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Sequential decision-making under uncertainty

Finance

Inventory management

Machine maintenance

Medical decision making
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Prevention of cardiovascular disease (CVD) involves balancing 
the benefits and harms of treatment

Uncertain Future Benefits 

• Delay the onset of potentially deadly and 
debilitating heart attacks and strokes
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Immediate harms

• Side effects (e.g., muscle pain, frequent 
urination)



Markov decision processes generalize Markov chains to include 
decisions
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☺  

Death

Heart 
Attack

Stroke

Health states
• Blood pressure levels
• Cholesterol levels
• Current medications 

Steimle, L. N., & Denton, B. T. (2017). Markov decision processes for screening and treatment of chronic diseases. In Markov 

Decision Processes in Practice (pp. 189-222), Springer.



Markov decision process sequence of steps
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Markov Process
𝑃 𝑎𝑡

Decision-Maker’s Policy
𝜋 𝑠𝑡

State
 𝑠𝑡

Action
 𝑎𝑡



Markov decision process optimal policy
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Markov Process
𝑷 𝑎𝑡

Decision-Maker’s Policy

𝝅 𝑠𝑡

State
 𝑠𝑡

Action
 𝑎𝑡

max
𝜋∈Π

𝔼𝜋,𝑃  ෍

𝑡=1

𝑇

𝑟𝑡 𝑠𝑡, 𝑎𝑡 + 𝑟𝑇+1 𝑠𝑇+1



Clinical risk calculators are used to estimate a 
patient’s risk

72013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart 
Association Task Force on Practice Guidelines. 2014

Inputs:
• Age
• Sex
• Race
• Cholesterol
• Blood Pressure
• History of Diabetes
• On Hypertensive Treatment
• Smoking status

Output:
Current 10-Year Risk



Well-established clinical studies give conflicting 
estimates about CVD risk
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1 Wilson et. al. Prediction of Coronary Heart Disease Using Risk Factor Categories. Circulation. 1998
2 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart 
Association Task Force on Practice Guidelines. 2014

17.8 %



Research Questions

How can we improve Markov decision processes 
to account for model ambiguity?

How much benefit is there really?
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The remainder of this presentation

Multi-model Markov decision processes

Branch-and-bound algorithms

Alternative ambiguity-aware formulations
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Multi-Model MDPs have two layers of uncertainty 

Optimal control of a stochastic system… 
• Markov decision processes

…under model ambiguity
• Robust Markov decision processes
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Robust optimization approach to ambiguity in Markov decision 
processes can be modeled as a two-player zero-sum game

➢Decision-maker selects an action to maximize expected rewards

➢Adversary selects transition probabilities to minimize DM’s 
expected rewards

max
𝑎∈𝒜

min
𝑝𝑡(𝑠,𝑎)∈𝑃𝑡(𝑠,𝑎)

𝑟𝑡 𝑠, 𝑎 + σ𝑠′∈𝒮 𝑝𝑡 𝑠′ 𝑠, 𝑎 𝑣𝑡+1(𝑠)  

(s,a)-rectangularity property gives a tractable model based on the 
assumption the adversary can select each row independently
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Nilim, A. and El Ghaoui, L. "Robust control of Markov decision processes with uncertain transition matrices." Operations 
Research 53.5 (2005): 780-798.

Iyengar, G. "Robust dynamic programming." Mathematics of Operations Research 30.2 (2005): 257-280.



The interval model is computationally attractive, but has its 
drawbacks

Leads to overly-protective policies

➢Optimizing for cases where all parameters 
take on worst-case values simultaneously

Transition matrices might lose known structure

➢Ambiguity is realized independently across 
states, actions, and/or decision epochs

Relaxing (s,a)-rectangularity makes the max-min 
problem NP-hard*

13
*Wiesemann, Wolfram, Daniel Kuhn, and Berç Rustem. “Robust Markov decision processes.” Mathematics of 
Operations Research 38.1 (2013): 153-183.



