Engineering University of Michigan

(Work with Lauren Steimle, UM/GA Tech)

My background

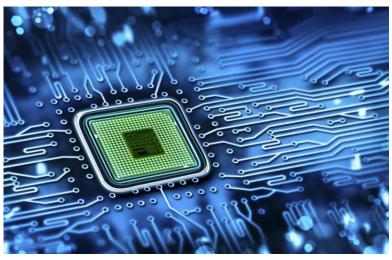


General Research Interests

Public Health

Supply Chain Management

Healthcare Operations



Scheduling

Sequential decision-making under uncertainty

Inventory management

Machine maintenance

Medical decision making

Prevention of cardiovascular disease (CVD) involves balancing the benefits and harms of treatment

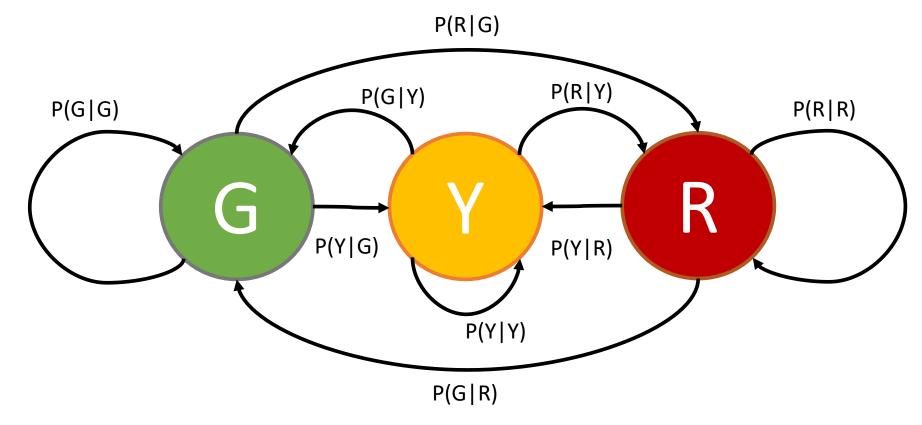
Uncertain Future Benefits

 Delay the onset of potentially deadly and debilitating heart attacks and strokes

Immediate harms

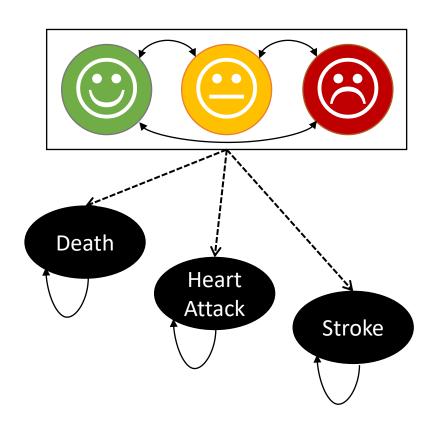
• Side effects (e.g., muscle pain, frequent urination)

Introduction to Markov Chains



- G, Y, and R, are *states*
- State transitions are governed by transition probabilities (P)
- Transitions occur at time points called decision epochs

