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Why prostate cancer?

• 60-80% of men will eventually develop prostate cancer

• 1 in 7 men will be diagnosed during his lifetime

• 1 in 36 men will die of prostate cancer

• The care cycle for prostate cancer is a complex 

stochastic process with many clinical decisions
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Key PointsProstate Cancer Care Cycle
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Key Points

1. Should new biomarkers be used for early detection 

of prostate cancer?

2. When should imaging be used for staging of  

prostate cancer?

3. What is the optimal strategy for active surveillance 

of low-risk prostate cancer?

Three Examples
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Key Points

1. Should new biomarkers be used for 

early detection of prostate cancer?
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Prostate cancer screening 

Age 50 Age 51
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PSA screening model example
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Underwood DJ, Zhang J, Denton BT, Shah ND, Inman BA. Simulation optimization of PSA-threshold based 

prostate cancer screening policies. Health Care Management Science.2012 15(4):293-309. 8



Urine-based biomarkers for prostate cancer 

• PCA3 – urine test that received 
FDA approval in 2012 for 
repeat biopsy decisions

• T2:ERG – urine test in late-
stage clinical validation
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Improving predictions for prostate cancer 

Tomlins SA, Day JR, Lonigro RJ, Hovelson DH, Siddiqui J, Kunju LP, Dunn RL, Meyer S, Hodge P, Groskopf J, Wei JT, Chinnaiyan 
AM. “Urine TMPRSS2:ERG + PCA3 for individualized prostate cancer risk assessment,” European Urology, 70(1), 45-53, 2016
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Natural history model

Barnett, et al. “Two-

stage biomarker 

protocols for improving 

the precision of early 

detection of prostate 

cancer,” Medical 

Decision Making, 37(7), 

815-826, 2017
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High-grade cancer biomarkers could 
reduce biopsies and saves lives
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Key Points

2. When should imaging be used for 

staging of  prostate cancer?
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Imaging modalities

Bone Scan (BS)

▪ Detect bone metastasis
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Computed Tomography (CT)

▪ Detects lymph node metastasis



Harms of not imaging

▪ Metastatic cancer may go undetected

▪ Missed diagnoses subject patients to

unnecessary treatments (e.g., radical

prostatectomy)

▪ Appropriate treatment (e.g., chemotherapy) 

is delayed
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Harms of imaging

▪ Potentially harmful radiation exposure

▪ Incidental findings that require painful and risky follow-up

procedures (e.g., bone biopsy)

▪ Blocks access to imaging resources for other patients and

unnecessarily increases healthcare costs
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Michigan Urological Surgery 

Improvement Collaborative

▪ Physician-led, statewide collaborative

▪ Urology practices across Michigan (> 95% of
urologists)

▪ Complete preoperative data for men with newly-
diagnosed PCa
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Factors associated with a positive BS and CT 

▪ Age

▪ Race and ethnicity

▪ Prostate-specific antigen (PSA) (ng/ml)

▪ Clinical tumor stage (e.g., T1a/b/c, T2a/b/c and

T3/4) 

▪ Gleason score (GS)

▪ Pathology 
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Verification bias

Entire patient population Patients who received imaging

Patients who did not 
receive imaging

19



Effects of verification bias

Uncorrected Bias-corrected

Clinical guidelines

Sensitivity Specificity Sensitivity Specificity

Bone scan
 
  EAU 97.9 33.4 84.5 75.7
AUA 97.9 43.5 81.2 82.0
NCCN 97.9 40.8 82.3 80.9
Briganti’s CART 89.6 45.4 79.3 83.3

CT scan

  EAU 98.4 36.5 89.9 74.4

AUA 96.8 49.2 87.2 82.5

Begg, C. B., Greenes, R. A. "Assessment of diagnostic tests when disease verification is

subject to selection bias,” Biometrics, 39:207, 1983.
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Correcting for verification bias

21

Estimate sensitivity and specificity based on the entire population:

𝑃 𝐺 + 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑃𝑟𝑒𝑠𝑒𝑛𝑡) =
𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐺 + 𝑃(𝐺+)

𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑃𝑟𝑒𝑠𝑒𝑛𝑡

𝑃 𝐺 − 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝒏𝒐𝒕 𝑃𝑟𝑒𝑠𝑒𝑛𝑡) =
𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝒏𝒐𝒕 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐺 − 𝑃(𝐺−)

𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝒏𝒐𝒕 𝑃𝑟𝑒𝑠𝑒𝑛𝑡

Main Assumptions: Data missing at random; Factors considered by the guideline are 

the only factors that influence imaging decisions.

Begg, C.B., Greenes, R.A. Assessment of diagnostic tests when disease verification is subject to selection bias, Biometrics, 39 (207), 1983

Pr(𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐺+)𝑃 𝐺 + + 𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐺 − 𝑃(𝐺−)

Pr(𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝒏𝒐𝒕𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐺+)𝑃 𝐺 + + 𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝒏𝒐𝒕𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝐺 − 𝑃(𝐺−)



Optimizing clinical guidelines, accounting for 

verification bias

Two important challenges:

• Learning from unlabeled data

– In practice not all patients receive imaging at diagnosis

• Learning from imbalanced data

– A minority of patients has metastatic cancer

To address these challenges, we combined:

• Semi-supervised learning

• Cost-sensitive learning
22



Cost-sensitive Laplacian Kernel Logistic Regression

Higher cost on missing 
metastatic cancers

Avoid 
overfitting

Extract information 
from unimaged patients

Merdan, S., Barnett, C., Miller, D.C., Montie, J.E., Denton, B.T. “Data Analytics for Optimal 

Detection of Metastatic Prostate Cancer,” Operations Research, 69 (3), 774-794, 2021
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Imaging guideline performance
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MUSIC state-wide decrease in imaging
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Key Points

3. What is the optimal strategy for active 

surveillance of low-risk prostate cancer?
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Movember Foundation initiative

Global database for active surveillance:

• Includes >15,000 patients from 25 established AS cohorts worldwide

• Longitudinal observations of clinical and demographic characteristics

We used the four most well known studies:
• Johns Hopkins (JH)

• University of California San Francisco (UCSF)

• University of Toronto (U of T)

• Prostate Cancer Research International Active Surveillance (PRIAS) project

27



Movember Foundation initiative
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Active surveillance

Active Surveillance (AS): monitoring “low-risk” prostate cancer patients with 
biomarkers and biopsies.

Latent Markov 
model

Decision-maker’s 
action according to 

the belief

Output from the system, 
immediate “reward”

unobservable cancer state 
progresses stochastically

PSA test ( ) 
Biopsy ( )

Biomarker 
test results

Next Time 
Period

…

update belief (cancer state distribution)

belief update

Cancer Progression Figure by Alice Santi
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Latent Markov model for prostate cancer AS

Learned Model Parameters

• Initial distribution at
diagnosis

• Transition probability
matrix

• Observation probabilities

Li, W. et al. “Comparison of biopsy under‐sampling and annual progression using hidden Markov models 

to learn from prostate cancer active surveillance studies,” Cancer Medicine, 9(24):9611-9619, 2020 30



Partially observable Markov decision process

Belief Vector:
𝑏𝑖

𝑡 = 𝑃 𝑆𝑡 = 𝑖 ,  𝑖 ∈ {Low Risk, High Risk} 

Optimality Equations:

𝑉𝑡 𝑏𝑡 = max
𝑎𝑡

{𝑏𝑡𝑟(𝑎𝑡) + 

𝑜𝑡∈𝑂

𝑃 𝑜𝑡 𝑏𝑡 , 𝑎𝑡 𝑉𝑡+1(𝑏𝑡+1 𝑏𝑡 𝑎𝑡 , 𝑜𝑡 )} , ∀𝑡, 𝑏𝑡

Optimal Decision:

𝑎𝑡
∗ 𝑏𝑡 = arg max

𝑎𝑡

{𝑏𝑡𝑟(𝑎𝑡) + 

𝑜𝑡∈𝑂

𝑃 𝑜𝑡 𝑏𝑡 , 𝑎𝑡 𝑉𝑡+1(𝑏𝑡+1 𝑏𝑡 𝑎𝑡 , 𝑜𝑡 )}
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Optimal policies

Li W., Denton B.T., Morgan T.M.. “Optimizing Active Surveillance for Prostate Cancer Using Partially Observable Markov 

Decision Processes,” European Journal of Operational Research (in press), 2022. 32



Recent adventures optimizing under ambiguity

Models for chronic disease to help resolve model ambiguity

1. Steimle, L., Kauffman, D., Denton, B.T., “Multi-model Markov Decision Processes: A New 

Method for Mitigating Parameter Ambiguity,” IISE Transactions, 53(10):1124-39,  2022

2. Steimle, L., Ahluwalia, V., Kamdar, C., Denton, B.T., “Decomposition Methods for Solving Multi-

model Markov Decision Processes,” IISE Transactions, 53 (12), 1295-1310, 2022

Working paper:

 Li, W., Denton, B.T., “Multi-model Partially Observable Markov Decision Processes,” Working 

Paper (available at Optimization Online), 2023
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Key Points

1. Should biomarkers be used for early detection of prostate 

cancer?

2. When should imaging be used for staging of  prostate 

cancer?

3. What is the optimal strategy for active surveillance of low-

risk prostate cancer?

Theme: personalization of medical decisions matters!

Recap

34



Acknowledgments

Students

Christine Barnett, PhD 

Weiyu Li, PhD

Selin Merdan, PhD

Erkin Otles, PhD

Lauren Steimle, PhD

Rachel Risko, BSE

Haipeng Li, BSE

Zheng Zhang, PhD

Medical Collaborators

Susan Linsell, MSHA 

David C. Miller, MD

James E. Montie, MD 

Todd Morgan, MD

Karandeep Singh, MD 

Scott Tomlins, MD, PhD

John Wei, MD 

MUSIC Collaborative


	Slide 1: Predictive and Prescriptive Models for Early Detection of Prostate Cancer  April 9, 2024  Brian Denton Stephen M. Pollock Collegiate Professor Department of Industrial and Operations Engineering University of Michigan
	Slide 2: OR in Medicine
	Slide 3: Why prostate cancer? 
	Slide 4: Key Points
	Slide 5: Key Points
	Slide 6: Key Points
	Slide 7: Prostate cancer screening 
	Slide 8: PSA screening model example
	Slide 9: Urine-based biomarkers for prostate cancer 
	Slide 10: Improving predictions for prostate cancer 
	Slide 11: Natural history model
	Slide 12
	Slide 13: Key Points
	Slide 14: Imaging modalities
	Slide 15: Harms of not imaging
	Slide 16: Harms of imaging
	Slide 17: Michigan Urological Surgery Improvement Collaborative
	Slide 18: Factors associated with a positive BS and CT 
	Slide 19: Verification bias
	Slide 20: Effects of verification bias
	Slide 21: Correcting for verification bias
	Slide 22: Optimizing clinical guidelines, accounting for verification bias
	Slide 23: Cost-sensitive Laplacian Kernel Logistic
	Slide 24: Imaging guideline performance
	Slide 25: MUSIC state-wide decrease in imaging
	Slide 26: Key Points
	Slide 27: Movember Foundation initiative
	Slide 28: Movember Foundation initiative
	Slide 29: Active surveillance
	Slide 30: Latent Markov model for prostate cancer AS
	Slide 31: Partially observable Markov decision process
	Slide 32: Optimal policies
	Slide 33: Recent adventures optimizing under ambiguity
	Slide 34: Key Points
	Slide 35: Acknowledgments
	Slide 36:   Brian Denton Industrial and Operations  Engineering University of Michigan  btdenton@umich.edu   These slides are on my website     