Multi-model Markov Decision Process notation

Generalizes a standard Markov decision process

▪ State space, 𝒮 ≡ {1, … , 𝑆}

▪ Decision epochs, 𝒯 ≡ {1, … , 𝑇}

▪ Action space, 𝒜 ≡ {1, … , 𝐴}

▪ Rewards, 𝑅 ∈ ℝ𝑆×𝐴×𝑇

Finite set of models,  ℳ = 1, … , |ℳ|

▪ Model 𝑚: An MDP (𝒮, 𝒜, 𝒯, 𝑅, 𝑃𝑚)

▪ Transition probabilities 𝑃𝑚 are model-specific

▪ Model weights: 𝜆1, 𝜆2, … , 𝜆|ℳ|

14
Steimle, L. N., Kaufman, D.L., and Denton B.T.  “Multi-model Markov Decision Processes.” IISE Transactions, 2021.



The weighted value problem seeks a single policy that 
performs well in expectation

Performance of policy 𝜋 in model 𝑚:

𝑣𝑚 𝜋 =  𝔼𝜋,𝑃𝑚
෍

𝑡=1

𝑇

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 + 𝑟𝑇+1(𝑠𝑇+1)

Weighted value of policy 𝜋:

 𝑊 𝜋 = ෍

𝑚∈ℳ

 

𝜆𝑚𝑣𝑚 𝜋

Weighted value problem: 𝑊∗= max
𝜋∈Π

𝑊 𝜋
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The weighted value problem is hard

The MMDP is a special case of a partially-observable MDP. 

Proposition: The optimal policy may be history-dependent. 
Proof by contradiction

Proposition: In general, the Weighted Value Problem is PSPACE-
hard.
Reduction from Quantified Satisfiability
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MDP MMDP POMDP



Special case of an MMDP with deterministic Markov policies
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Proposition: There exists a deterministic policy that is optimal 
when restricting to Markov policies

Proposition: The Weighted Value Problem restricted to Markov 
deterministic policies is NP-hard 

   Reduction from 3-CNF-SAT

Initially, we focused on finding near-optimal Markov deterministic policies, 
𝜋 ∈ ΠMD, using a polynomial time approximation.



Multi-model Markov decision process

▪ 4,096 states

▪ 64 actions

▪ 40 decision epochs

▪ 2 models

Case study data

▪ Longitudinal data from Mayo Clinic

▪ Framingham, ACC risk calculators

▪ Disutilities from medical literature
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☺  

Death

Heart 
Attack

Stroke

Example: approximation algorithm for cardiovascular 
disease prevention MMDP

Mason, J. E., Denton, B. T., Shah, N. D., & Smith, S. A. (2014). Optimizing the simultaneous management of blood 
pressure and cholesterol for type 2 diabetes patients. European Journal of Operational Research, 233(3), 727-738.



We compared our approximation algorithm policy to 
policies that ignore model ambiguity
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Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

Optimal Decisions for ACC Model

MMDP Decisions

Optimal Decisions for FHS Model



In some cases, ignoring ambiguity has relatively minor 
implications
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Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

1,881

Framingham Heart Study Model

Optimal Decisions for FHS Model



In some cases, ignoring ambiguity has relatively minor 
implications
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Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

1,881

Framingham Heart Study Model

Optimal Decisions for ACC Model

Optimal Decisions for FHS Model

1,789 (-3%)



In some cases, ignoring ambiguity has relatively minor 
implications

22

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

1,881

Framingham Heart Study Model

Optimal Decisions for ACC Model

MMDP Decisions

Optimal Decisions for FHS Model

1,841 (-2%)

1,789 (-3%)



But in other cases, ignoring ambiguity can have major 
implications

23

695.9 

679.3 (-2%)

561.5 (-19%)

Optimal Decisions for ACC Model

MMDP Decisions

Optimal Decisions for FHS Model

Quality-Adjusted Life Years Gained

Over No Treatment, per 1000 Men

American College of Cardiology Model



Observations
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• MMDPs are difficult to solve computationally, but a polynomial-
time approximation algorithm can provide near-optimal solutions 
in many instances

• Based on a CVD case study, it can be important to address 
ambiguity when there are multiple plausible models

Steimle, Lauren N., David L. Kaufman, and Brian T. Denton. "Multi-model Markov decision 

processes." IISE Transactions 53, no. 10 (2021): 1124-1139.