Markov decision processes generalize Markov chains to include decisions

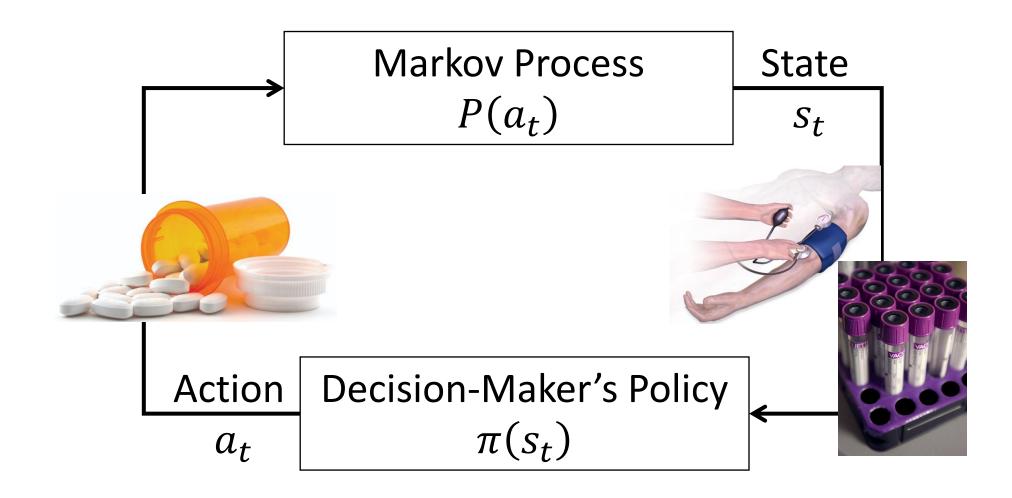


Health states

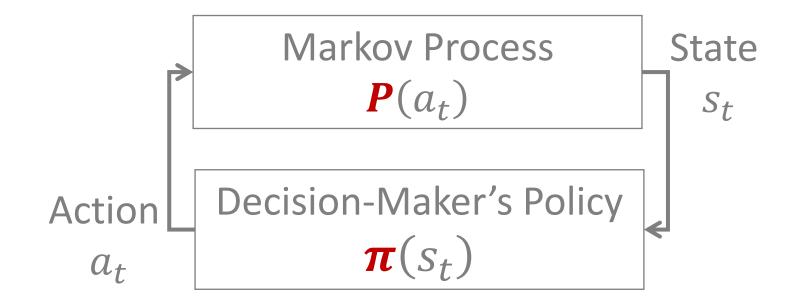
- Blood pressure levels
- Cholesterol levels
- Current medications

Steimle, L. N., & Denton, B. T. (2017). Markov decision processes for screening and treatment of chronic diseases. In *Markov Decision Processes in Practice* (pp. 189-222), Springer.

Markov decision process sequence of steps

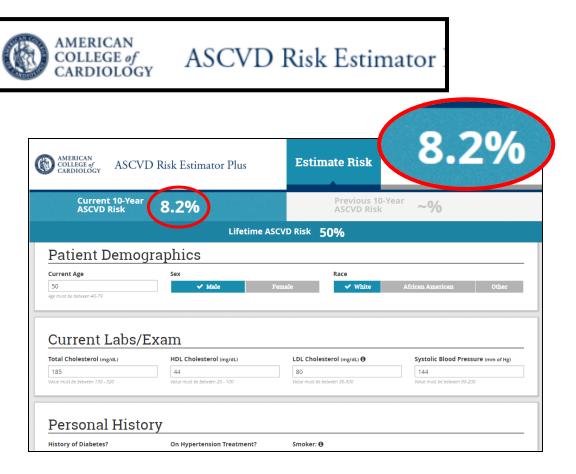


Markov decision process optimal policy



$$\max_{\pi \in \Pi} \left\{ \mathbb{E}^{\pi,P} \left[\sum_{t=1}^{T} r_t(s_t, a_t) + r_{T+1}(s_{T+1}) \right] \right\}$$

Clinical risk calculators are used to estimate a patient's risk



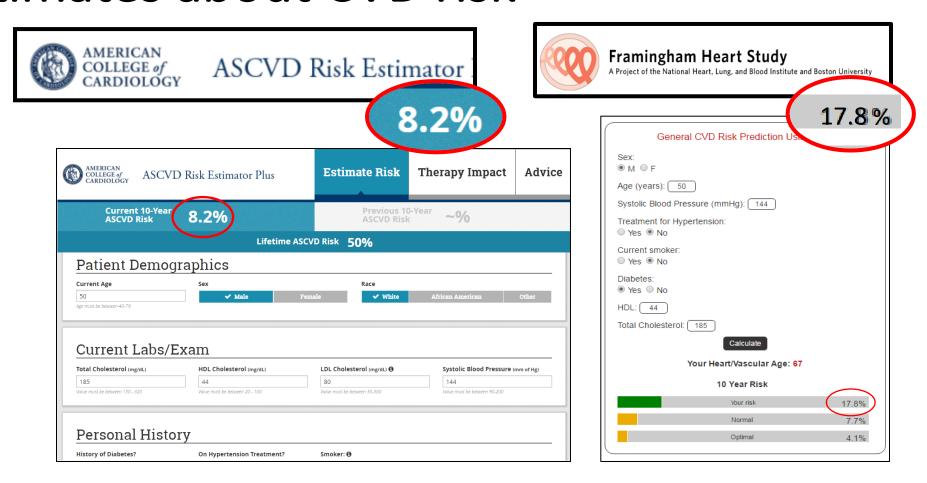
Inputs:

- Age
- Sex
- Race
- Cholesterol
- Blood Pressure
- History of Diabetes
- On Hypertensive Treatment
- Smoking status

Output:

Current 10-Year Risk

Well-established clinical studies give conflicting estimates about CVD risk



¹ Wilson et. al. Prediction of Coronary Heart Disease Using Risk Factor Categories. *Circulation*. 1998

^{2 2013} ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2014

Research Questions

How can we improve Markov decision processes to account for model ambiguity?

How much benefit is there really?

The remainder of this presentation

Branch-and-bound algorithms

Alternative ambiguity-aware formulations

Multi-Model MDPs have two layers of uncertainty

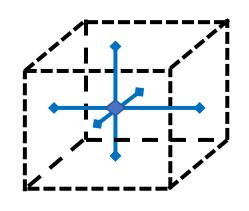
Optimal control of a stochastic system...

Markov decision processes

...under model ambiguity

Robust Markov decision processes

Early robust optimization approaches to MDPs with model parameter uncertainty



Simplest model: Assume transition probabilities for each state lie within some *ambiguity set*

e.g., Interval Model

Goal is to maximize worst-case performance

Interval model gives a tractable model for MDPs

Robust optimization approach to ambiguity in Markov decision processes can be modeled as a two-player zero-sum game

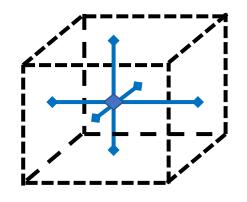
- Decision-maker selects an action to maximize expected rewards
- Adversary selects transition probabilities to minimize DM's expected rewards

$$\max_{a \in \mathcal{A}} \min_{p_t(s,a) \in P_t(s,a)} \left\{ r_t(s,a) + \sum_{s' \in \mathcal{S}} p_t(s'|s,a) v_{t+1}(s) \right\}$$

(s,a)-rectangularity property gives a tractable model based on the assumption the adversary can select each row independently

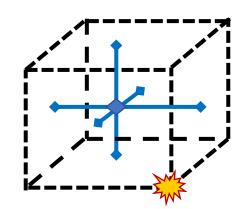
Nilim, A. and El Ghaoui, L. "Robust control of Markov decision processes with uncertain transition matrices." *Operations Research* 53.5 (2005): 780-798.

The interval model is computationally attractive, but has its drawbacks



Leads to overly-protective policies

➤ Optimizing for cases where all parameters take on worst-case values simultaneously



Transition matrices might lose known structure

Ambiguity is realized independently across states, actions, and/or decision epochs

Relaxing (s,a)-rectangularity makes the max-min problem NP-hard*

^{*}Wiesemann, Wolfram, Daniel Kuhn, and Berç Rustem. "Robust Markov decision processes." *Mathematics of Operations Research* 38.1 (2013): 153-183.

Multi-model Markov Decision Process notation

Generalizes a standard Markov decision process

- State space, $S \equiv \{1, ..., S\}$
- Decision epochs, $T \equiv \{1, ..., T\}$
- Action space, $A \equiv \{1, ..., A\}$
- Rewards, $R \in \mathbb{R}^{S \times A \times T}$

Finite set of models, $\mathcal{M} = \{1, ..., |\mathcal{M}|\}$

- Model m: An MDP (S, A, T, R, P^m)
- Transition probabilities P^m are model-specific
- Model weights: $\lambda_1, \lambda_2, ..., \lambda_{|\mathcal{M}|}$

The weighted value problem seeks a single policy that performs well in expectation

Performance of policy π in model m:

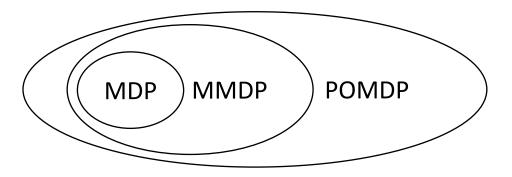
$$v^{m}(\pi) = \mathbb{E}^{\pi,P^{m}} \left[\sum_{t=1}^{T} r_{t}(s_{t}, a_{t}) + r_{T+1}(s_{T+1}) \right]$$

Weighted value of policy π :

$$W(\pi) = \sum_{m \in \mathcal{M}} \lambda_m v^m(\pi)$$

Weighted value problem: $W^* = \max_{\pi \in \Pi} W(\pi)$

The weighted value problem is hard



The MMDP is a special case of a partially-observable MDP.

Proposition: The optimal policy may be history-dependent.

Proof by contradiction

Proposition: In general, the Weighted Value Problem is PSPACE-hard.

Reduction from Quantified Satisfiability

Special case of an MMDP with deterministic Markov policies

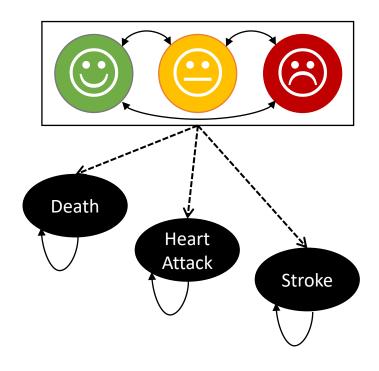
Proposition: There exists a deterministic policy that is optimal when restricting to Markov policies

Proposition: The Weighted Value Problem for Markov deterministic policies is NP-hard

Reduction from 3-CNF-SAT

Initially, we focused on finding near-optimal Markov deterministic policies, $\pi \in \Pi^{\text{MD}}$, using a polynomial time approximation.

Example: approximation algorithm for cardiovascular disease prevention MMDP



Multi-model Markov decision process

- 4,096 states
- 64 actions
- 40 decision epochs
- 2 models

Case study data

- Longitudinal data from Mayo Clinic
- Framingham, ACC risk calculators
- Disutilities from medical literature

We compared our approximation algorithm policy to policies that ignore model ambiguity

Quality-Adjusted Life Years Gained Over No Treatment, per 1000 Men

Optimal Decisions for FHS Model

MMDP Decisions

Optimal Decisions for ACC Model

In some cases, ignoring ambiguity has relatively minor implications

Quality-Adjusted Life Years Gained Over No Treatment, per 1000 Men

Optimal Decisions for FHS Model

1,881

Framingham Heart Study Model

In some cases, ignoring ambiguity has relatively minor implications

Quality-Adjusted Life Years Gained Over No Treatment, per 1000 Men

Optimal Decisions for FHS Model

1,881

Optimal Decisions for ACC Model

1,789 (-3%)

Framingham Heart Study Model

In some cases, ignoring ambiguity has relatively minor implications

Quality-Adjusted Life Years Gained Over No Treatment, per 1000 Men

Optimal Decisions for FHS Model	1,881
MMDP Decisions	1,841 (-2%)
Optimal Decisions for ACC Model	1,789 (-3%)

Framingham Heart Study Model

But in other cases, ignoring ambiguity can have major implications

Quality-Adjusted Life Years Gained Over No Treatment, per 1000 Men

Optimal Decisions for ACC Model 695.9

MMDP Decisions 679.3 (-2%)

Optimal Decisions for FHS Model 561.5 (-19%)

American College of Cardiology Model

Observations

 MMDPs are difficult to solve computationally, but a polynomialtime approximation algorithm can provide near-optimal solutions in many instances

 Based on a CVD case study, it can be important to address ambiguity when there are multiple plausible models