Multi-model Markov decision processes

Branch-and-bound algorithms

Alternative ambiguity-aware formulations
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The remainder of this presentation



Approaches to solve the weighted value problem

• Mixed-integer programming (MIP)

• Branch-and-cut on a 2-stage stochastic integer 
program formulation

• Custom branch-and-bound that exploits 
MMDP structure
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The connection between MMDP and two-stage 
stochastic program
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𝜋

Performance of policy 𝜋 in model 1

Performance of policy 𝜋 in model 2

Performance of policy 𝜋 in model |ℳ|

⋮

Stochastic program MMDP

Scenarios Model of MDP

Binary first-stage decision variables Policy 

Continuous second-stage decision variables MDP model value functions

𝜆1

𝜆2

𝜆|ℳ|



The MMDP is largely decomposable but Big-Ms in logic-based 
constraints cause trouble 
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Big-M’s in logic-based constraints cause difficulty for 
standard stochastic programming methods

➢Weak linear programming relaxation for the MIP

➢Weak optimality cuts in Benders Decomposition

MMDPs are decomposable

➢Evaluation of a fixed policy is easily done by solving ℳ  
independent MDPs



Branch-and-bound searches for policies that match across all 
models
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Root Node: Relax requirement that policy must be same in each 
model

Goal: Find an implementable policy (policy is the same in all 
models) that maximizes weighted value

State 1

State 2

= Action 1

= Action 2
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Model 1 Model 2

Partial Policy 0 No actions have been fixed at the 
root node

Each model solved independently via 
backward induction

Gives an upper bound 𝑊0

𝑊0

Branch & Bound begins by solving each model independently



Branch & Bound proceeds by fixing a part of the policy that must 
match in all models
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Model 1 Model 2

Partial Policy 0 Pick a state-time pair to branch on

𝑊0



Branch & Bound proceeds by fixing a part of the policy that 
must match in all models
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Model 1 Model 2

Partial Policy 1 Partial Policy 2

Pick a state-time pair to branch on

Fix an action to add to the partial 
policy

𝑊0

Partial Policy 0 



Branch & Bound solves a relaxation using backward induction to 
obtain upper bound

33

Model 1 Model 2

𝑊0

Partial Policy 2

Partial Policy 0 
Solve each model’s MDP with 
reduced action space for state-
time pairs that are fixed

Model 1 Model 2

Partial Policy 1

𝑊1

Action is fixed according to partial policy



Pruning eliminates the need to explore all possible 
policies
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Model 1 Model 2

Partial Policy

Model 1 Model 2

Partial Policy 

ഥ𝑊

Prune by bound
The incumbent is better than 
any possible completion of 
the partial policy

Prune by optimality
Solving the relaxation gives 
an implementable policy



We compared 3 exact methods on 240 instances of 
MMDPs
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Solution Method Implementation
% solved in 5 

minutes?
Optimality 
Gap (avg.)

MIP Extensive Form Gurobi 0% 12.2%

MIP Branch-and-cut
Gurobi with 

Callbacks
0% 13.1%

Branch-and-Bound
Custom code 

in C++
97.9% 1.11%

[1] Steimle, L. N., Ahluwalia, V., Kamdar, C., and Denton B.T. (2018) “Decomposition methods for solving Multi-model Markov decision 
processes.” IISE Transactions, 2022.
[2] Gurobi Optimization, LLC (2018) “Gurobi Optimizer Reference Manual", http://www.gurobi.com



Custom branch-and-bound approach is the fastest of the 
solution methods
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Solution Method Implementation
% solved in 5 

minutes?
Optimality 
Gap (avg.)