The remainder of this presentation

Multi-model Markov decision processes

Branch-and-bound algorithms

Alternative ambiguity-aware formulations

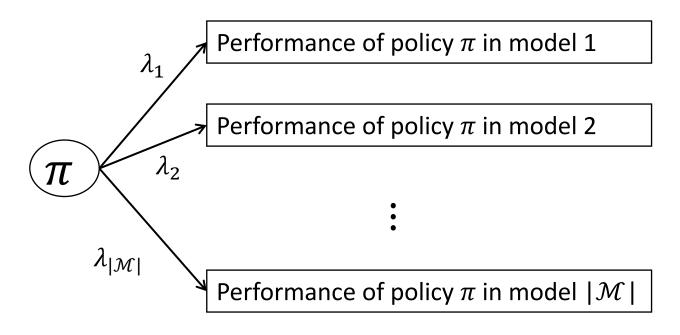
Approaches to solve the weighted value problem

Mixed-integer programming (MIP)

 Branch-and-cut on a 2-stage stochastic integer program formulation

 Custom branch-and-bound that exploits MMDP structure

The connection between MMDP and two-stage stochastic program



Stochastic program	MMDP
Scenarios	Model of MDP
Binary first-stage decision variables	Policy
Continuous second-stage decision variables	MDP model value functions

The MMDP is largely decomposable but Big-Ms in logic-based constraints cause trouble

Big-M's in logic-based constraints cause difficulty for standard stochastic programming methods

- ➤ Weak linear programming relaxation for the MIP
- ➤ Weak optimality cuts in Benders Decomposition

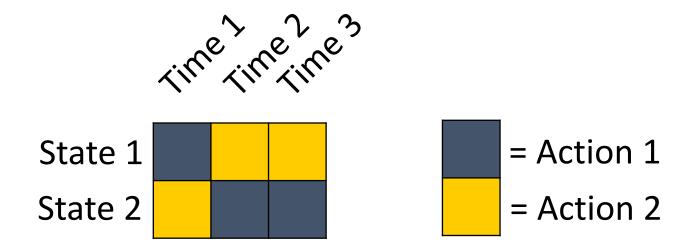
MMDPs are decomposable

ightharpoonup Evaluation of a fixed policy is easily done by solving $|\mathcal{M}|$ independent MDPs

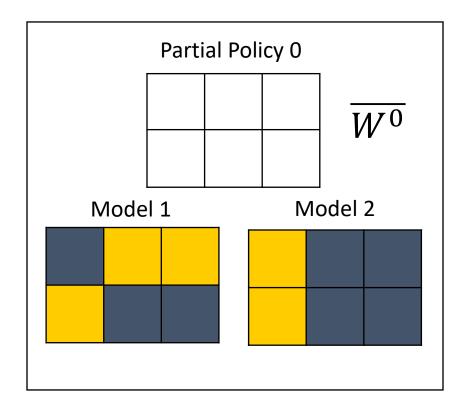
Branch-and-bound searches for policies that match across all models

Root Node: Relax requirement that policy must be same in each model

Goal: Find an *implementable policy* (policy is the same in all models) that maximizes weighted value



Branch & Bound begins by solving each model independently

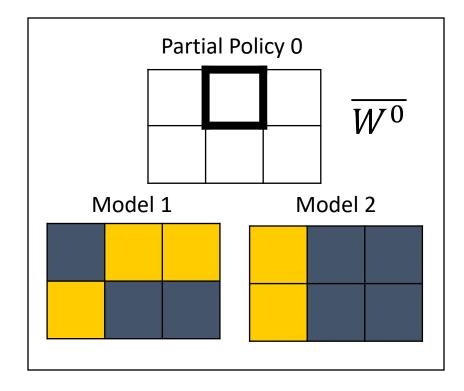


No actions have been fixed at the **root node**

Each model solved independently via backward induction

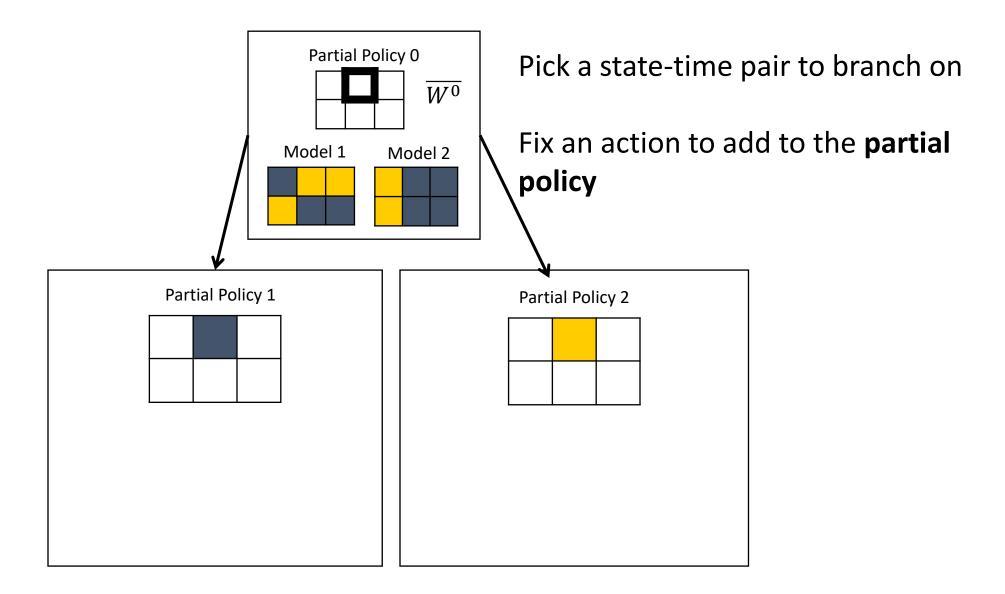
Gives an upper bound $\overline{W^0}$

Branch & Bound proceeds by fixing a part of the policy that must match in all models

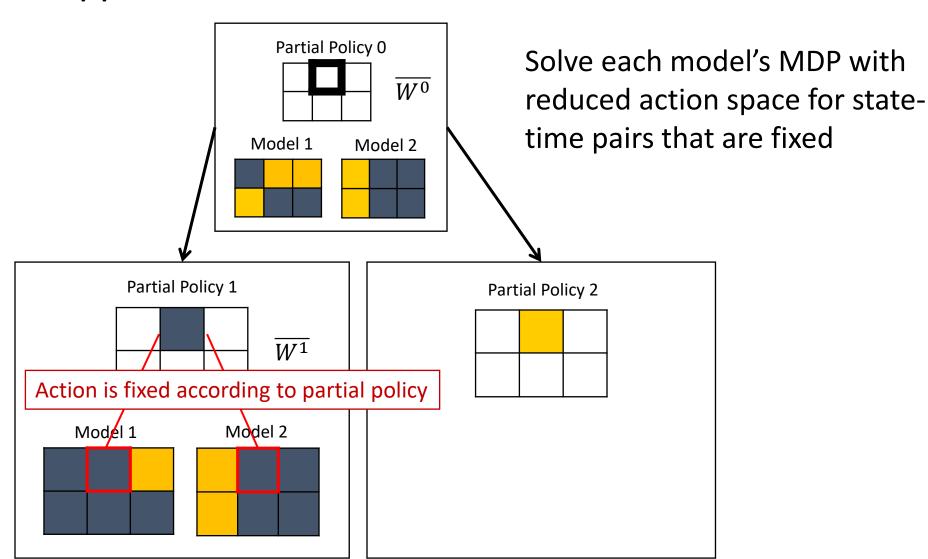


Pick a state-time pair to branch on

Branch & Bound proceeds by fixing a part of the policy that must match in all models

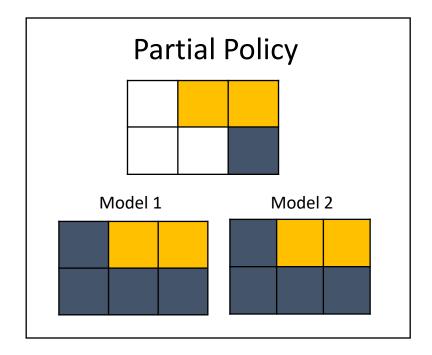


Branch & Bound solves a relaxation using backward induction to obtain upper bound