MIP Extensive Form Gurobi 0% 12.2%

MIP Branch-and-cut
Gurobi with 

Callbacks
0% 13.1%

Branch-and-Bound
Custom code 

in C++
97.9% 1.11%



Observations
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• A custom branch-and-bound approach outperforms MIP-based 
solution methods

• MMDPs tend to be harder to solve when there is more variance 
in the models’ parameters

• In low variance cases, the mean value problem provides an 
optimal or near-optimal solution

Steimle, Lauren N., Vinayak S. Ahluwalia, Charmee Kamdar, and Brian T. Denton. "Decomposition 

methods for solving Markov decision processes with multiple models of the parameters." IISE 

Transactions 53, no. 12 (2021): 1295-1310.



Multi-model Markov decision processes

Branch-and-bound algorithms

Alternative ambiguity-aware formulations
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The remainder of this presentation



So far, we have considered a risk-neutral decision-maker
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Weighted value problem 
maximizes expectation of 
model performance

What if the decision-maker is not risk-neutral?

𝑊∗= max
𝜋∈Π

෍

𝑚∈ℳ

 

𝜆𝑚𝑣𝑚 𝜋



Branch-and-bound algorithm is easily modified to solve 
other ambiguity-aware formulations

max
𝜋∈Π𝑀𝐷

min
𝑚∈ℳ

𝑣𝑚(𝜋)

min
𝜋∈Π𝑀𝐷

max
𝑚∈ℳ

max
ഥ𝜋∈Π

𝑣𝑚( ത𝜋) − 𝑣𝑚(𝜋)

max
𝑧∈ℝ,𝜋∈Π𝑀𝐷

 𝑧 

 s. t.  ℙ 𝑣𝑚(𝜋) ≥ 𝑧 ≥ 1 − 𝜖

40

[1] Ahmed A, Varakantham P, Lowalekar M, Adulyasak Y, Jaillet P (2017) Sampling Based Approaches for Minimizing Regret in Uncertain 
Markov Decision Processes (MDPs). Journal of Artificial Intelligence Research 59:229–264
[2] Merakli, M. and Kucukyavuz, S. (2019) “Risk-Averse Markov Decision Processes under Parameter Uncertainty with an Application to Slow-
Onset Disaster Relief.” Optimization Online.

Max-min

Min-max-regret1

Percentile 
optimization2



Machine maintenance: Optimal timing of machine repairs

41

Options:
• Do Nothing at no cost
• Minor repair at low cost
• Major repair at high cost

Operating costs depend on state of machine

61 2 3 4 5

High Quality Low Quality

RepairDo Nothing
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Value Function, v

High Variance Instance

ℙ(𝑣𝑚 𝜋 ≤ 𝑣)

The distribution of the value function across models 
varies depending on the criteria selected

Lower costHigher cost

Best we could 
possibly do



As variance in models decreases, the form of protection against 
ambiguity matters less 
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Value Function, v 

ℙ(𝑣𝑚 𝜋 ≤ 𝑣)

Low Variance Instance



Take-away messages
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• Use caution before employing the interval model or assuming 
(s,a)-rectangularity!

• MMDPs can generate superior performance in terms of expected 
rewards, regret, and other performance measures.

• Branch-and-bound can be customized to leverage MMDP 
structure and solve practical instances. 

• MMDPs are most useful when there is significant variation among 
models.  



Related work
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• Extension to partially observable Markov decision processes with 
multiple plausible latent Markov models

Li, W., Denton, B.T., “Multi-model Partially Observable Markov Decision Processes, 
working paper, 2023

• Optimization methods for “black-box” disease simulators
 Zhang, Z., Denton, B.T., Morgan, T., “Optimization of Active Surveillance Strategies for 

Heterogeneous Patients with Prostate Cancer Journal,” Production and Operations 
Management (in press), 2022.

• Extension of algorithms to infinite horizon models
Ahluwalia, V., Steimle, L., Denton, B.T., “Policy-based branch-and-bound for infinite-
horizon Multi-model Markov decision processes.''  Computers and Operations Research, 
126, p. 10510, 2020.
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