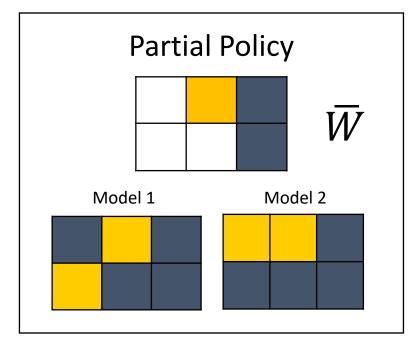
Pruning eliminates the need to explore all possible policies

Prune by optimality
Solving the relaxation gives an *implementable policy*



Prune by bound

The incumbent is better than any possible completion of the partial policy



We compared 3 exact methods on 240 instances of MMDPs

Solution Method	Implementation	% solved in 5 minutes?	Optimality Gap (avg.)
MIP Extensive Form	Gurobi		
MIP Branch-and-cut	Gurobi with Callbacks		
Branch-and-Bound	Custom code in C++		

^[1] Steimle, L. N., Ahluwalia, V., Kamdar, C., and Denton B.T. (2018) "Decomposition methods for solving Multi-model Markov decision processes." *IISE Transactions*, 2022.

Custom branch-and-bound approach is the fastest of the solution methods

Solution Method	Implementation	% solved in 5 minutes?	Optimality Gap (avg.)
MIP Extensive Form	Gurobi	0%	12.2%
MIP Branch-and-cut	Gurobi with Callbacks	0%	13.1%
Branch-and-Bound	Custom code in C++	97.9%	1.11%

Observations

 A custom branch-and-bound approach outperforms MIP-based solution methods

 MMDPs tend to be harder to solve when there is more variance in the models' parameters

• In low variance cases, the *mean value problem* provides an optimal or near-optimal solution

The remainder of this presentation

Branch-and-bound algorithms

Alternative ambiguity-aware formulations

So far, we have considered a risk-neutral decision-maker

Weighted value problem maximizes <u>expectation</u> of model performance

$$W^* = \max_{\pi \in \Pi} \sum_{m \in \mathcal{M}} \lambda_m v^m(\pi)$$

What if the decision-maker is not risk-neutral?

Branch-and-bound algorithm is easily modified to solve other ambiguity-aware formulations

$$\max_{\pi \in \Pi^{MD}} \min_{m \in \mathcal{M}} v^m(\pi)$$

Min-max-regret¹
$$\min_{\pi \in \Pi^{MD}} \max_{m \in \mathcal{M}} \left\{ \max_{\overline{\pi} \in \Pi} v^m(\overline{\pi}) - v^m(\pi) \right\}$$

Percentile optimization²

$$\max_{z \in \mathbb{R}, \pi \in \Pi^{MD}} z$$
s.t.
$$\mathbb{P}(v^m(\pi) \ge z) \ge 1 - \epsilon$$

[1] Ahmed A, Varakantham P, Lowalekar M, Adulyasak Y, Jaillet P (2017) Sampling Based Approaches for Minimizing Regret in Uncertain Markov Decision Processes (MDPs). *Journal of Artificial Intelligence Research* 59:229–264

[2] Merakli, M. and Kucukyavuz, S. (2019) "Risk-Averse Markov Decision Processes under Parameter Uncertainty with an Application to Slow-Onset Disaster Relief." Optimization Online.

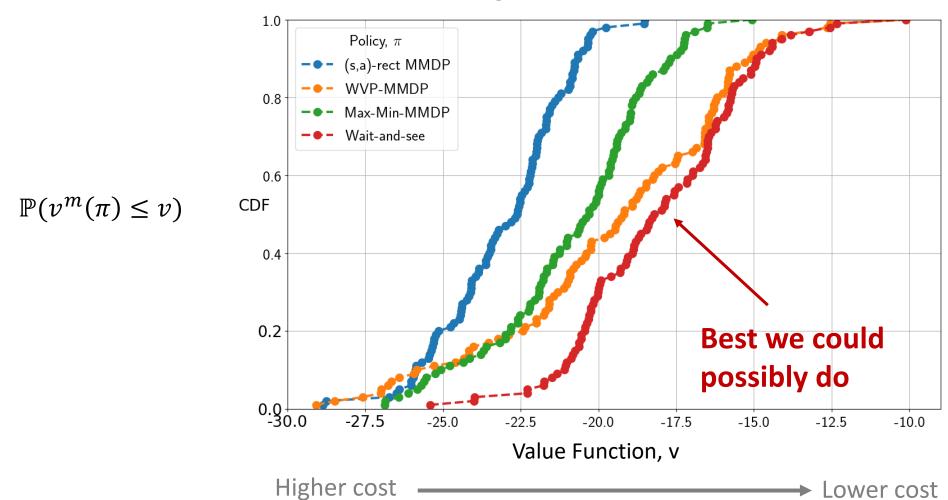
Machine maintenance: Optimal timing of machine repairs

Operating costs depend on state of machine

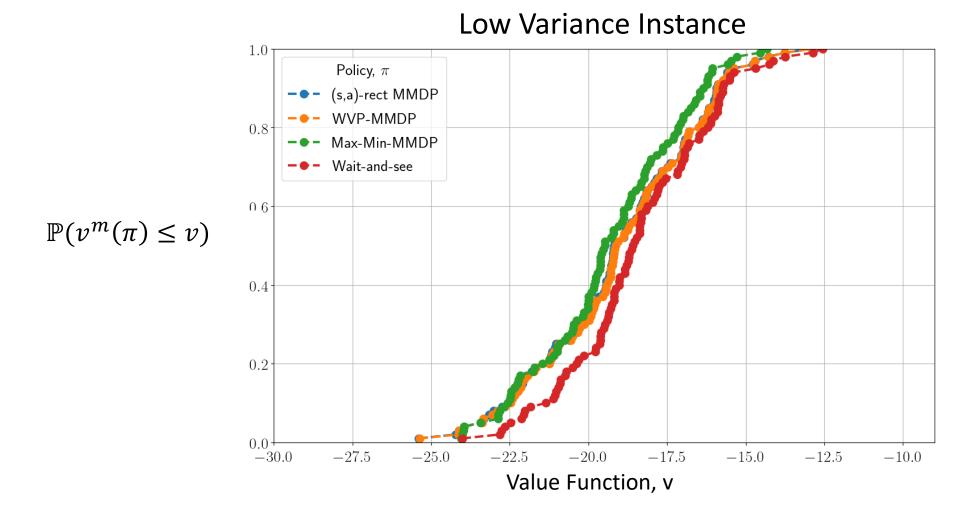
Options:

- Do Nothing at no cost
- Minor repair at low cost
- Major repair at high cost

The distribution of the value function across models varies depending on the criteria selected



As variance in models decreases, the form of protection against ambiguity matters less



Take-away messages

- Use caution before employing the interval model!
- MMDPs can generate superior performance in terms of expected rewards, regret, and other performance measures.
- Branch-and-bound can be customized to leverage MMDP structure and solve practical instances.
- MMDPs are most useful when there is significant variation among models.

Related work

 Extension to partially observable Markov decision processes with multiple plausible latent Markov models

Li, W., Denton, B.T., "Multi-model Partially Observable Markov Decision Processes, working paper, 2023

Optimization methods for "black-box" disease simulators

Zhang, Z., Denton, B.T., Morgan, T., "Optimization of Active Surveillance Strategies for Heterogeneous Patients with Prostate Cancer Journal," *Production and Operations Management* (in press), 2022.

Extension of algorithms to infinite horizon models

Ahluwalia, V., **Steimle, L**., Denton, B.T., "Policy-based branch-and-bound for infinite-horizon Multi-model Markov decision processes." *Computers and Operations Research,* 126, p. 10510, 2020.

Acknowledgments

Michigan Engineering UM-Dearborn School of Business

U.S. Department of Veterans Affairs

Lauren, Steimle, Ph.D. David Kaufman, Ph.D.

Vinayak Ahluwalia

Charmee Kamdar

Mayo Clinic Rodney Hayward, MD

Nilay Shah, Ph.D. Jeremy Sussman, MD

This material is based upon work supported by the National Science Foundation under Grant Number CMMI- 1462060 (Denton). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

